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Secure Processing of Distributed Data

Three classes of problems are studied:

1. Secure Function Computation with Trusted Parties

2. Communication Requirements for Secret Key Generation

3. Querying Eavesdropper
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Secure Processing of Distributed Data

Three classes of problems are studied:

1. Secure Function Computation with Trusted Parties

2. Communication Requirements for Secret Key Generation

3. Querying Eavesdropper

Our Approach

◮ Identify the underlying common randomness

◮ Decompose common randomness into independent components

2



Outline

1. Basic Concepts

2. Secure Computation

3. Minimal Communication for Optimum Rate Secret Keys

4. Querying Common Randomness

5. Principles of Secrecy Generation
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Basic Concepts

Multiterminal Source Model

Interactive Communication Protocol

Common Randomness

Secret Key
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Multiterminal Source Model

Xn
mXn

1 Xn
2

Assumption on the data

◮ Xn
i = (Xi1, ...,Xin)

- Data observed at time instance t: XMt = (X1t, ...,Xmt)

- Probability distribution of X1, ...,Xm is known.

◮ Observations are i.i.d. across time:

- XM1, ...,XMn are i.i.d. rvs.

◮ Observations are finite-valued.
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Interactive Communication Protocol

COMMUNICATION NETWORK

F11

Xn
1 Xn

2 Xn
m

Assumptions on the protocol

◮ Each terminal has access to all the communication.

◮ Multiple rounds of interactive communication are allowed.

◮ Communication from terminal 1: F11 = f11 (X
n
1 )
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Interactive Communication Protocol

COMMUNICATION NETWORK

F11 F21

Xn
1 Xn

2 Xn
m

Assumptions on the protocol

◮ Each terminal has access to all the communication.

◮ Multiple rounds of interactive communication are allowed.

◮ Communication from terminal 2: F21 = f21 (X
n
2 , F11)
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Interactive Communication Protocol

COMMUNICATION NETWORK

F1 F2 Fm

Xn
1 Xn

2 Xn
m

Assumptions on the protocol

◮ Each terminal has access to all the communication.

◮ Multiple rounds of interactive communication are allowed.

◮ r rounds of interactive communication: F = F1, ...,Fm
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Common Randomness

COMMUNICATION NETWORK

A

L1 L2

F

Xn
1 Xn

2 Xn
m

Definition. L is an ǫ-common randomness for A from F if

P (L = Li(X
n
i ,F), i ∈ A) ≥ 1− ǫ

Ahlswede-Csiszár ’93 and ’98. 7



Secret Key

COMMUNICATION NETWORK

A F

Xn
1 Xn

2 Xn
m

K K

Definition. An rv K ∈ K is an ǫ-secret key for A from F if

1. Recoverability: K is an ǫ-CR for A from F

2. Security: K is concealed from an observer of F

Maurer ’93 Ahlswede-Csiszár ’93 Csiszár-Narayan ’04. 8



Secret Key

COMMUNICATION NETWORK

A F

Xn
1 Xn

2 Xn
m

K K

Definition. An rv K ∈ K is an ǫ-secret key for A from F if

1. Recoverability: K is an ǫ-CR for A from F

2. Security: K is concealed from an observer of F

PKF ≈ UK × PF

Maurer ’93 Ahlswede-Csiszár ’93 Csiszár-Narayan ’04. 8



Notions of Security

◮ Kullback-Leibler Divergence

sin(K,F) = D (PKF‖UK × PF)

= log |K| −H(K) + I(K ∧ F) ≈ 0

◮ Variational Distance

svar(K,F) = ‖PKF − UK × PF‖1 ≈ 0

◮ Weak

sweak(K,F) =
1

n
sin(K,F) ≈ 0
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Notions of Security

◮ Kullback-Leibler Divergence

sin(K,F) = D (PKF‖UK × PF)

= log |K| −H(K) + I(K ∧ F) ≈ 0

◮ Variational Distance

svar(K,F) = ‖PKF − UK × PF‖1 ≈ 0

◮ Weak

sweak(K,F) =
1

n
sin(K,F) ≈ 0

2 svar(K,F)2 ≤ sin(K,F) ≤ svar(K,F) log |K|
svar(K,F)
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Secret Key Capacity

Definition. An rv K ∈ K is an ǫ-secret key for A from F if

1. Recoverability: K is an ǫ-CR for A from F

2. Security: s(K,F) → 0 as n → ∞
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Secret Key Capacity

Definition. An rv K ∈ K is an ǫ-secret key for A from F if

1. Recoverability: K is an ǫ-CR for A from F

2. Security: s(K,F) → 0 as n → ∞

Rate of K ≡ 1
n
log |K|
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Secret Key Capacity

