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Approach: Estimate the “entropy” of the generating distribution

Shannon entropy H (p) def > » — Pz logp,
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For an (unknown) distribution p with a (unknown) support-size k,

How many samples are needed for estimating H (p)?



Estimating Shannon Entropy

For an (unknown) distribution p with a (unknown) support-size k,

How many samples are needed for estimating H (p)?
PAC Framework or Large Deviation Guarantees

Let X™ = X1, ..., X,, denote n independent samples from p

Performance of an estimator H is measured by
S5, ¢, k) % min {n L p" (|ﬁ(Xn) —H(p)| < 5) >1—e
V p with support-size k}
The sample complexity of estimating Shannon Entropy is defined as

S(6, € k) & min SH (0,¢, k)
H



Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of S(4,¢,k) on k

» Asymptotically consistent and normal estimators:
[Miller55], [Mokkadem89], [AntosKO01]

> [Paninski03] For the empirical estimator H., GH: (k) <O(k)
> [Paninski04] There exists an estimator H s.t. SH(k) < o(k)

> [ValiantV11] S(k) = O(k/logk)
- The proposed estimator is constructive and is based on a LP
- See, also, [WuY14], [JiaoVW14] for new proofs
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Sample Complexity of Estimating Shannon Entropy

Focus only on the dependence of S(4,¢,k) on k

» Asymptotically consistent and normal estimators:
[Miller55], [Mokkadem89], [AntosKO01]

> [Paninski03] For the empirical estimator H., GH: (k) <O(k)
> [Paninski04] There exists an estimator H s.t. SH(k) < o(k)

> [ValiantV11] S(k) = O(k/logk)
- The proposed estimator is constructive and is based on a LP
- See, also, [WuY14], [JiaoVW14] for new proofs

But we can estimate the distribution itself using O(k) samples.

Is it easier to estimate some other entropy??



Estimating Rényi Entropy

Definition. The Rényi entropy of order o, 0 < «x # 1, for a distribution

p is given by
1
1 «
— ogzxjpm

Sample Complexity of Estimating Rényi Entropy

Hy(p) =

Performance of an estimator H is measured by

S’ (6,6, k) e mln{n :p" (\fI(X") — H,(p)| < 6) >1—¢€VpE Pk}
The sample complexity of estimating Rényi Entropy of order « is given by

Sa(d, €, k) = mmS (0,¢, k)
i’
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Definition. The Rényi entropy of order o, 0 < «x # 1, for a distribution

p is given by
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Sample Complexity of Estimating Rényi Entropy

Hy(p) =

Performance of an estimator H is measured by

S’ (6,6, k) e mln{n :p" (\fI(X") — H,(p)| < 6) >1—¢€VpE Pk}

The sample complexity of estimating Rényi Entropy of order « is given by
Sa(d, €, k) = m};nS (0,¢, k)

We mainly seek to characterize the dependence of S, (6,¢,k) on k and «



Which Rényi Entropy is the Easiest to Estimate?

Notations:

So (k) >0 (k#) = for every n > 0 and for all §, ¢ small,
So(8,e,k) > kP~ for all k large

Sa(k) < O(kP) = there is a constant ¢ depending on d, € s.t.
S.(6,e,k) < ckP, forall k large

Sa(k) = O(kP) = Q(kP) < Sa(k) < O(KP)
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Which Rényi Entropy is the Easiest to Estimate?

For every 0 < a < 1: G (k%) < Sa(k) < Ok log k)
For every 1 < o ¢ N: Q (k) < Sa(k) < O(k/logk)
For every 1 < a € N: S, (k) = (k')



Related Work

The ath power sum of a distribution p is given by

Pa(p) =Y pg

x

Estimating Rényi entropy with small additive error is the same as
estimating power sum with small multiplicative error

> [Bar-YossefKSO01] Integer moments of frequencies in a sequence
with multiplicative and additive accuracies

> [JiaoVW14] Estimating power sums with small additive error



Related Work

The ath power sum of a distribution p is given by

Pa(p) =Y pg

x

Estimating Rényi entropy with small additive error is the same as
estimating power sum with small multiplicative error

> [Bar-YossefKSO01] Integer moments of frequencies in a sequence
with multiplicative and additive accuracies

> [JiaoVW14] Estimating power sums with small additive error
For a < 1: Additive and multiplicative accuracy estimation have roughly
the same sample complexity

For o > 1: Additive accuracy estimation requires only a constant number
of samples






Empirical or Plug-in Estimator

Given n samples X1, ..., X,,,

Let N, denote the empirical frequency of z.

~ def Nw
Pn(7) = n

1

Fre def
A
11—«
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Empirical or Plug-in Estimator

Given n samples X1, ..., X,,,

Let N, denote the empirical frequency of z.

~ def
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t Ny
n
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Empirical or Plug-in Estimator

Given n samples X1, ..., X,,,

Let N, denote the empirical frequency of z.

~ def

pn(x)

(2 def 10g Z pn

t Ny
n

Fora > 1: SH (8,6, k) < O (sl log 1)
For oo < 1: Sf‘i(é,e,k) < O(mﬁli;wlog%)
Proof??
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Rényi Entropy Estimation to Power Sum Estimation

Estimating Rényi entropy with small additive error
is the same as

estimating power sum with small multiplicative error

Using a well-known sequence of steps,

suffices to show that bias and variance of p,, are multiplicatively small



Poisson Sampling

The empirical frequencies INV,, are correlated.

Suppose N ~ Poi(n) and X3, ..., Xy be independent samples from p.

