Information Complexity Density and Simulation of Protocols

Himanshu Tyagi Indian Institute of Science, Bangalore

with Pramod Viswanath (UIUC), Shaileshh Venkatakrishnan (UIUC), and Shun Watanabe (TUAT)

Denote by $\Pi=(\Pi_1,\Pi_2,\Pi_3,...)$ the random transcript

1

 $|\pi| = \text{depth of the protocol tree}$

ϵ -Simulation of a Protocol

Definition

A protocol $\pi_{ t sim}$ constitutes an ϵ -simulation of π if it can produce outputs Π_x and Π_y at X and Y, respectively, such that

$$\left\| \mathbf{P}_{XY\Pi\Pi} - \mathbf{P}_{XY\Pi_x\Pi_y} \right\|_{\mathsf{TV}} \le \epsilon.$$

ϵ -Simulation of a Protocol

Definition

A protocol $\pi_{ t sim}$ constitutes an ϵ -simulation of π if it can produce outputs Π_x and Π_y at X and Y, respectively, such that

$$\left\| \mathbf{P}_{XY\Pi\Pi} - \mathbf{P}_{XY\Pi_x\Pi_y} \right\|_{\mathsf{TV}} \le \epsilon.$$

We seek to characterize $D_{\epsilon}(\pi|\mathbf{P}_{XY})=$ min. length of an ϵ -simulation of π

ϵ -Compression of a Protocol

Definition

A protocol π_{com} constitutes an ϵ -compression of π if it can produce outputs Π_x and Π_y at X and Y, respectively, such that

$$\Pr\left(\Pi = \Pi_x = \Pi_y\right) \ge 1 - \epsilon.$$

ϵ -Compression of a Protocol

Definition

A protocol π_{com} constitutes an ϵ -compression of π if it can produce outputs Π_x and Π_y at X and Y, respectively, such that

$$\Pr\left(\Pi = \Pi_x = \Pi_y\right) \ge 1 - \epsilon.$$

For deterministic protocols, compression \equiv simulation.

$$\mathtt{IC}(\pi) \stackrel{\mathrm{def}}{=} I(\Pi \wedge X \mid Y) + I(\Pi \wedge Y \mid X)$$

$$\mathtt{IC}(\pi) \stackrel{\mathrm{def}}{=} I(\Pi \wedge X \mid Y) + I(\Pi \wedge Y \mid X)$$

Examples

 $\blacksquare \Pi(x,y) = x$

$$IC(\pi) = H(X|Y)$$

 $\blacksquare \Pi(x,y) = (x,y)$

$$IC(\pi) = H(X|Y) + H(Y|X)$$

$$IC(\pi) \stackrel{\text{def}}{=} I(\Pi \wedge X \mid Y) + I(\Pi \wedge Y \mid X)$$

Examples

 $\blacksquare \Pi(x,y) = x$

$$IC(\pi) = H(X|Y)$$

 $\Pi(x,y) = (x,y)$

$$IC(\pi) = H(X|Y) + H(Y|X)$$

Theorem (Amortized Communication Complexity [BR'10])

For coordinate-wise repetition π^n of π and i.i.d. (X^n,Y^n) ,

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} D_{\epsilon} \left(\pi^{n} | \mathbf{P}_{X^{n}Y^{n}} \right) = IC(\pi).$$

$$\mathtt{IC}(\pi) \stackrel{\mathrm{def}}{=} I(\Pi \wedge X \mid Y) + I(\Pi \wedge Y \mid X)$$

Examples

▶ $\Pi(x,y) = x$ [Slepian-Wolf '74]

$$IC(\pi) = H(X|Y)$$

▶ $\Pi(x,y) = (x,y)$ [Csiszár-Narayan '04]

$$IC(\pi) = H(X|Y) + H(Y|X)$$

Theorem (Amortized Communication Complexity [BR'10])