Definition. An rv K ∈ K is an ǫ-secret key for A from F if

1. Recoverability: K is an ǫ-CR for A from F

2. Security: s(K,F) → 0 as n → ∞

Rate of K ≡ 1
n
log |K|

◮ ǫ-SK capacity C(ǫ) = supremum over the rates of ǫ-SKs

◮ SK capacity C = inf
0<ǫ<1

C(ǫ)

10



Secret Key Capacity

Theorem (Csiszár-Narayan ’04)

The SK capacity is given by

C = H (XM)− RCO,

where

RCO = min
m
∑

i=1

Ri,

such that
∑

i∈B Ri ≥ H (XB | XBc), for all A * B ⊆ M.
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Secret Key Capacity

RCO ≡ min. rate of “communication for omniscience" for A

Theorem (Csiszár-Narayan ’04)

The SK capacity is given by

C = H (XM)− RCO,

where

RCO = min
m
∑

i=1

Ri,

such that
∑

i∈B Ri ≥ H (XB | XBc), for all A * B ⊆ M.
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Secret Key Capacity

RCO ≡ min. rate of “communication for omniscience" for A

Theorem (Csiszár-Narayan ’04)

The SK capacity is given by

C = H (XM)− RCO,

where

RCO = min
m
∑

i=1

Ri,

such that
∑

i∈B Ri ≥ H (XB | XBc), for all A * B ⊆ M.

(Maurer ’93, Ahlswede-Csiszár ’93)

For m = 2: C = I(X1 ∧X2)
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Secure Computation



Computing Functions of Distributed Data

COMMUNICATION NETWORK

F

Xn
1 Xn

2 Xn
m

g2g1 gm

Function computed at terminal i: gi(x1, ..., xm)

- Denote the random value of gi(x1, ..., xm) by Gi
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Computing Functions of Distributed Data

COMMUNICATION NETWORK

F

Xn
1 Xn

2 Xn
m

g2g1 gm

Function computed at terminal i: gi(x1, ..., xm)

- Denote the random value of gi(x1, ..., xm) by Gi

P
(

Gn
i = Ĝ

(n)
i (Xn

i ,F), for all 1 ≤ i ≤ m
)

≥ 1− ǫ
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Secure Function Computation

COMMUNICATION NETWORK

F

Xn
1 Xn

2 Xn
m

g2g1 gm

I(Gn
0 ∧ F) ≈ 0

Value of private function g0 must not be revealed

Definition. Functions g0, g1, ..., gm are securely computable if

1. Recoverability: P
(

Gn
i = Ĝ

(n)
i (Xn

i ,F), i ∈ M
)

→ 1

2. Security: I(Gn
0 ∧ F) → 0
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Secure Function Computation

When are functions g0, g1, ..., gm securely computable?

COMMUNICATION NETWORK

F

Xn
1 Xn

2 Xn
m

g2g1 gm

I(Gn
0 ∧ F) ≈ 0

Value of private function g0 must not be revealed

Definition. Functions g0, g1, ..., gm are securely computable if

1. Recoverability: P
(

Gn
i = Ĝ

(n)
i (Xn

i ,F), i ∈ M
)

→ 1

2. Security: I(Gn
0 ∧ F) → 0
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Secure Function Computation

When is a function g securely computable?

COMMUNICATION NETWORK

F

Xn
1 Xn

2 Xn
m

g g g

I(Gn ∧ F) ≈ 0

Value of Private function g0 = g

Definition. Function g is securely computable if

1. Recoverability: P
(

Gn = Ĝ
(n)
i (Xn

i ,F), i ∈ M
)

→ 1

2. Security: I(Gn ∧ F) → 0
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A Necessary Condition

If g is securely computable, then it constitutes an SK for M.

Therefore,
rate of G ≤ SK Capacity,

i.e.,

H(G) ≤ C.

16



When is g securely computable?

Theorem
If g is securely computable, then H(G) ≤ C.

Conversely, g is securely computable if H(G) < C.

For a securely computable function g:

◮ Omniscience can be obtained using F ⊥⊥
∼

Gn.

◮ Noninteractive communication suffices.

◮ Randomization is not needed.

