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The Gaussian wiretap channel
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Power constraint

‖e(m)‖22 ≤ nP for all messages m

Probability of error

ǫ(e, d) , max
m∈{0,1}k

P (d(Y n) 6= m | m is sent)

Security parameter

σ(e, d) , I(M ∧ Zn)
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Wiretap channel capacity

Capacity Cs = Maximum possible rate of a wiretap codes such that

ǫ(en, dn) → 0 and I(M ∧ Zn) → 0 (strong secrecy)

Characterization of Cs

Wyner 1975: Degraded wiretap channel

Csiszár and Körner 1978: General wiretap channel

L.-Y.-Cheong and Hellman 1978: Gaussian wiretap channel

Cs =
1

2
log

(

1 + P/σ2
T

1 + P/σ2
W

)

= C(T )− C(W )
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Codes for wiretap channels

Algebraic codes: Wei 1991

Schemes based on LDPC codes: Thangaraj et. al. 2007

Scheme based on Polar codes: Mahdavifar and Vardy 2010

Lattice codes for the GWC: Oggier, Solé, and Belfiore 2010
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Codes for wiretap channels

Algebraic codes: Wei 1991

Schemes based on LDPC codes: Thangaraj et. al. 2007

Scheme based on Polar codes: Mahdavifar and Vardy 2010

Lattice codes for the GWC: Oggier, Solé, and Belfiore 2010

Story before 2010: No explicit capacity achieving schemes available

Hayashi and Matsumoto 2010, Bellare, Tessaro and Vardy 2012:

Constructions using invertible extractors

Decouple error correction and secrecy
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What are extractors?

Question. Given correlated random variables U and Z, can you extract

bits from U that are almost independent of Z?
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Figure: Wiretap codes from channel codes, via extractors
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Efficient extractors using a 2-universal hash family

Consider mappings f : {0, 1}l × {0, 1}l → {0, 1}k defined by

f : (s, v) 7→ (s ∗ v)k

∗ is multiplication in GF (2l)

(·)k selects the k most significant bits

{fs(v) = f(s, v), s ∈ S} constitutes a 2-universal hash family
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Efficient extractors using a 2-universal hash family

Consider mappings f : {0, 1}l × {0, 1}l → {0, 1}k defined by

f : (s, v) 7→ (s ∗ v)k

∗ is multiplication in GF (2l)

(·)k selects the k most significant bits

{fs(v) = f(s, v), s ∈ S} constitutes a 2-universal hash family

Can be implemented efficiently

But is it invertible?

Almost! The map φ : (s,m, b) 7→ s−1 ∗ (m|b) satisfies

f(s, φ(s,m, b)) = m, for all s, b

(·|·) denotes concatenation 5



Explicit codes for wiretap channels

(e0, d0) be an (n, l) transmission code satisfying the power constraint

Shared public randomness: S ∼ unif{0, 1}l

Local Randomness: B ∼ unif{0, 1}l−k
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A new simple proof applicable to GWC

Hayashi and Matsumoto assume that uniform distribution achieves Cs

Bellare and Tessaro assume discrete symmetric wiretap channel

How do you handle continuous alphabet and power constraints?
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A new simple proof applicable to GWC

Hayashi and Matsumoto assume that uniform distribution achieves Cs

- not applicable to Gaussian channels

Bellare and Tessaro assume discrete symmetric wiretap channel

- not applicable to Gaussian channels

How do you handle continuous alphabet and power constraints?

It suffices to show:

‖PMZnS − PunifPZnS‖1 ≈ e−nδ

since

I(M ∧ Zn, S) ≤ k −H(M | Zn, S)

= D(PMZnS‖PunifPZnS)
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A key tool: Leftover Hash Lemma

The conditional min-entropy is defined as

Hmin(PUZ | PZ) = − log

∫

Rn

max
u

PU (u) p(z|u)dz

and the smooth conditional min-entropy is defined as

Hǫ
min(PUZ | PZ) = sup

QUZ :

‖QUZ−PUZ‖1≤ǫ

Hmin(QUZ | QZ)

Lemma

For a 2-universal hash family
{

fs : U → {1, ..., 2k}|s ∈ S
}

and

S ∼ unif(S), we have

‖PfS(U)ZS − PunifPZPS‖1 ≤ 2ǫ+
1

2

√

2k−Hǫ
min

(PUZ |PZ).
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Proof of security: Step 1

To show: ‖PMZnS − PunifPZnS‖1 ≈ e−nδ

Can we apply the leftover hash lemma?
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Can we apply the leftover hash lemma?