For coordinate-wise repetition π^n of π and i.i.d. (X^n,Y^n) ,

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} D_{\epsilon} \left(\pi^{n} | \mathbf{P}_{X^{n}Y^{n}} \right) = IC(\pi).$$

- ▶ Strong converse. Does $\lim_{n\to\infty} \frac{1}{n} D_{\epsilon} (\pi^n | P_{X^n Y^n})$ depend on ϵ ?
- Mixed protocols. What about a mixed protocol $\pi^{(n)}$ given by

$$\pi^{(n)} = \left\{ \begin{array}{cc} \pi_{\mathbf{h}}^n, & \text{w.p. } p, \\ \pi_{\mathbf{1}}^n, & \text{w.p. } 1-p. \end{array} \right.$$

Note that $IC(\pi^{(n)}) = n[pIC(\pi_h) + (1-p)IC(\pi_1)]$

► ... General distributions? Second-order asymptotics? Single-shot?

- ▶ Strong converse. Does $\lim_{n\to\infty} \frac{1}{n} D_{\epsilon} \left(\pi^n | P_{X^nY^n} \right)$ depend on ϵ ?
- Mixed protocols. What about a mixed protocol $\pi^{(n)}$ given by

$$\pi^{(n)} = \begin{cases} &\pi_{\mathbf{h}}^n, & \text{w.p. } p, \\ &\pi_{\mathbf{1}}^n, & \text{w.p. } 1-p. \end{cases}$$

Note that $IC(\pi^{(n)}) = n[pIC(\pi_h) + (1-p)IC(\pi_1)]$

... General distributions? Second-order asymptotics? Single-shot?

Why do we care?

- ▶ Strong converse. Does $\lim_{n\to\infty} \frac{1}{n} D_{\epsilon} \left(\pi^n | P_{X^nY^n} \right)$ depend on ϵ ?
- Mixed protocols. What about a mixed protocol $\pi^{(n)}$ given by

$$\pi^{(n)} = \left\{ \begin{array}{cc} \pi_{\mathbf{h}}^n, & \text{w.p. } p, \\ \pi_{\mathbf{1}}^n, & \text{w.p. } 1-p. \end{array} \right.$$

Note that $IC(\pi^{(n)}) = n[pIC(\pi_h) + (1-p)IC(\pi_1)]$

... General distributions? Second-order asymptotics? Single-shot?

Why do we care?

42.

The Tail of Information Complexity Density

Information Complexity Density

$$\mathrm{ic}(\tau;x,y) \stackrel{\mathrm{def}}{=} \log \frac{\mathrm{P}_{\Pi|XY}\left(\tau|x,y\right)}{\mathrm{P}_{\Pi|X}\left(\tau|x\right)} + \log \frac{\mathrm{P}_{\Pi|XY}\left(\tau|x,y\right)}{\mathrm{P}_{\Pi|Y}\left(\tau|y\right)}$$

Note that $\mathbb{E}[\mathrm{ic}(\Pi;X,Y)] = \mathrm{IC}(\pi)$.

Information Complexity Density

$$\mathrm{ic}(\tau;x,y) \stackrel{\mathrm{def}}{=} \log \frac{\mathrm{P}_{\Pi|XY}\left(\tau|x,y\right)}{\mathrm{P}_{\Pi|X}\left(\tau|x\right)} + \log \frac{\mathrm{P}_{\Pi|XY}\left(\tau|x,y\right)}{\mathrm{P}_{\Pi|Y}\left(\tau|y\right)}$$

Note that $\mathbb{E}[\mathrm{ic}(\Pi;X,Y)] = \mathrm{IC}(\pi)$.

$$\epsilon ext{-Tails}$$
 of $\mathrm{ic}(\Pi;X,Y)$ are closely related to $D_\epsilon(\pi|\mathrm{P}_{XY})$

Illustration

Consider the Slepian-Wolf problem ($\Pi(x,y)=x$).

$$\blacktriangleright \ \operatorname{ic}(\tau;x,y) = -\log \mathrm{P}_{X|Y}\left(x|y\right)$$

Illustration

Consider the Slepian-Wolf problem $(\Pi(x,y)=x)$.