17



Example: Secure Computation using Secret Keys

H(K) = 1

B1 B2K K

Secret Key K

g(X1, X2) = B1 ⊕ B2

X1 X2
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Example: Secure Computation using Secret Keys

H(K) = 1

B1 B2K K

Secret Key K

g(X1, X2) = B1 ⊕ B2

X1 X2

B1
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Example: Secure Computation using Secret Keys

H(K) = 1

B1 B2K K

Secret Key K

g(X1, X2) = B1 ⊕ B2

X1 X2

K ⊕ B1 ⊕ B2

B1

18



Example: Secure Computation using Secret Keys

Do fewer than n bits suffice?

B2n

Secret Key K

g(Xn
1 , X

n
2 ) = B11 ⊕ B21, ...., B1n ⊕ B2n

K1 Kn
...B1n

...B11
... KnK1 B21

...
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Example: Secure Computation using Secret Keys

Do fewer than n bits suffice?

B2n

Secret Key K

g(Xn
1 , X

n
2 ) = B11 ⊕ B21, ...., B1n ⊕ B2n

K1 Kn
...B1n

...B11
... KnK1 B21

...

◮ If parity is securely computable:

1 = H(G) ≤ C = H(K)
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Characterization of Secure Computability

Theorem
The functions g0, g1, ..., gm are secure computable if (>) and
only if (≥)

H (XM | G0) ≥ R∗.

R∗: minimum rate of F such that

Xn
i

Gn
i

Gn
0

F

Xn
M ≡ Omniscience

F

Xn
i

A data compression problem with no secrecy

19



Example: Functions of Binary Sources

h(δ)

1

δ

δ

1− δ

1− δ
X2

0

Pr(X1 6= X2) = δ

δ

1

δ = 0.5

X1

0

1

Pr(X1 = 1) = 1
2

Functions are securely computable iff(!) h(δ) ≤ τ

g0 g1 g2 τ
X1 ⊕X2 X1 ⊕X2 φ 1
X1 ⊕X2 X1 ⊕X2 X1.X2 2/3
X1 ⊕X2 X1 ⊕X2 X1 ⊕X2 1/2
X1 ⊕X2, X1.X2 X1 ⊕X2, X1.X2 X1.X2 2δ/3
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Computing the Private Function

H (XM | G0) ≥ R∗

◮ Suppose gi = g0

R∗: minimum rate of F such that

≡

F

Omniscience

Xn
iGn

0

F

Xn
M

F

Gn
0

Xn
i Xn

i

21



Computing the Private Function

H (XM | G0) ≥ R∗

◮ Suppose gi = g0

R∗: minimum rate of F such that

≡

F

Omniscience

Xn
iGn

0

F

Xn
M

F

Gn
0

Xn
i Xn

i

21

If g0 is securely computable at a terminal then
the entire data can be recovered securely at that terminal



Minimal Communication for an

Optimum Rate Secret Key



Secret Key Generation for Two Terminals

COMMUNICATION NETWORK

F

Xn
2

K

Xn
1

K

Weak secrecy criterion: 1
n
sin(K,F) → 0.

Secret key capacity C = I(X1 ∧X2)

Maurer ’93 Ahlswede-Csiszár ’93
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Common Randomness for SK Capacity

What is the form of CR that yields an optimum rate SK?

◮ Maurer-Ahlswede-Csiszár

Common randomness generated

Xn
1 or Xn

2

Rate of communication required

min{H(X1|X2),H(X2|X1)}

Decomposition

H(X1) = H(X1|X2) + I(X1 ∧X2)

H(X2) = H(X2|X1) + I(X1 ∧X2)
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Digression: Secret Keys and Biometric Security

Public Server

X1

Secure Server

F (X1)

K(X1)
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Digression: Secret Keys and Biometric Security

F (X1)

X1

Secure Server

K(X1)

Public Server

X2
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Digression: Secret Keys and Biometric Security

Public Server

Secure Server

K(X1)

F (X1)

=?

X2
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Digression: Secret Keys and Biometric Security

Public Server

Secure Server

K(X1)

F (X1)

=?

X2

Similar approach can be applied for physically uncloneable functions

25



Common Randomness for SK Capacity

What is the form of CR that yields an optimum rate SK?

◮ Maurer-Ahlswede-Csiszár

Common randomness generated

Xn

1
or Xn

2

Rate of communication required

min{H(X1|X2), H(X2|X1)}

Decomposition

H(X1) = H(X1|X2) + I(X1 ∧X2)
H(X2) = H(X2|X1) + I(X1 ∧X2)
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Common Randomness for SK Capacity

What is the form of CR that yields an optimum rate SK?

