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1. Formulation and the main result
2. Strong converse for secret key capacity
3. Proof of the direct part

4. Proof of the converse



Common Randomness

Interactive communication F

. 5/1 ......... 5/']{: /, .......
AT
L Ly,

Definition. L is an e-common randomness for A from F if

P(L=L(Y;,F), ic A)>1—¢



Query Strategy
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Query strategy for U given V'

Massey '94, Arikan '96, Arikan-Merhav '99, Hanawal-Sundaresan '11



Query Strategy

Given rvs U,V with values in the sets U/, V.

Definition. A query strategy q for U given V' = v is a bijection
q(-Jv) U = {1, ... [Ul},
where the querier, upon observing V' = v, asks the question
“IsU =u?"
in the g(u|v)™ query.

q(U|V'): random query number for U upon observing V/



Optimum Query Exponent

Y= (X, ..., Xin) = X', 1 <i<m: iid. observations

Definition. EE > 0 is an e-achievable query exponent if

there exists e-CR L,, for A from F,, such that

sup P (¢(L, | F,) <2"%) -0 as n— oo,
q

where the sup is over every query strategy for L,, given F,,.
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Optimum Query Exponent

Y= (X, ..., Xin) = X', 1 <i<m: iid. observations

Definition. EE > 0 is an e-achievable query exponent if

there exists e-CR L,, for A from F,, such that

sup P (¢(L, | F,) <2"%) -0 as n— oo,
q
where the sup is over every query strategy for L,, given F,,.

E*(e) £ sup{FE : E is an e-achievable query exponent}

E* & O'inﬁlE*(e) . optimum query exponent



Main Result

For 0 < € < 1, the optimum query exponent E* equals

E* = E*(e) = H(XM)—)\renaX Z)\BH (X5 | Xpe).

B={BCM:B#0,A¢Z B}

A(A) = set of all {\g € [0,1] : B € B} such that

Y Ap=1, ieM

BeB:B>i

A € A(A) is a fractional partition of M



Main Result

For 0 < € < 1, the optimum query exponent E* equals

E* = E*(e) = H(XM)—)\renaX Z)\BH (X5 | Xpe).

For m = 2: The expression on the right = I (X; A X5)






Secret Key Capacity

Definition. C(e) is the supremum over rates of rv K € K s.t.
(i) K is an e-CR for A from F
(i) K is almost independent of F:

NS (K;F) =n P — Ug x Pp||, = 0

Secret key capacity C'is defined as inf C/(e)
0<e<1



Secret Key Capacity

Definition. C(e) is the supremum over rates of rv K € K s.t.
(i) K is an e-CR for A from F
(i) K is almost independent of F:

NS (K;F) =n P — Ug x Pp||, = 0

Secret key capacity C'is defined as inf C/(e)
0<e<1

C=H(Xuy) - max ;ABH (Xp | Xpe)

I. Csiszér and P. Narayan, Secret key capacity for multiple terminals, IEEE Trans. Inform.

Theory, 2004.



Optimum Query Exponent and SK Capacity

For 0 < € < 1, the optimum query exponent E* equals

E*=FE*(e) =C.
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Optimum Query Exponent and SK Capacity

For 0 < € < 1, the optimum query exponent E* equals
E*=FE*(e) =C.

Proof.

Achievability: E*(e) > C'(¢) - Easy

Converse: E*(¢) < C' - Main contribution
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Optimum Query Exponent and SK Capacity

Theorem

For 0 < € < 1, the optimum query exponent E* equals
E*=FE*(e) =C.
Proof.

Achievability: E*(e) > C'(¢) - Easy
Converse: E*(¢) < C' - Main contribution

Theorem (Strong converse for SK capacity)
For 0 < e < 1, the e-SK capacity is given by

C(e) = E* =C.

10






Query Strategies and Conditional Probabilities

Lemma. The rvs U, V, satisfy

P ({o pov o < 1) 21 0

Then for every query strategy ¢ for U given V,

P(qU|V)>~) =~ 1.
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Lemma. The rvs U, V, satisfy
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Query Strategies and Conditional Probabilities

Lemma. The rvs U, V, satisfy

P ({o pov o < 1) 21 0

Then for every query strategy ¢ for U given V,

P(qU|V)>~) =~ 1.

Also, the converse holds.

» U =SKofrate R, V = F = (x) holds with v ~ 2"%
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Proof of C'(e) < E*(e)

For an e-SK K for A from F of rate R = (1/n)log |K]|:

P ({(k,l) : Pyw (K |1) > m})

< E{|log|K|Pxr (K | F) |}

< svar(K; F) log Sval'(ci'iF) ~0 [ nswm(K;F)—=0]

For every query strategy ¢ for K given F

P(g(K|F)>2")~1 = R<E"(e)

13









Alternative Expression for C' when A = M

[Csiszdr-Narayan '04] observed that for A = M

k
HPXTFi) ’

=1

1
Ong<PXM

for every partition m = {my, ..., T} of M.
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Alternative Expression for C' when A = M

[Chan-Zheng '10] showed that for A = M

ﬁpXW).

1
C = mm =1 (PXM
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Alternative Expression for C' when A = M

[Chan-Zheng '10] showed that for A = M

|7|
. 1

We shall show

||

1
H Px. |, forevery .
i=1

" nl -1

E*(e) < E, D | Py,
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Alternative Expression for C' when A = M

[Chan-Zheng '10] showed that for A = M

|7|
. 1

We shall show

||

1
H Px. |, forevery .
i=1

E*(e) < E, =
(6) < 7] — 1

D | Py,

Roughly: For an e-CR L for M from F, there exists ¢q s.t.
P(q(L|F)<2") >0, foreveryr
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A General Converse

For rvs Y1, ..., Y}, let L be an e-CR for {1, ..., k} from F.

