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Outline

1. Formulation and the main result

2. Strong converse for secret key capacity

3. Proof of the direct part

4. Proof of the converse
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Common Randomness

Lk

Y1 Yk YmYk+1A

Interactive communication F

L1

Definition. L is an ǫ-common randomness for A from F if

P (L = Li(Yi,F), i ∈ A) ≥ 1− ǫ
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Query Strategy

q(ut | v) = t

V = v no

u1 ut

no

q(u1 | v) = 1

yes yes

Is U = u1? Is U = ut?

Query strategy for U given V

Massey ’94, Arikan ’96, Arikan-Merhav ’99, Hanawal-Sundaresan ’11
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Query Strategy

Given rvs U, V with values in the sets U ,V.

Definition. A query strategy q for U given V = v is a bijection

q(·|v) : U → {1, ..., |U|},

where the querier, upon observing V = v, asks the question

“Is U = u?”

in the q(u|v)th query.

q(U |V ): random query number for U upon observing V
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Optimum Query Exponent

Yi = (Xi1, ..., Xin) = Xn
i , 1 ≤ i ≤ m: i.i.d. observations

Definition. E ≥ 0 is an ǫ-achievable query exponent if

there exists ǫ-CR Ln for A from Fn such that

sup
q

P
(

q(Ln | Fn) < 2nE
)

→ 0 as n → ∞,

where the sup is over every query strategy for Ln given Fn.
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Optimum Query Exponent

Yi = (Xi1, ..., Xin) = Xn
i , 1 ≤ i ≤ m: i.i.d. observations

Definition. E ≥ 0 is an ǫ-achievable query exponent if

there exists ǫ-CR Ln for A from Fn such that

sup
q

P
(

q(Ln | Fn) < 2nE
)

→ 0 as n → ∞,

where the sup is over every query strategy for Ln given Fn.

|{u : q(u | v) < γ}| < γ
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Optimum Query Exponent

Yi = (Xi1, ..., Xin) = Xn
i , 1 ≤ i ≤ m: i.i.d. observations

Definition. E ≥ 0 is an ǫ-achievable query exponent if

there exists ǫ-CR Ln for A from Fn such that

sup
q

P
(

q(Ln | Fn) < 2nE
)

→ 0 as n → ∞,

where the sup is over every query strategy for Ln given Fn.

E∗(ǫ) , sup{E : E is an ǫ-achievable query exponent}

E∗ , inf
0<ǫ<1

E∗(ǫ) : optimum query exponent
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Main Result

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = H (XM)− max
λ∈Λ(A)

∑

B∈B

λBH (XB | XBc) .

B = {B ( M : B 6= ∅,A * B}

Λ(A) = set of all {λB ∈ [0, 1] : B ∈ B} such that

∑

B∈B:B∋i

λB = 1, i ∈ M

λ ∈ Λ(A) is a fractional partition of M
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Main Result

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = H (XM)− max
λ∈Λ(A)

∑

B∈B

λBH (XB | XBc) .

For m = 2: The expression on the right = I (X1 ∧X2)
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Strong Converse for Secret Key Capacity



Secret Key Capacity

Definition. C(ǫ) is the supremum over rates of rv K ∈ K s.t.

(i) K is an ǫ-CR for A from F

(ii) K is almost independent of F:

n svar(K;F) = n
∥

∥PK,F −UK × PF

∥

∥

1
→ 0

Secret key capacity C is defined as inf
0<ǫ<1

C(ǫ)
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Secret Key Capacity

Definition. C(ǫ) is the supremum over rates of rv K ∈ K s.t.

(i) K is an ǫ-CR for A from F

(ii) K is almost independent of F:

n svar(K;F) = n
∥

∥PK,F −UK × PF

∥

∥

1
→ 0

Secret key capacity C is defined as inf
0<ǫ<1

C(ǫ)

C = H (XM)− max
λ∈Λ(A)

∑

B∈B

λBH (XB | XBc)

I. Csiszár and P. Narayan, Secret key capacity for multiple terminals, IEEE Trans. Inform.

Theory, 2004.
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Optimum Query Exponent and SK Capacity

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = C.
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Optimum Query Exponent and SK Capacity

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = C.