Then,
1. N, ~ Poi(np,)

2. {N,,x € X} are mutually independent

3. For each estimator I;T there is a modified estimator H' such that

P (|Ha(p) = H'(X")] > 0) < P (|Ha(p) = H(XV)| > 0) + 5,
where N ~ Poi(n/2) and n > 8log(2/e¢).

It suffices to bound the error probability under Poisson sampling

10



Performance of the Empirical Estimator

For the empirical estimator p,,:

i £

_ c&max{(ﬁ)%él,\/g}, a>1,

1 N

P(p)2var Zna] 1/a\*

( L = cémax{(kna> ,\/E,nzi_l}y a<l

Fora > 1: 552(5,6,k)§0(m10g%)

|
N
=
A

For a < 1: Sf‘i((;,e,k) <0 ((sma’ji%log %)
11



A Bias-Corrected Estimator

Consider an integer o > 1

(673

n%=mn(n—1)...(n — a+ 1) = ath falling power of n
Claim: For X ~ Poi()\), E[X2] = \*

Under Poisson sampling, an unbiased estimator of P, (p) is

Pu def Nﬁ%
n no
x
. . Fro def 1 Au
Our estimator for H,(p) is H,! = 1~ log P}

12



Performance of the Bias-Corrected Estimator

For the bias-corrected estimator P and an integer o > 1

a—1 a—r
1 a2k1—1/a)
——Var[p, ] < _—
NS pa] < ( -

r=0

For integer a > 1:

~u 1-1/« 1
St (5,e,k) <0 <kT log E)
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Performance of the Bias-Corrected Estimator

For the bias-corrected estimator P and an integer o > 1

a—1 a—r
1 a2k1—1/a)
——Var[p, ] < _—
NS pa] < ( -

r=0

For integer a > 1:

To summarize:

For every 0 < v < 1: S. (k) < O(kM)
Forevery 1 < o ¢ N: Sa(k) < O(k)
Forevery 1 <a e N: Sy(k) < Okt 1)
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Constants are Small in Practice
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The General Approach

Sa(d, €, k) > g(k) for all 4, € sufficiently small:

Show that there exist two distributions p and q such that

1. Support-size of both p and q is k;
2. |Hoz(p) - Ha(q)| > 0;

3. For all n < g(k), the variation distance ||p™ — q"|| is small.

16



The General Approach

Sa(d, €, k) > g(k) for all 4, € sufficiently small:

Show that there exist two distributions p and q such that

1. Support-size of both p and q is k;
2. |Hoz(p) - Ha(q)| > 0;

3. For all n < g(k), the variation distance ||p™ — q"|| is small.

We can replace X™ with a sufficient statistic ¢)(X™) to replace (3) with:

For all n < g(k), the variation distance ||py(xn) — y (x|l is small.

16



Distance between Profile Distributions

Definition. Profile of X™ refers & = (®q, ..., D,,) where

®; = number of symbols appearing i times in X"
=> 1(N, =)
x

Two simple observations:
1. Profile is a sufficient statistic for the probability multiset of p
2. We can assume Poisson sampling without loss of generality

Let pp and qg denote the distribution of profiles under Poisson sampling

17



Distance between Profile Distributions

Definition. Profile of X™ refers & = (®q, ..., D,,) where

®; = number of symbols appearing i times in X"
=> 1(N, =)
x

Two simple observations:
1. Profile is a sufficient statistic for the probability multiset of p
2. We can assume Poisson sampling without loss of generality
Let pp and qg denote the distribution of profiles under Poisson sampling

Theorem (Valiant08)

Given distributions p and q such that max, max{p.;q.} < 55, for
Poisson sampling with N ~ Poi(n), it holds that

€
Hp@ _q<I>H < 5 +5Zna|P¢z(p) _Pa(q)|'



Derivation of our Lower Bounds

For distributions p and q:
> lIpe — qall S 532, n|Pa(p) — Falq)]

> [Ha(p) — Ha(q)] = 1% [log 222

Choose p and q to be mixtures of d uniform distributions as follows:

|4 . :
= T 1<i1<d. 1< <k
pZ] k||$H1’ S1>0, 17>
|yl . .
Qij= , 1<i<d1<j<k
Y Elylh ’
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Derivation of our Lower Bounds

For distributions p and q:
> lIpe — qall S 532, n|Pa(p) — Falq)]

> |Ha(p) - Ha(q)| = ﬁ

Pa
log PQE?S

Choose p and q to be mixtures of d uniform distributions as follows:

|4 . :
= T 1<i1<d. 1< <k
pZ] k||$H1’ S1>0, 17>
|yl . .
Qij= , 1<i<d1<j<k
Y Elylh ’

Thus,

() - ()

[lle Nzl
1ylla Nyl

s —asll £53° (77s )

a
(1—a)ko>1

|Hao(p) — Ha(q)| =

18



Derivation of our Lower Bounds: Key Construction

Distributions with [|x| = |ly|», V1 <r < m —1 cannot be distinguished

with fewer than k'~1/ samples

Distributions with ||x|, # ||y|a have different H,,

19



Derivation of our Lower Bounds: Key Construction

Distributions with [|x| = |ly|», V1 <r < m —1 cannot be distinguished

with fewer than k'~1/ samples

Distributions with ||x|, # ||y|a have different H,,

Lemma

For every d € N and a not integer, there exist positive vectors x,y € R?
such that

xllr = llyllr, 1<r<d-1,
[1x[la # [lyla;
[1[lor 7 3]l
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Rényi entropy of order 2 is the “easiest” entropy to estimate,

requiring only O(v/k) samples
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Rényi entropy of order 2 is the “easiest” entropy to estimate,

requiring only O(v/k) samples

Sample complexity of estimating other information measures