- $\blacktriangleright \ \operatorname{ic}(\tau; x, y) = -\log P_{X|Y}(x|y)$
- ▶ If $\Pr(\mathsf{ic}(\Pi; X, Y) \ge \lambda) \le \epsilon$,
 - a random hash λ -bit hash of X constitutes an ϵ -compression.
- ▶ If $\Pr\left(\operatorname{ic}(\Pi; X, Y) \ge \lambda\right) > \epsilon$,
 - any subset with prob. $\geq 1 \epsilon$ has cardinality less than λ

Illustration

Consider the Slepian-Wolf problem $(\Pi(x,y)=x)$.

- $\blacktriangleright \mathsf{ic}(\tau; x, y) = -\log P_{X|Y}(x|y)$
- ▶ If $\Pr(\mathsf{ic}(\Pi; X, Y) \ge \lambda) \le \epsilon$,
 - a random hash λ -bit hash of X constitutes an ϵ -compression.
- ▶ If $\Pr(\mathsf{ic}(\Pi; X, Y) \ge \lambda) > \epsilon$,
 - any subset with prob. $\geq 1-\epsilon$ has cardinality less than λ

Lower Bound

Theorem

Given $0 \le \epsilon < 1$ and a protocol π ,

$$D_{\epsilon}(\pi) \gtrsim \sup\{\lambda : \Pr\left(\operatorname{ic}(\Pi; X, Y) > \lambda\right) \geq \epsilon\}.$$

Lower Bound

Theorem

Given $0 \le \epsilon < 1$ and a protocol π ,

$$D_{\epsilon}(\pi) \gtrsim \sup\{\lambda : \Pr\left(\mathsf{ic}(\Pi; X, Y) > \lambda\right) \geq \epsilon\}.$$

Weaknesses

- \blacktriangleright The fudge parameters are of the order $\log(\text{ spectrum width })$.
- ▶ Uses only the joint pmf, not the structure of the protocol.

Upper bound

Theorem

Given $0 \le \epsilon < 1$ and a bounded rounds protocol π ,

$$D_{\epsilon}(\pi) \lesssim \sup\{\lambda : \Pr\left(\mathrm{ic}(\Pi; X, Y) > \lambda\right) \leq \epsilon\}.$$

Upper bound

Theorem

Given $0 \le \epsilon < 1$ and a bounded rounds protocol π ,

$$D_{\epsilon}(\pi) \lesssim \sup\{\lambda : \Pr\left(\mathrm{ic}(\Pi; X, Y) > \lambda\right) \leq \epsilon\}.$$

Weaknesses.

- ▶ The fudge parameters depend on the number of rounds.
- ▶ Protocol based on round-by-round compression.

▶ Strong converse. Does $\lim_{n\to\infty} \frac{1}{n} D_{\epsilon} (\pi^n | P_{X^nY^n})$ depend on ϵ ?

• Mixed protocols. What about a mixed protocol $\pi^{(n)}$ given by

$$\pi^{(n)} = \begin{cases} &\pi_{\mathbf{h}}^n, & \text{w.p. } p, \\ &\pi_{\mathbf{1}}^n, & \text{w.p. } 1-p. \end{cases}$$

Note that $IC(\pi^{(n)}) = n[pIC(\pi_h) + (1-p)IC(\pi_1)]$

▶ Strong converse. Does $\lim_{n\to\infty} \frac{1}{n} D_{\epsilon} \left(\pi^n | P_{X^nY^n} \right)$ depend on ϵ ? Answer. No. In fact,

$$D_{\epsilon}(\pi^n) = n \mathrm{IC}(\pi) + \sqrt{n \mathbb{V}\left(\mathrm{ic}(\Pi; X, Y)\right)} Q^{-1}(\epsilon) + o(\sqrt{n})$$