Proof.

Achievability: E∗(ǫ) ≥ C(ǫ) - Easy

Converse: E∗(ǫ) ≤ C - Main contribution
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Optimum Query Exponent and SK Capacity

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = C.

Proof.

Achievability: E∗(ǫ) ≥ C(ǫ) - Easy

Converse: E∗(ǫ) ≤ C - Main contribution

Theorem (Strong converse for SK capacity)

For 0 < ǫ < 1, the ǫ-SK capacity is given by

C(ǫ) = E∗ = C.
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Proof of Achievability



Query Strategies and Conditional Probabilities

Lemma. The rvs U, V , satisfy

P

({

(u, v) : PU |V (u|v) ≤ 1

γ

})

≈ 1. (∗)

Then for every query strategy q for U given V ,

P (q(U |V ) ≥ γ) ≈ 1.

12



Query Strategies and Conditional Probabilities

Lemma. The rvs U, V , satisfy

P

({

(u, v) : PU |V (u|v) ≤ 1

γ

})

≈ 1. (∗)

Then for every query strategy q for U given V ,

P (q(U |V ) ≥ γ) ≈ 1.

Also, the converse holds.
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Query Strategies and Conditional Probabilities

Lemma. The rvs U, V , satisfy

P

({

(u, v) : PU |V (u|v) ≤ 1

γ

})

≈ 1. (∗)

Then for every query strategy q for U given V ,

P (q(U |V ) ≥ γ) ≈ 1.

Also, the converse holds.

◮ U = SK of rate R, V = F ⇒ (∗) holds with γ ≈ 2nR
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Proof of C(ǫ) ≤ E∗(ǫ)

For an ǫ-SK K for A from F of rate R = (1/n) log |K|:

P
({

(k, i) : PK|F (k | i) > 2
exp(nR)

})

≤ E
{∣

∣ log |K|PK|F (K | F)
∣

∣

}

≤ svar(K;F) log |K|2

svar(K;F)
≈ 0 [ ∵ n svar(K;F) → 0 ]

For every query strategy q for K given F

P
(

q(K | F) ≥ 2nR
)

≈ 1 ⇒ R ≤ E∗(ǫ)
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Proof of Converse



Proof of Converse for A = M



Alternative Expression for C when A = M
[Csiszár-Narayan ’04] observed that for A = M

C ≤ 1

k − 1
D

(

PXM

∥

∥

∥

∥

k
∏

i=1

PXπi

)

,

for every partition π = {π1, ..., πk} of M.
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Alternative Expression for C when A = M
[Chan-Zheng ’10] showed that for A = M

C = min
π

1

|π| − 1
D



PXM

∥

∥

∥

∥

|π|
∏

i=1

PXπi



 .
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Alternative Expression for C when A = M
[Chan-Zheng ’10] showed that for A = M

C = min
π

1

|π| − 1
D



PXM

∥

∥

∥

∥

|π|
∏

i=1

PXπi



 .

We shall show

E∗(ǫ) ≤ Eπ =
1

|π| − 1
D



PXM

∥

∥

∥

∥

|π|
∏

i=1

PXπi



 , for every π.
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Alternative Expression for C when A = M
[Chan-Zheng ’10] showed that for A = M

C = min
π

1

|π| − 1
D



PXM

∥

∥

∥

∥

|π|
∏

i=1

PXπi



 .

We shall show

E∗(ǫ) ≤ Eπ =
1

|π| − 1
D



PXM

∥

∥

∥

∥

|π|
∏

i=1

PXπi



 , for every π.

Roughly: For an ǫ-CR L for M from F, there exists q0 s.t.

P
(

q0(L | F) ≤ 2nEπ
)

> 0, for every π
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A General Converse

For rvs Y1, ..., Yk, let L be an ǫ-CR for {1, ..., k} from F.

Theorem
Let θ be such that

P

({

(y1, ..., yk) :
PY1,...,Yk

(y1, ..., yk)
∏k

i=1 PYi
(yi)

≤ θ

})

≈ 1.

