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The Data Exchange Problem

[ElGamal-Orlitsky ‘84], [Csiszár-Narayan’04]

YX
⇧

bY bX
A protocol π constitutes an ε-data exchange (ε-DE) protocol if

Pr
(
X̂ = X, Ŷ = Y

)
≥ 1− ε.

What is the minimum length Lε(X,Y ) of an ε-DE protocol?
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The Slepian-Wolf Problem

Only X needs to be sent to an observer of Y .

I [Slepian-Wolf ‘73] Optimal rate for the case of IID observations:

R∗ε = H(X|Y ), 0 < ε < 1.

I [Miyake-Kanaya ‘95] Single-shot bounds:

Lε(X|Y ) ≥ λ+ log [1− ε− Pr (h(X|Y ) ≤ λ)] : lower bound

Lε(X|Y ) ≤ λ− log [ε− Pr (h(X|Y ) ≥ λ)] : upper bound
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Spectrum of 

Prob. < 1 � ✏

h(X|Y ) = � log PX|Y (X|Y )

Prob. > ✏
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Can Interaction Help?

“Asymptotically”, interaction does not help in the SW problem.

Instances where interaction is known to help:

I [Orlitsky ’90] Single-shot, worst-case length:

One round of interaction is almost optimal without error

I [Feder-Shulman‘02] Universal version, adaptive rate:

An interactive protocol accomplishes this task

I [Yang-He ‘10] Single-shot, average length

An interactive protocol attains roughly H(X|Y )

Can interaction help in the data exchange problem?
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Using Slepian-Wolf scheme for Data Exchange

The following rate is achievable for the IID case:

H(X4Y )
def
= H(X|Y ) +H(Y |X).

[Csiszár-Narayan ’04]

This rate is the least possible.

The proof relies on a property of interactive communication:

H(Π) ≥ H(Π|X,U) +H(Π|Y, V ).

Implication: Noninteractive communication can attain the optimal rate

Is interaction of any use for data exchange?
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Main Result: Bounds on Lε(X, Y )

We show that interaction is indeed helpful.

We characterize the min. length of interactive communication needed,

thereby characterizing the gain due to interaction.

Define sum conditional entropy h(X4Y )
def
= h(X|Y ) + h(Y |X)

Theorem (Single-shot)
For every 0 < ε < 1, we have

Lε(X,Y ) . λ− log [ε− Pr (h(X4Y ) ≥ λ)] , ∀λ > 0,

Lε(X,Y ) & λ+ log [1− ε− Pr (h(X4Y ) ≤ λ)] , ∀λ > 0.
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Corollary 1: Second-Order Asymptotics for IID Sources

Let (Xn, Y n) = (Xi, Yi)
n
i=1 be IID realizations of (X,Y ).

Theorem
For every 0 < ε < 1, we have

Lε(X
n, Y n) = nH(X4Y ) +

√
nVar[h(X4Y )]Q−1(ε) + o(

√
n).

This length is strictly smaller than that attained by noninteractive
protocols.
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Corollary 2: Minimum Rate for General Sources

Let (X,Y) = (Xn, Yn)∞n=1 be a general source sequence.

Define the minimum rate of communication for data exchange as

R∗(X,Y)
def
= inf
{εn}

lim sup
n

1

n
Lεn(Xn, Yn),

where the infimum is over all sequences εn → 0.

Theorem
For a general source sequence (X,Y),

R∗(X,Y) = H(X4Y),

where H(X4Y) denotes the lim sup in probability of h(Xn4Yn).

This rate is strictly smaller than that attained by noninteractive protocols.
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Proof Sketch for the Converse



Digression: Secret Key Agreement

YX
⇧

Kx Ky

K constitutes an ε-secret key of length logK if

1

2
‖PKxKyF − P

(2)
unif × PF‖1 ≤ ε,

where
P
(2)
unif(kx, ky) =

1

|K|1(kx = ky).

The maximum length of an ε-SK is denoted by Sε(X,Y ).
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Main Heuristic

Parties with correlated observations share more bits

than what they communicate.

The extra bits shared can be extracted as a secret key.

Thus, if the parties share Rshared bits and communicate R bits,

Rshared −R . S(X,Y )

m
Rshared − S(X,Y ) . R

I [Csisár-Narayan ‘04] First formalized this duality to obtain SK capacity

I [T-Narayan-Gupta ’10, T ’12] characterization of secure computability
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Warm-up: Optimal Rate for Data Exchange

Csiszár-Narayan approach flipped around:

Consider a rate R protocol for data exchnage.

I Both parties share roughly nH(XY ) bits at the end.

I Using an “extractor lemma” we can generate a SK of rate

H(XY )−R,

which must be less than the SK capacity I(X ∧ Y ).

Thus,

R ≥ H(XY )− I(X ∧ Y )

= H(X|Y ) +H(Y |X).

We seek to extend this argument to a single-shot setup.
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Upper Bound for Secret Key Length

[T-Watanabe ‘14]

Theorem
For every 0 < ε, η < 1 with η < 1− ε, we have

Sε(X,Y ) ≤ λ− log (Pλ − ε− η) + 2 log 1/η, ∀λ > 0,

where

Pλ = PXY

({
(x, y) : log

PXY (x, y)

QX (x) QY (y)
< λ

})
.
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Converse for Almost Uniform Sources

Consider a data exchange protocol of length l.

Spectrum of h(XY )

Hmin(XY ) Hmax(XY )

I Using the Leftover Hash Lemma, we can extract a SK of length

≈ Hmin(XY )− l.
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Converse for Almost Uniform Sources

Consider a data exchange protocol of length l.

Spectrum of h(XY )

Hmin(XY ) Hmax(XY )

I Using the upper bound for Sε(X,Y ),

Hmin(XY )− l . λ− log (PXY (i(X ∧ Y ) < λ)− ε)
= λ− log (PXY (h(XY )− h(X4Y ) < λ)− ε)
≤ Hmax(XY )− γ − log (PXY (h(X4Y ) > γ)− ε)
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Converse for Almost Uniform Sources

Consider a data exchange protocol of length l.

Spectrum of h(XY )

Hmin(XY ) Hmax(XY )

Thus,

l & Hmax(XY )−Hmin(XY ) + γ + log (PXY (h(X4Y ) > γ)− ε),

which gives the converse bound if Hmax(XY ) ≈ Hmin(XY ).
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General Converse via Spectrum Slicing

Slice the spectrum into N slices of width ∆ each.

Spectrum of h(XY )

H⇠
min(XY ) H⇠

max(XY )�

Ej

I There exists a slice Ej with PXY (Ej) ≥ N−2, and so

PXY ≤ PXY |Ej ≤ N2PXY .

The proof is completed by applying the previous bound to PXY |Ej .
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Our Achievability Scheme



Rough Sketch of Our Scheme

H⇠
min(X|Y ) �

Tj

h(X|Y )

hi ≡





random binning of X into Hξ
min(X|Y ) values, i = 1,

random binning of X into ∆ values, 2 ≤ i ≤ N.

First party sends bin indices Πi = hi(x) successively until

it receives an ACK or i = N

Second party sends an ACK when it finds an x̂ s.t.

(x̂, y) ∈ Ti and hj(x̂) = Πj , 1 ≤ j ≤ i.
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In Closing ...

Spectrum of 

�✏

Prob. < ✏

h(X4Y )

The minimum length of communication for ε-data exchange

is equal to roughly the ε-tail λε of h(X4Y ).

Interaction is necessary to attain this rate.
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