Let 6 be such that

Pyl LY (ylv"'uyk)
P (yb 7y/€) : —— < 7 ~ 1.
({ Hf:l Py, (i)

Then, there exists a query strategy qo for L given ¥ such that

1

P (w(L]F) S 077) = (1-va)? >0,

16



Proof of E*(¢) < E;

Choose Y; = X7 fori € {1,....k = |7|}.

Then, for n large it holds that

P
P <{(y1’ ,,,7yk) . Yl,k,Yk (y]-7 7yk?) S en}) ~ 1
[Ti=1 Py: (i)

(1/n)logb, ~ D (Px,,||Px,, % ..xPx,_)

1
= P <q0(L |F) < 9;-1> =P (qo(L|F) <2"7) >0

Using this for an e-CR L that achieves a query exponent E':

E<E;
17



Proof Outline for the General Converse

For rvs Y1, ..., Y}, let L be an e-CR for {1, ..., k} from F.

Theorem
Let 6 be such that

Pyl LY (ylv"'uyk)
P (yb 7y/€) : —— < 7 ~ 1.
({ Hf:l Py, (i)

Then, there exists a query strategy qo for L given ¥ such that

18



Small Cardinality Sets with Large Probabilities

We show: 3 a subset Z; of values of F and sets L(i) C L s.t.

L) < 0% 1 and Poe (L)1) >0, ieT
Pg (Io) >0

Lossless Data Compression:

Find small cardinality sets with large P x probabilities

19



Small Cardinality Sets with Large Probabilities

Rényi entropy of order « of a probability measure ;1 on U:

1 «
Ha(p) £ T——log y pu(u)*, 0<a#l
uel

Lemma. There exists a set Us C U with p(Us) > 1 — 6 s.t.
Us| < exp(Ha(p), O0<a<l.
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To Complete the Proof
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To Complete the Proof

..... vi (Y155 Y) < 9} ﬂ{ no errors }

I£3)] < exp (H%(M)) - (Zu(zﬁ <0 To show
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To Complete the Proof

Proof is completed using:

1. A change of measure argument
2. Structural properties of a CR L and interactive F
3. Holder's inequality

: To show




Abstract Alphabet and Communication

Let 6 be such that

P
p yb%(yk)ge ~ 1.
d [[i=1 P,

Then, there exists a query strategy ¢y for L given F such that

p <q0(L |F) < QT> > 0.

22



Abstract Alphabet and Communication

Let 6 be such that

» Upper bound on E*(¢) for jointly Gaussian rvs

» Strong converse for Gaussian secret key capacity

22



Small Cardinality Sets with Large Probabilities

Let 1 be a probability measure on .

Lemma. There exists a set Us C U with u (Us) > 1 — 6 s.t.

Us| < exp (Halp)), 0<a<l.
Conversely, for any set Us C U with p (Us) > 1 — 0,
Us| Z exp (Ha(p)), a> 1.
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Lossless Source Coding

Given probability measures i, on finite sets U,,, n > 1.

R*(8) £inf{R: p,(V,) >1-4, limsup(1/n)log|V,| < R}

Proposition. For each 0 < 6 < 1,

1 1
hin hmsup —H, (1) < R*(0) < hgn hmsup —H, ().

n

If 14, is an i.i.d. probability measure on U, = U", then

R*(6) = H(w), 0<d<l1.

24



Main Result: E* = E*(¢) = C(e) = C

» Largest rate SK makes the task of querying eavesdropper
the most onerous.

v

We proved a strong converse for the SK capacity,

v

And a converse for general alphabet and communication

» Rényi entropy can be interpreted as an answer to a
lossless source coding problem.

25



Summary

Main Result: E* = E*(¢) = C(e) = C

» Largest rate SK makes the task of querying eavesdropper
the most onerous.

v

We proved a strong converse for the SK capacity,

v

And a converse for general alphabet and communication

» Rényi entropy can be interpreted as an answer to a
lossless source coding problem.

H. Tyagi and P. Narayan, How many queries will resolve common randomness?, Accepted,

IEEE Transactions on Information Theory, 2013.
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Common Randomness Principles For Secrecy

» Secure function computation (with public discussion)
» Interactive common information and secret keys

» Querying eavesdroppers and secret keys

26






Proof Outline: Remaining Steps

PR { Pyi (V)

o= —S@} noerrors, F =i L =1
H§:1 Py, (Yz) m { }
Step 1. Change of measure

Let Py, ..v; (1. o) 2 [1i_) Py, (w:). For y* € &,

o 0Py (y")  OPyug (¥F )
Pyx g (yk | 1) < gF ) < ;

where the last inequality is valid for i in the set in

P ({i : Py (i) > 0P (i)}) >1-5
28



Proof Outline: Remaining Steps

Step 2. Property of interactive F

Pyur (4" | 1) HPY|F Yj |
Therefore,
,U(l) - PY’C|F (gll | 1)
k
0 ~ 0 ~
< gPY’CIF (& 1) = 5 ; HP i (i | 1)
Y 651,1]21
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Proof Outline: Remaining Steps

Then, by Holder's inequality

(Sw0t) <4 (STTmw 00

Step 3. Property of L

The sets ci'f;l are disjoint for different [ and fixed i

Hence, the term on the right above is less than (6/4)
30