• Mixed protocols. What about a mixed protocol $\pi^{(n)}$ given by

$$\pi^{(n)} = \begin{cases} &\pi_{\mathtt{h}}^n, & \text{w.p. } p, \\ &\pi_{\mathtt{1}}^n, & \text{w.p. } 1-p. \end{cases}$$

Note that $IC(\pi^{(n)}) = n[pIC(\pi_h) + (1-p)IC(\pi_1)]$

► Strong converse. Does $\lim_{n\to\infty} \frac{1}{n} D_{\epsilon} \left(\pi^n | P_{X^nY^n} \right)$ depend on ϵ ? Answer. No. In fact,

$$D_{\epsilon}(\pi^n) = n \mathrm{IC}(\pi) + \sqrt{n \mathbb{V}\left(\mathrm{ic}(\Pi; X, Y)\right)} Q^{-1}(\epsilon) + o(\sqrt{n})$$

• Mixed protocols. What about a mixed protocol $\pi^{(n)}$ given by

$$\pi^{(n)} = \begin{cases} &\pi_{\mathtt{h}}^n, & \text{w.p. } p, \\ &\pi_{\mathtt{1}}^n, & \text{w.p. } 1-p. \end{cases}$$

Note that $IC(\pi^{(n)}) = n[pIC(\pi_h) + (1-p)IC(\pi_1)]$

Answer.

$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} D_{\epsilon}(\pi^{(n)}) = \mathrm{IC}(\pi_{\mathtt{h}})$$

42

Function Computation

[BR '10], [MI '10]:

$$\lim_{\epsilon \to 0} \lim_{n \to} \frac{1}{n} D_{\epsilon}(f^n) = \mathrm{IC}(f).$$

Function Computation

[BR '10], [MI '10]:

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} D_{\epsilon}(f^n) = \mathrm{IC}(f).$$

► Strong converse? Our bound yields

$$\lim_{n\to} \frac{1}{n} D_{\epsilon}(f^n) \ge H(f(X,Y)|X) + H(f(X,Y)|Y)$$

Function Computation

[BR '10], [MI '10]:

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} D_{\epsilon}(f^n) = \mathtt{IC}(f).$$

► Strong converse? Our bound yields

$$\lim_{n \to \infty} \frac{1}{n} D_{\epsilon}(f^n) \ge H(f(X, Y)|X) + H(f(X, Y)|Y)$$

► Direct product or Arimoto converse? [BRWY '13], [BW'14]:

$$|\pi_n| < \frac{nIC(f)}{poly(\log n)} \Rightarrow \Pr(F = F_x = F_y) \le e^{-nc} \, \forall n \text{ large}$$

Function Computation

[BR '10], [MI '10]:

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} D_{\epsilon}(f^n) = \mathrm{IC}(f).$$

► Strong converse? Our bound yields

$$\lim_{n \to \infty} \frac{1}{n} D_{\epsilon}(f^n) \ge H(f(X, Y)|X) + H(f(X, Y)|Y)$$

► Direct product or Arimoto converse?

[BRWY '13], [BW'14]:

$$|\pi_n| < \frac{nIC(f)}{poly(\log n)} \Rightarrow \Pr(F = F_x = F_y) \le e^{-nc} \, \forall n \text{ large}$$

Our bound yields a threshold of n[H(F|X) + H(F|Y)].