◮ Maurer-Ahlswede-Csiszár Csiszár-Narayan

Common randomness generated

Xn

1
or Xn

2
(Xn

1
, Xn

2
)

Rate of communication required

min{H(X1|X2), H(X2|X1)} H(X1|X2) +H(X2|X1)

Decomposition

H(X1) = H(X1|X2) + I(X1 ∧X2)
H(X2) = H(X2|X1) + I(X1 ∧X2)

H(X1, X2) = H(X1|X2) +H(X2|X1) + I(X1 ∧X2)

26



Characterization of CR for Optimum Rate SK

Theorem
A CR J recoverable from F yields an optimum rate SK iff

1

n
I (Xn

1 ∧Xn
2 |J,F) → 0.

Examples: Xn
1 or Xn

2 or (Xn
1 , X

n
2 )

27



Interactive Common Information

◮ Interactive Common Information

Let J be a CR from communication F.

CIri (X1;X2) ≡ min. rate of L = (J,F) such that

1

n
I(Xn

1 ∧Xn
2 |L) → 0 (∗)

CIi(X1 ∧X2) := lim
r→∞

CIri (X1;X2)

28



Interactive Common Information

◮ Interactive Common Information

Let J be a CR from communication F.

CIri (X1;X2) ≡ min. rate of L = (J,F) such that

1

n
I(Xn

1 ∧Xn
2 |L) → 0 (∗)

CIi(X1 ∧X2) := lim
r→∞

CIri (X1;X2)

◮ Wyner’s Common Information

CI(X1 ∧X2) ≡ min. rate of L (Xn
1 ,X

n
2 ) s.t. (∗) holds

28



Minimum Communication for Optimum Rate SK

Rr
SK : min. rate of an r-round communication F

needed to generate an optimum rate SK

Theorem
The minimum rate Rr

SK is given by

Rr
SK = CIri (X1;X2)− I(X1 ∧X2).

It follows upon taking the limit r → ∞ that

RSK = CIi(X1 ∧X2)− I(X1 ∧X2)

A single letter characterization of CIri is available.
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Minimum Communication for Optimum Rate SK

Rr
SK : min. rate of an r-round communication F

needed to generate an optimum rate SK

Theorem
The minimum rate Rr

SK is given by

Rr
SK = CIri (X1;X2)− I(X1 ∧X2).

It follows upon taking the limit r → ∞ that

RSK = CIi(X1 ∧X2)− I(X1 ∧X2)

Binary symmetric rvs: CI1i = ... = CIri = min{H(X1),H(X2)}
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Minimum Communication for Optimum Rate SK

Rr
SK : min. rate of an r-round communication F

needed to generate an optimum rate SK

Theorem
The minimum rate Rr

SK is given by

Rr
SK = CIri (X1;X2)− I(X1 ∧X2).

It follows upon taking the limit r → ∞ that

RSK = CIi(X1 ∧X2)− I(X1 ∧X2)

There is an example with CI1i > CI2i ⇒ Interaction does help!
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Common Information Quantities

CIGC ≤ I(X1 ∧X2) ≤ CI ≤ CIi ≤ min{H(X1),H(X2)}
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Common Information Quantities

CIGC ≤ I(X1 ∧X2) ≤ CI ≤ CIi ≤ min{H(X1),H(X2)}

Interactive Common Information
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Common Information Quantities

CIGC ≤ I(X1 ∧X2) ≤ CI ≤ CIi ≤ min{H(X1),H(X2)}

Interactive Common Information

◮ CIi is indeed a new quantity

Binary symmetric rvs: CI < min{H(X1),H(X2)} = CIi.

30



Querying Common Randomness



Common Randomness

COMMUNICATION NETWORK

A

L1 L2

F

Xn
1 Xn

2 Xn
m

Definition. L is an ǫ-common randomness for A from F if

P (L = Li(X
n
i ,F), i ∈ A) ≥ 1− ǫ

Ahlswede-Csiszár ’93 and ’98. 32



Query Strategy

q(ut | v) = t

V = v no

u1 ut

no

q(u1 | v) = 1

yes yes

Is U = u1? Is U = ut?

Query strategy for U given V

Massey ’94, Arikan ’96, Arikan-Merhav ’99, Hanawal-Sundaresan ’11
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Query Strategy

Given rvs U, V with values in the sets U ,V.

Definition. A query strategy q for U given V = v is a bijection

q(·|v) : U → {1, ..., |U|},

where the querier, upon observing V = v, asks the question

“Is U = u?"

in the q(u|v)th query.

q(U |V ): random query number for U upon observing V

34



Query Strategy

Given rvs U, V with values in the sets U ,V.