Then, there exists a query strategy q0 for L given F such that

P
(

q0(L | F) . θ
1

k−1

)

≥ (1−√
ǫ)2 > 0.
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Proof of E∗(ǫ) ≤ Eπ

Choose Yi = Xn
πi

for i ∈ {1, ..., k = |π|}.
Then, for n large it holds that

P

({

(y1, ..., yk) :
PY1,...,Yk

(y1, ..., yk)
∏k

i=1 PYi
(yi)

≤ θn

})

≈ 1

with

(1/n) log θn ≈ D
(

PXM

∥

∥PXπ1
× ...× PXπk

)

⇒ P

(

q0(L | F) ≤ θ
1

k−1

n

)

= P
(

q0(L | F) ≤ 2nEπ
)

> 0

Using this for an ǫ-CR L that achieves a query exponent E:

E ≤ Eπ
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Proof Outline for the General Converse

For rvs Y1, ..., Yk, let L be an ǫ-CR for {1, ..., k} from F.

Theorem
Let θ be such that

P

({

(y1, ..., yk) :
PY1,...,Yk

(y1, ..., yk)
∏k

i=1 PYi
(yi)

≤ θ

})

≈ 1.

Then, there exists a query strategy q0 for L given F such that

P
(

q0(L | F) . θ
1

k−1

)

> 0.
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Small Cardinality Sets with Large Probabilities

We show: ∃ a subset I0 of values of F and sets L(i) ⊆ L s.t.

|L(i)| . θ
1

k−1 and PL|F (L(i) | i) > 0, i ∈ I0

PF (I0) > 0

Lossless Data Compression:

Find small cardinality sets with large PL|F probabilities
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Small Cardinality Sets with Large Probabilities

Rényi entropy of order α of a probability measure µ on U :

Hα(µ) ,
1

1− α
log
∑

u∈U

µ(u)α, 0 ≤ α 6= 1

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.
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Small Cardinality Sets with Large Probabilities

Rényi entropy of order α of a probability measure µ on U :

Hα(µ) ,
1

1− α
log
∑

u∈U

µ(u)α, 0 ≤ α 6= 1

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.

Conversely, for any set Uδ ⊆ U with µ (Uδ) ≥ 1− δ,

|Uδ| & exp (Hα(µ)) , α > 1.
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Small Cardinality Sets with Large Probabilities

Rényi entropy of order α of a probability measure µ on U :

Hα(µ) ,
1

1− α
log
∑

u∈U

µ(u)α, 0 ≤ α 6= 1

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.

Conversely, for any set Uδ ⊆ U with µ (Uδ) ≥ 1− δ,

|Uδ| & exp (Hα(µ)) , α > 1.

1

H(X)

Hα(P )

α

log |X |
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To Complete the Proof

E ,

{

(y1, ..., yk) :
PY1,...,Yk

(y1, ..., yk)
∏k

i=1 PYi
(yi)

≤ θ

}

⋂

{

no errors
}

µ(l) , P (L = l, (Y1, ..., Yk) ∈ E | F = i)

There exists L(i) ⊆ L with µ(L(i)) ≥ µ(L)− δ and

|L(i)| . exp
(

H 1

k
(µ)
)

=

(

∑

l

µ(l)
1

k

)
k

k−1
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To Complete the Proof

E ,
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(y1, ..., yk) :
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k
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1
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To Complete the Proof

E ,

{

(y1, ..., yk) :
PY1,...,Yk

(y1, ..., yk)
∏k

i=1 PYi
(yi)

≤ θ

}

⋂

{

no errors
}

µ(l) , P (L = l, (Y1, ..., Yk) ∈ E | F = i)

There exists L(i) ⊆ L with µ(L(i)) ≥ µ(L)− δ and

|L(i)| . exp
(

H 1

k
(µ)
)

=

(

∑

l

µ(l)
1

k

)
k

k−1

. θ
1

k−1 : To show
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Proof is completed using:

1. A change of measure argument

2. Structural properties of a CR L and interactive F

3. Hölder’s inequality



Abstract Alphabet and Communication

Let θ be such that

P

({

yk :
dPY1,...,Yk

d
∏k

i=1 PYi

(yk) ≤ θ

})

≈ 1.