M

e0

V ∼ unif{0, 1}l
l

S
−1 ∗ (M |B)

k

Black-box 

ECC

S ∼ unif{0, 1}l f(S,M)
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Proof of security: Step 1

To show: ‖PMZnS − PunifPZnS‖1 ≈ e−nδ

Can we apply the leftover hash lemma?

Lemma (Transformation of random variables)

For RVs S,M, V,Zn as above, we have

PMV ZnS ≡ PM̃Ṽ Z̃nS̃ ,

where S̃ and Ṽ are independent, (S̃, M̃)—Ṽ —Z̃n form a Markov

chain, and

S̃ ∼ unif{0, 1}l , Ṽ ∼ unif{0, 1}l,

M̃ = f(S̃, Ṽ ) and PZ̃n|Ṽ ≡ PZn|V .
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Proof of security: Step 2

We apply leftover hash lemma with U = Ṽ and Z = Z̃n

Lemma

For RVs M,Zn, S, Ṽ , Z̃n as above, we have

‖PMZnS − PunifPZnS‖1 ≤ 2ǫ+
1

2

√

2k−Hǫ

min(PṼ Z̃n |PZ̃n).
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Proof of security: Step 2

We apply leftover hash lemma with U = Ṽ and Z = Z̃n

Lemma

For RVs M,Zn, S, Ṽ , Z̃n as above, we have

‖PMZnS − PunifPZnS‖1 ≤ 2ǫ+
1

2

√

2k−Hǫ
min(PṼ Z̃n |PZ̃n).

For sets Zv ⊆ R
n such that

∫

Zv
p(z|v) ≥ 1− 2ǫ,

Hǫ
min(PṼ Z̃n |PZ̃n) ≥ l − log

∫

Rn

max
v

1(z ∈ Zv)p(z|v)dz,

where
p(z|v) = g

(

σ−1
W (z − e0(v))

)

.
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Proof of security: Step 2

We apply leftover hash lemma with U = Ṽ and Z = Z̃n

Lemma

For RVs M,Zn, S, Ṽ , Z̃n as above, we have

‖PMZnS − PunifPZnS‖1 ≤ 2ǫ+
1

2

√

2k−Hǫ
min(PṼ Z̃n |PZ̃n).

For sets Zv ⊆ R
n such that

∫

Zv
p(z|v) ≥ 1− 2ǫ,

Hǫ
min(PṼ Z̃n |PZ̃n) ≥ l − log

∫

Rn

max
v

1(z ∈ Zv)p(z|v)dz,

where
p(z|v) = g

(

σ−1
W (z − e0(v))

)

.

Bounding Hǫ
min (PṼ Z̃n | P

Z̃n) is a concentration problem at its heart
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Proof of security: Step 2

We apply leftover hash lemma with U = Ṽ and Z = Z̃n

Lemma

For RVs M,Zn, S, Ṽ , Z̃n as above, we have

‖PMZnS − PunifPZnS‖1 ≤ 2ǫ+
1

2

√

2k−Hǫ
min(PṼ Z̃n |PZ̃n).

Lemma

Fix 0 < δ < 1/2 and let ǫ = e−nδ2/8. Then,

Hǫ
min(PṼ Z̃n |PZ̃n) ≥ l −

n

2
log

(

1 + δ +
P

σ2
W

)

−
nδ

2
+ o(n).
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Main result

Theorem (Security bound for the scheme)

For a message M ∼ unif{0, 1}k, the proposed coding scheme satisfies

‖PMZnS − PunifPZnS‖1 .
1

2

√

2
k−l+ n

2
log

(

1+δ+ P

σ2

W

)

+nδ

2
+o(n)

for all δ > 0.

For a code (e0, d0) of rate R, the rate of the resulting code is

k

n
≈ R−

1

2
log

(

1 + δ +
P

σ2
W

)

−
δ

2
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n
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2
log
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σ2
W
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−
δ
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In particular, if (e0, d0) achieves transmission capacity, the proposed

codes achieve the capacity of the wiretap channel
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Closing remarks

Our analysis relies only on eavesdropper’s channel being Gaussian,
no assumptions needed on the transmission channel

Extensions to eavesdropper’s noise being logconcave?

Security when M ≁ unif{0, 1}k?
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