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Multiparty Data Exchange



Source model for data exchange
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Set of parties, M = {1, ..., m}

Observations Xn
M = {XMt}

n
t=1 are iid with common pmf PXM

π constitutes an omniscience protocol if P
(
X̂1 = ... = X̂m = Xn

M

)
≈ 1

RCO (PXM
) ≡ Minimum rate of communication for omniscience
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Characterization of min. comm. for omniscience

[Csiszár-Narayan 04]

RCO (PXM
) = min

(R1,...,Rm)∈RCO

m
∑

i=1

Ri,

where

RCO = {(R1, ..., Rm) :
∑

i∈B

Ri ≥ H(XB|XBc), ∀B ( M}
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Characterization of min. comm. for omniscience

[Csiszár-Narayan 04]

RCO (PXM
) = min

(R1,...,Rm)∈RCO

m
∑

i=1

Ri,

where

RCO = {(R1, ..., Rm) :
∑

i∈B

Ri ≥ H(XB|XBc), ∀B ( M}

[Chan-Zheng 10]

min
(R1,...,Rm)∈RCO

m
∑

i=1

Ri = max
σ∈Σ(M)

1

|σ| − 1
Hσ,

where

Hσ =

|σ|
∑

i=1

H(XM|Xσi
)
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Our work: A universal protocol

Given (x1, ...,xm
), enable data exchange using

roughly nRCO (PxM) bits of communication
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Building a Universal Protocol



A basic building block

How should we send x to y?

[Shulman-Feder 02, Yang-He 10, Braverman-Rao 11]

◮ Incrementally send n∆ bits of random hash of x

◮ Use a variant of “minimum conditional entropy” decoder:

Find the type PX Y s.t.

1. PY = Py and R ≥ H(X Y )−H(Y )

2. ∃ unique x of conditional type PX|Y given y

and consistent with hash values
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A basic building block

How should we send x to y?

[Shulman-Feder 02, Yang-He 10, Braverman-Rao 11]

◮ Incrementally send n∆ bits of random hash of x

◮ Use a variant of “minimum conditional entropy” decoder:

Find the type PX Y s.t.

1. PY = Py and R ≥ H(X Y )−H(Y )

2. ∃ unique x of conditional type PX|Y given y

and consistent with hash values

Shall use this to send xA\{i} to xi
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Ideal assumptions: Oracle model

◮ Continuous rate: Rate can be increased continuously

◮ Ideal decoder: An ideal decoder with following features is available

1. Returns correct xA, A ⊂ M, as soon as (Ri, i ∈ A) ∈ RCO(A)

2. If the condition above does not hold for any A, returns a NACK
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Protocol for two parties

RCO(PX1X2
) = {(R1, R2) : Ri ≥ H(X1, X2|Xi), i ∈ {1, 2}}

R2

R1

H(X2|X1)

H(X1|X2)
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What should we handle the case of m > 2 parties?

◮ Who should start communicating?

◮ When to start communicating?

◮ How to increase the rates?
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What should we handle the case of m > 2 parties?

◮ Who should start communicating?

Principle 1: Least compressible first

The party with the least value of H(Pxi
) starts first

◮ When to start communicating?

Principle 2: Conservation of entropy difference

Maintain H(xi)−H(xj) for all communicating parties i, j

◮ How to increase the rates?
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Example 1 (m = 2)

RCO(PX1X2
) = {(R1, R2) : Ri ≥ H(X1, X2|Xi), i ∈ {1, 2}}

R2

R1

H(X2|X1)

H(X1|X2)
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Example 1 (m = 2)

RCO(PX1X2
) = {(R1, R2) : Ri ≥ H(X1, X2|Xi), i ∈ {1, 2}}

R2

R1

H(X2|X1)

H(X1|X2)

Observation 1: R∗
1 −R∗

2 = H(X1|X2)−H(X2|X1) = H(X1)−H(X2)
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Example 1 (m = 2)
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R2

R1

H(X2|X1)

H(X1|X2)

Observation 1: R∗
1 −R∗

2 = H(X1|X2)−H(X2|X1) = H(X1)−H(X2)