Then, there exists a query strategy q0 for L given F such that

P
(

q0(L | F) . θ
1

k−1

)

> 0.
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Abstract Alphabet and Communication

Let θ be such that

P

({

yk :
dPY1,...,Yk

d
∏k

i=1 PYi

(yk) ≤ θ

})

≈ 1.

Then, there exists a query strategy q0 for L given F such that

P
(

q0(L | F) . θ
1

k−1

)

> 0.

◮ Upper bound on E∗(ǫ) for jointly Gaussian rvs

◮ Strong converse for Gaussian secret key capacity
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Small Cardinality Sets with Large Probabilities

Let µ be a probability measure on U .

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.

Conversely, for any set Uδ ⊆ U with µ (Uδ) ≥ 1− δ,

|Uδ| & exp (Hα(µ)) , α > 1.

1

H(X)

Hα(P )

α

log |X |
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Lossless Source Coding

Given probability measures µn on finite sets Un, n ≥ 1.

R∗(δ) , inf{R : µn(Vn) ≥ 1− δ, lim sup(1/n) log |Vn| ≤ R}

Proposition. For each 0 < δ < 1,

lim
α↓1

lim sup
n

1

n
Hα(µn) ≤ R∗(δ) ≤ lim

α↑1
lim sup

n

1

n
Hα(µn).

If µn is an i.i.d. probability measure on Un = Un, then

R∗(δ) = H(µ1), 0 < δ < 1.
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Summary

Main Result: E∗ = E∗(ǫ) = C(ǫ) = C

◮ Largest rate SK makes the task of querying eavesdropper
the most onerous.

◮ We proved a strong converse for the SK capacity,

◮ And a converse for general alphabet and communication

◮ Rényi entropy can be interpreted as an answer to a
lossless source coding problem.
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Summary

Main Result: E∗ = E∗(ǫ) = C(ǫ) = C

◮ Largest rate SK makes the task of querying eavesdropper
the most onerous.

◮ We proved a strong converse for the SK capacity,

◮ And a converse for general alphabet and communication

◮ Rényi entropy can be interpreted as an answer to a
lossless source coding problem.

H. Tyagi and P. Narayan, How many queries will resolve common randomness?, Accepted,
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Common Randomness Principles For Secrecy

◮ Secure function computation (with public discussion)

◮ Interactive common information and secret keys

◮ Querying eavesdroppers and secret keys

26
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Proof Outline: Remaining Steps

Ei,l ,

{

PY k

(

Y k
)

∏k

i=1 PYi
(Yi)

≤ θ

}

⋂

{

no errors, F = i, L = l
}

Step 1. Change of measure

Let P̃Y1...,Yk
(y1, .., yk) ,

∏k

i=1 PYi
(yi). For y

k ∈ Ei,l

PY k|F

(

yk | i
)

≤ θP̃Y k

(

yk
)

PF (i)
<

θP̃Y k|F

(

yk | i
)

δ

where the last inequality is valid for i in the set in

PF

(

{i : PF (i) > δP̃F (i)}
)

≥ 1− δ
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Proof Outline: Remaining Steps

Step 2. Property of interactive F

P̃Y k|F

(

yk | i
)

=
k
∏

j=1

P̃Yj |F (yj | i)

Therefore,

µ(l) , PY k|F (Ei,l | i)

≤ θ

δ
P̃Y k|F (Ei,l | i) =

θ

δ

∑

yk ∈Ei,l

k
∏

j=1

P̃Yi|F (yi | i)

≤ θ

δ

k
∏

j=1

P̃Yj |F

(

E j
i,l | i

)
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Proof Outline: Remaining Steps

Then, by Hölder’s inequality

(

∑

l

µ(l)
1

k

)k

≤ θ

δ

(

∑

l

k
∏

j=1

P̃Yj |F

(

E j
i,l | i

)
1

k

)k

≤ θ

δ

k
∏

j=1

(

∑

l

P̃Yj |F

(

E j
i,l | i

)

)

Step 3. Property of L

The sets E j
i,l are disjoint for different l and fixed i

Hence, the term on the right above is less than (θ/δ)
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