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Source model for data exchange
D
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Set of parties, M = {1,...,m}

Observations X3y = {X ¢ }i=1 are iid with common pmf Px,,
7 constitutes an omniscience protocol if P (Xl = =Xn= Xj(,l) ~1

Reo (Px,,) = Minimum rate of communication for omniscience
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Characterization of min. comm. for omniscience

[Csiszar-Narayan 04]

Reo (Pxy,) = 7...1.1113)67300 ; fie

where

Reo = {(R1,.... Rm) : Y _Ri > H(Xp|Xp:), VBSC M}
i€B

[Chan-Zheng 10]

(o]

1
R, = max ——
(R1,-.;Rim) €Rco ; aez(% lo| —1

where

Ho = )  H(Xm|Xo,)



Our work: A universal protocol

Given (xy,...,X;,), enable data exchange using

roughly nRcg (Px,,) bits of communication






A basic building block

How should we send x to y?
[Shulman-Feder 02, Yang-He 10, Braverman-Rao 11]

» Incrementally send nA bits of random hash of x

» Use a variant of “minimum conditional entropy” decoder:
Find the type P+ s.t.
1. P+=Pyand R> H(XY) - H(Y)

2. 3 unique x of conditional type Pxy given y

and consistent with hash values
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How should we send x to y?
[Shulman-Feder 02, Yang-He 10, Braverman-Rao 11]

» Incrementally send nA bits of random hash of x

» Use a variant of “minimum conditional entropy” decoder:
Find the type P+ s.t.
1. P+=Pyand R> H(XY) - H(Y)

2. 3 unique x of conditional type Pxy given y

and consistent with hash values

Shall use this to send x 4\ 14} to x;



|deal assumptions: Oracle model

» Continuous rate: Rate can be increased continuously

» Ideal decoder: An ideal decoder with following features is available

1. Returns correct x4, A C M, as soon as (R;,i € A) € Reo(A)

2. If the condition above does not hold for any A, returns a NACK
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What should we handle the case of m > 2 parties?

» Who should start communicating?
Principle 1: Least compressible first
The party with the least value of H(Py,) starts first
» When to start communicating?
Principle 2: Conservation of entropy difference

Maintain H(x;) — H(x;) for all communicating parties i, j

» How to increase the rates?
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Ry

H(X1[X>) Ry

Observation 1: R} — R = H(X1]X2) — H(X2|X1) = H(X1) — H(X?)

Universal Protocol 2:

1. Parties compute their types (empirical distributions) Py, and share
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Example 1 (m = 2)

Reo(Pxix,) = {(R1, Re) : Ri > H(X1, X2|X;),i € {1,2}}

Ry

H(X1) - H(X2) H(X:|Xs) Ry

Observation 1: Ry — R; = H(X1|X2) — H(X2|X1) = H(X1) — H(X2)
Observation 2: Both parties will simultaneously decode each other
Universal Protocol 2:

1. Party with higher value of H(Py,) initializes communication

x;

2. Party 2 starts communicating when Ry = H(Py,) — H(Px,)

3. Parties increase the rates until they recover each other

10



Example 2 (m = 3)

X1 ~Ber(1/2), X3 ~Ber(q), X:=X1®Xs, h(q) > 1/2

- Finest partition is dominant

- The unique optimal rate assignment is given by R* = (1/2,1/2, h(q) — 1/2)
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What needs to be done for m > 2 parties?

» Who starts communicating?
Principle 1: Least compressible first
» When to start communicating?
Principle 2: Conservation of entropy difference
» How to increase the rates?

Principle 3: Combine and share the rate

If parties in A attain “local omniscience,” they start behaving as one
and increment the rates at slope 1/|A4]
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Example 3 (m = 3)

Wi, Wa ~ Ber(1/2), Vi, V2 ~ Ber(q), qg<1/2
X1:(W1,W2), X2:(W1@V1,W2). Xz=W20 V2

- Partition {12|3} is dominant
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Example 4 (m = 4)

Wi, Wa, W3 ~ Ber(1/2), Vi, Va ~ Ber(q), qg<1/2
X1 =W, Wa), Xo=W1dVi,Wa), Xz=WadVa, X4=Ws
- Partition {123]4} is dominant

5+4h(q

1+2h(q)
2

|

1+h(g) :

142h(q) ! I
3

1) e Fo————g
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The OMN subroutine

O0MN(o, H,R)

H=(H,,,...,Hs,) is a decreasing sequence
R = (Ri,..,Rm)

Outputs
O : the set of subsets that attain omniscience

R°™ : rates of communication when OMN terminates

Execution
While all decoders output NACK

1. All parties with R; > 0, @ € oy, increase their rates at “slope” 1/|oy|

2. A new party j = o; starts communicating if

Ra'l _Ra'j = Ha'1 - Ho‘~

J
3. Each party is running the ideal decoder

16



Main observation: The recursive structure of OMN

If OMN is called with a valid rate vector R

If a new subset A attains local omniscience:

(i) A is of the form {o;,,..., 04 };

(i) R°" is as if the parties in A were together from the start
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Main observation: The recursive structure of OMN

If OMN is called with a valid rate vector R

If a new subset A attains local omniscience:

(i) A is of the form {o;,,..., 04 };

(i) R°" is as if the parties in A were together from the start

The sum rate R4 is given by

l
Ra=H,4)(4) = 1ZHXA|X01

J=1

17



Protocol under ideal assumptions

Initialization

R=(0,-1,-1,...,—1)
H = (H(le)? (RS H(Pxnz))
o=0f(M)

Execution

While omniscience is not attained

1. Call oMN(o, H, R); let output be O and R°**

2. Update:
R — Rout
o = parts consist of subsets that have attained local omniscience
H=(Hsy,..,Hsp)

3. Gotostep 1

18






Individual sequence performance

Theorem

For every A > 0 and every sequence x,,, the probability of error for our
protocol is bounded above by

log | X
4 <70g|AM| + m) p(n)2_"A.

Furthermore, if an error does not occur, the number of bits
communicated by the protocol for input x4 is bounded above by

log | X
nReo(M|Px,,) + nCaA + Cs <w + m) + Cylogn.
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