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Private Coin Interactive Protocols

™

Denote by IT = (II, II5, IIs, ...) the random transcript

II,—X—Y
M—Y, T, —X
I;—X, 11y, II,—Y

|| = depth of the protocol tree



e-Simulation of a Protocol

™ Tsim

A protocol mgi, constitutes an e-simulation of 7 if it can produce outputs
II, and II, at X and Y, respectively, such that

|Pxvin — Pxyi,m, ||, < €



e-Simulation of a Protocol

Tsim

A protocol mgi, constitutes an e-simulation of 7 if it can produce outputs
II, and II, at X and Y, respectively, such that

|Pxvin — Pxyi,m, ||, < €

We seek to characterize D (7|Pxy )= min. length of an e-simulation of 7
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e-Compression of a Protocol

™ Tcom

A protocol 7., constitutes an e-compression of 7 if it can produce
outputs II, and IL, at X and Y, respectively, such that

Pr(ll =1, =1I,) > 1 —e.

For deterministic protocols, compression = simulation.
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Ic(r) L IMAX | Y)+ITIAY | X)

Examples
> II(x,y) = x [Slepian-Wolf '74]

IC(r) = H(X]|Y)
» II(z,y) = (z,y) [Csiszar-Narayan '04]

IC() = H(X|Y) + H(Y|X)

Theorem (Amortized Communication Complexity [BR'10] )

For coordinate-wise repetition " of w and i.i.d. (X™,Y"),

1
lim lim —D, (7" |Pxnyn) = IC(7).
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Why do we care?
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Information Complexity Density

def PH\XY (T]z,y)

P
ic(t;z,y) = log + log iy AT ) (7lz,y)

Prjx (7]z) Py (Tly)
Note that E[ic(II; X,Y)] = IC(n).

e-Tails of ic(Il; X,Y") are closely related to D (7|Pxy)
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[[lustration

Consider the Slepian-Wolf problem (II(z,y) = x).

> ic(r;z,y) = —log Pxy (2]y)
> If Pr(ic(I; X,Y) > \) <k,

- a random hash A-bit hash of X constitutes an e-compression.

> If Pr(ic(IL; X,Y) > A) > ¢,

- any subset with prob. > 1 — € has cardinality less than A

Prob. > ¢ Prob. <e

Spectrum of h(X]Y) = —log Pxy (X|Y)
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Given 0 < € < 1 and a protocol T,

D.(7) Z sup{\: Pr (ic(I; X,Y) > \) > €}.

Weaknesses.

» The fudge parameters are of the order log( spectrum width ).

» Uses only the joint pmf, not the structure of the protocol.



Given 0 < € < 1 and a bounded rounds protocol =,

D .(m) Ssup{A: Pr(ic(I; X,Y) > A) < €}.

Distribution of ic(I; X,Y’)

Pr(ic(I; X, Y
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Given 0 < € < 1 and a bounded rounds protocol =,

D .(m) Ssup{A: Pr(ic(I; X,Y) > A) < €}.

Distribution of ic(I; X,Y’)

Weaknesses.

» The fudge parameters depend on the number of rounds.
» Protocol based on round-by-round compression.
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> Strong converse. Does lim,,_,c = D, (7"|Pxny~) depend on €?

» Mixed protocols. What about a mixed protocol 7(™) given by

o) _ ) T, W.p-p
', w.p. 1—p.

Note that IC(7(™)) = n[pIC(m) + (1 — p)IC(m)]

12



> Strong converse. Does lim,,_,c = D, (7"|Pxny~) depend on €?

Answer. No. In fact,

D (7™) = nIC(r) + /nV (ic(IL X, Y))Q  (e) + o(v/n)

» Mixed protocols. What about a mixed protocol 7(™) given by

o) _ ) Ty Wp-p
', w.p. 1—p.

Note that IC(7(™)) = n[pIC(m) + (1 — p)IC(m)]

12



> Strong converse. Does lim,,_,c = D, (7"|Pxny~) depend on €?

Answer. No. In fact,

D (7™) = nIC(r) + /nV (ic(IL X, Y))Q  (e) + o(v/n)

» Mixed protocols. What about a mixed protocol 7(™) given by

o) _ ) Ty Wp-p
', w.p. 1—p.

Note that IC(7(™)) = n[pIC(m) + (1 — p)IC(m)]

Answer. )
lim lim sup — D, (7)) = 1C(m,)

=0 pooo
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» Direct product or Arimoto converse?
[BRWY '13], [BW'14]:
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Function Computation
[BR "10], [MI '10]:

lim lim lDe(f") = IC(f).

e=0n—n

» Strong converse? Our bound yields

lim =D, (f7) > H(F(X,Y)|X) + H(f(X,V)]Y)

n—mn

» Direct product or Arimoto converse?
[BRWY '13], [BW'14]:

nIc(s)

———2 = Pr(F=F,=F,) <e "™v¥nl
poly(log ) = Pr( y) < e "°Vn large

|7

Our bound yields a threshold of n[H(F|X) + H(F|Y)]. 13
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Separation of D.(m) and IC(m)
[BBCR '10]: D.(7) < O(+/|x|1C(n))
[B '12]: D (r) < 20(1¢(m)

Arbitrary separation possible for vanishing ¢

a if x> 02"y > 62"
if x> 62",y < 52"

c if x < 92"y > 62"
(z,y) ifx<o2m,y<o2m

m(z,y) =

For (X,Y) random n-bit strings, § = 1/n, and € = 1/n?
IC(m) = O(n™ %) < D () = Q(2n).

[GKR "13]: example with exponential separation even for € fixed!
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Simulaltion Scheme: The Compression Step

HS,, (T Y) A h(IL]Y)

min

{ Send anin(l_[ﬂY)—bit random hash of II;, =1,
hi =

Send A-bit random hash of II;, 2 <¢ < N.

First party sends hash bits h;(t) successively until

it receives an ACK or 1=N

Second party sends an ACK when it finds an  s.t.

Ey)eTo and b)) =hi(t), 1<j<i.
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Simulaltion Scheme: Compression to Simulation

» Generate II; s.t. public coins can be treated as a hash of II;.
> Since this hash must be independent of (X,Y’), can do this only for

Hmin(H1|XY) == Hmin(H1|X) bitS .

» Reduces the number of bits to be communicated from h(I1;]Y") to

h(IL[Y) = h(I [ X).
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Lower Bound Proof: Super Sparse Version

» Based on reduction to secret key agreement with public discussion.

» We can compress since the parties agree on more bits L than the
communicated bits R.

» S = max. length of a secret key that can be generated

L-R<S&sL-S<R
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In closing ...

Information spectrum method is a promising approach for
studying communication complexity

Open Problems:

» Strong converse and Arimoto converse for function computation
» Converse for [BBCR'10]
» Practical/universal versions of simulation algorithms

» Multiparty version
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