Separation of $D_{\epsilon}(\pi)$ and ${\tt IC}(\pi)$

[BBCR '10]:
$$D_{\epsilon}(\pi) \leq \tilde{\mathcal{O}}(\sqrt{|\pi|\mathtt{IC}(\pi)})$$

[B '12]:
$$D_{\epsilon}(\pi) \leq 2^{\mathcal{O}(\mathtt{IC}(\pi))}$$

42

Separation of $D_{\epsilon}(\pi)$ and ${\tt IC}(\pi)$

[BBCR '10]:
$$D_{\epsilon}(\pi) \leq \tilde{\mathcal{O}}(\sqrt{|\pi|\mathtt{IC}(\pi)})$$

[B '12]:
$$D_{\epsilon}(\pi) \leq 2^{\mathcal{O}(\text{IC}(\pi))}$$

Arbitrary separation possible for vanishing ϵ

$$\pi(x,y) = \begin{cases} a & \text{if } x > \delta 2^n, y > \delta 2^n \\ b & \text{if } x > \delta 2^n, y \leq \delta 2^n \\ c & \text{if } x \leq \delta 2^n, y > \delta 2^n \\ (x,y) & \text{if } x \leq \delta 2^n, y \leq \delta 2^n \end{cases}$$

For (X,Y) random n-bit strings, $\delta=1/n$, and $\epsilon=1/n^2$

$$IC(\pi) = \mathcal{O}(n^{-2}) \ll D_{\epsilon}(\pi) = \Omega(2n).$$

Separation of $D_{\epsilon}(\pi)$ and ${\tt IC}(\pi)$

[BBCR '10]:
$$D_{\epsilon}(\pi) \leq \tilde{\mathcal{O}}(\sqrt{|\pi|\mathtt{IC}(\pi)})$$

[B '12]:
$$D_{\epsilon}(\pi) \leq 2^{\mathcal{O}(\text{IC}(\pi))}$$

Arbitrary separation possible for vanishing ϵ

$$\pi(x,y) = \begin{cases} a & \text{if } x > \delta 2^n, y > \delta 2^n \\ b & \text{if } x > \delta 2^n, y \le \delta 2^n \\ c & \text{if } x \le \delta 2^n, y > \delta 2^n \\ (x,y) & \text{if } x \le \delta 2^n, y \le \delta 2^n \end{cases}$$

For (X,Y) random n-bit strings, $\delta=1/n$, and $\epsilon=1/n^2$

$$IC(\pi) = \mathcal{O}(n^{-2}) \ll D_{\epsilon}(\pi) = \Omega(2n).$$

[GKR '13]: example with exponential separation even for ϵ fixed!

Simulaltion Scheme: The Compression Step

$$h_i \equiv \left\{ \begin{array}{ll} & {\sf Send} \ H^\xi_{\min}(\Pi_1|Y) \text{-bit random hash of } \Pi_1, \quad i=1, \\ & {\sf Send} \ \Delta \text{-bit random hash of } \Pi_1, \quad 2 \leq i \leq N. \end{array} \right.$$

First party sends hash bits $h_i(t)$ successively until

it receives an ACK
$$\,$$
 or $\,$ $i=N$

Second party sends an ACK when it finds an \hat{t} s.t.

$$(\hat{t}, y) \in \mathcal{T}_i$$
 and $h_j(\hat{t}) = h_j(t), \quad 1 \le j \le i.$

Simulaltion Scheme: Compression to Simulation

- ▶ Generate Π_1 s.t. public coins can be treated as a hash of Π_1 .
- \blacktriangleright Since this hash must be independent of (X,Y), can do this only for

$$H_{\min}(\Pi_1|XY) = H_{\min}(\Pi_1|X)$$
 bits .

lacktriangle Reduces the number of bits to be communicated from $h(\Pi_1|Y)$ to

$$h(\Pi_1|Y) - h(\Pi_1|X).$$

Lower Bound Proof: Super Sparse Version

- ▶ Based on reduction to secret key agreement with public discussion.
- ▶ We can compress since the parties agree on more bits L than the communicated bits R.
- $ightharpoonup S \equiv \max$. length of a secret key that can be generated

$$L - R \le S \Leftrightarrow L - S \le R$$
.

In closing ...

Information spectrum method is a promising approach for studying communication complexity

Open Problems:

- ▶ Strong converse and Arimoto converse for function computation
- ► Converse for [BBCR'10]
- Practical/universal versions of simulation algorithms
- ► Multiparty version