Universal Protocol 2:

1. Parties compute their types (empirical distributions) Pxi
and share
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R2

R1
H(X1)−H(X2)

H(X2|X1)

H(X1|X2)

Observation 1: R∗
1 −R∗

2 = H(X1|X2)−H(X2|X1) = H(X1)−H(X2)

Observation 2: Both parties will simultaneously decode each other

Universal Protocol 2:

1. Party with higher value of H(Pxi
) initializes communication

2. Party 2 starts communicating when R1 = H(Px1
)−H(Px2

)

3. Parties increase the rates until they recover each other
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Example 2 (m = 3)

X1 ∼ Ber(1/2), X3 ∼ Ber(q), X2 = X1 ⊕X3, h(q) > 1/2

- Finest partition is dominant

- The unique optimal rate assignment is given by R∗ = (1/2, 1/2, h(q)− 1/2)
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What needs to be done for m > 2 parties?

◮ Who starts communicating?

Principle 1: Least compressible first

◮ When to start communicating?

Principle 2: Conservation of entropy difference

◮ How to increase the rates?

Principle 3: Combine and share the rate

If parties in A attain “local omniscience,” they start behaving as one

and increment the rates at slope 1/|A|
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Example 3 (m = 3)

W1,W2 ∼ Ber(1/2), V1, V2 ∼ Ber(q), q < 1/2

X1 = (W1,W2), X2 = (W1 ⊕ V1,W2), X3 = W2 ⊕ V2

- Partition {12|3} is dominant
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Example 4 (m = 4)

W1,W2,W3 ∼ Ber(1/2), V1, V2 ∼ Ber(q), q < 1/2

X1 = (W1,W2), X2 = (W1 ⊕ V1,W2), X3 = W2 ⊕ V2, X4 = W3

- Partition {123|4} is dominant

h(q)

1+2h(q)
3

1+h(q)
2

R

t

1+2h(q)
2

1

5+4h(q)
6

R1, R2

R3

R4

t1 t2 t3 t4
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A Universal Protocol for Multiparty Data Exchange



The OMN subroutine

OMN(σ,H,R)

Inputs

H = (Hσ1
, ..., Hσk

) is a decreasing sequence

R = (R1, ..., Rm)

Outputs

O : the set of subsets that attain omniscience

Rout : rates of communication when OMN terminates

Execution

While all decoders output NACK

1. All parties with Ri > 0, i ∈ σl, increase their rates at “slope” 1/|σl|

2. A new party j ≡ σj starts communicating if

Rσ1
−Rσj

= Hσ1
−Hσj

3. Each party is running the ideal decoder
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Main observation: The recursive structure of OMN

If OMN is called with a valid rate vector R

If a new subset A attains local omniscience:

(i) A is of the form {σi1 , ..., σil};

(ii) Rout is as if the parties in A were together from the start
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Main observation: The recursive structure of OMN

If OMN is called with a valid rate vector R

If a new subset A attains local omniscience:

(i) A is of the form {σi1 , ..., σil};

(ii) Rout is as if the parties in A were together from the start

The sum rate RA is given by

RA = Hσf (A)(A) =
1

l − 1

l
∑

j=1

H(XA|Xσij
)
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Protocol under ideal assumptions

Initialization

R = (0,−1,−1, ....,−1)

H = (H(Px1
), ..., H(Pxm))

σ = σf (M)

Execution

While omniscience is not attained

1. Call OMN(σ,H,R); let output be O and Rout

2. Update:

R = Rout

σ = parts consist of subsets that have attained local omniscience

H = (Hσ1
, ..., Hσk

)

3. Go to step 1
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The Fact of the Matter



Individual sequence performance

Theorem

For every ∆ > 0 and every sequence xM, the probability of error for our

protocol is bounded above by

C1

(

log |XM|

∆
+m

)

p(n)2−n∆.

Furthermore, if an error does not occur, the number of bits

communicated by the protocol for input xM is bounded above by

nRCO(M|PxM
) + nC2∆+ C3

(

log |XM|

∆
+m

)

+ C4 logn.
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