Definition. A query strategy q for U given V = v is a bijection

q(·|v) : U → {1, ..., |U|},

where the querier, upon observing V = v, asks the question

“Is U = u?"

in the q(u|v)th query.

q(U |V ): random query number for U upon observing V

|{u : q(u | v) < γ}| < γ

34



Optimum Query Exponent

Definition. E ≥ 0 is an ǫ-achievable query exponent if

there exists ǫ-CR Ln for A from Fn such that

sup
q

P
(

q(Ln | Fn) < 2nE
)

→ 0 as n → ∞,

where the sup is over every query strategy for Ln given Fn.
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Optimum Query Exponent

Definition. E ≥ 0 is an ǫ-achievable query exponent if

there exists ǫ-CR Ln for A from Fn such that

sup
q

P
(

q(Ln | Fn) < 2nE
)

→ 0 as n → ∞,

where the sup is over every query strategy for Ln given Fn.

E∗(ǫ) , sup{E : E is an ǫ-achievable query exponent}

E∗ , inf
0<ǫ<1

E∗(ǫ) : optimum query exponent

35



Characterization of Optimum Query Exponent

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = C.
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Characterization of Optimum Query Exponent

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = C.

Proof.

Achievability: E∗(ǫ) ≥ C(ǫ) - Easy

Converse: E∗(ǫ) ≤ C - Main contribution
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Characterization of Optimum Query Exponent

Theorem
For 0 < ǫ < 1, the optimum query exponent E∗ equals

E∗ = E∗(ǫ) = C.

Proof.

Achievability: E∗(ǫ) ≥ C(ǫ) - Easy

Converse: E∗(ǫ) ≤ C - Main contribution

Theorem (Strong converse for SK capacity)

For 0 < ǫ < 1, the ǫ-SK capacity is given by

C(ǫ) = E∗ = C.

36



A Single-Shot Converse

For rvs Y1, ..., Yk, let L be an ǫ-CR for {1, ..., k} from F.

Theorem
Let θ be such that

P

({

(y1, ..., yk) :
PY1,...,Yk

(y1, ..., yk)
∏k

i=1 PYi
(yi)

≤ θ

})

≈ 1.

Then, there exists a query strategy q0 for L given F such that

P
(

q0(L | F) . θ
1

k−1

)

≥ (1−
√
ǫ)2 > 0.
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Small Cardinality Sets with Large Probabilities

Rényi entropy of order α of a probability measure µ on U :

Hα(µ) ,
1

1− α
log
∑

u∈U

µ(u)α, 0 ≤ α 6= 1

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.
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Small Cardinality Sets with Large Probabilities

Rényi entropy of order α of a probability measure µ on U :

Hα(µ) ,
1

1− α
log
∑

u∈U

µ(u)α, 0 ≤ α 6= 1

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.

Conversely, for any set Uδ ⊆ U with µ (Uδ) ≥ 1− δ,

|Uδ| & exp (Hα(µ)) , α > 1.
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Small Cardinality Sets with Large Probabilities

Rényi entropy of order α of a probability measure µ on U :

Hα(µ) ,
1

1− α
log
∑

u∈U

µ(u)α, 0 ≤ α 6= 1

Lemma. There exists a set Uδ ⊆ U with µ (Uδ) ≥ 1− δ s.t.

|Uδ| . exp (Hα(µ)) , 0 ≤ α < 1.

Conversely, for any set Uδ ⊆ U with µ (Uδ) ≥ 1− δ,

|Uδ| & exp (Hα(µ)) , α > 1.

1

H(X)

Hα(P )

α

log |X |
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In Closing ...



Our Approach

◮ Identify the underlying common randomness

◮ Decompose common randomness into independent components
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Our Approach

◮ Identify the underlying common randomness

◮ Decompose common randomness into independent components

Secure Computing

Common Randomness

Omniscience with side information g0 for decoding

Decomposition

The private function, the communication and the residual randomness
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Our Approach

◮ Identify the underlying common randomness

◮ Decompose common randomness into independent components

Two Terminal Secret Key Generation

Common Randomness

Renders the observations conditionally independent

Decomposition

The secret key and the communication

40



Our Approach

◮ Identify the underlying common randomness

◮ Decompose common randomness into independent components

Querying Eavesdropper

Requiring the number of queries to be as large as possible

– is tantamount to decomposition into independent parts

40



Prin
iples of Se
re
y Generation
Computing the private function g0 at a terminal is as difficult
as securely recovering the entire data at that terminal.

A CR yields an optimum rate SK iff it renders the observations
of the two terminals (almost) conditionally independent.

Almost independence secrecy criterion is equivalent to imposing
a lower bound on the complexity of a querier of the secret.

41



Supplementary Slides



Sufficiency

◮ Share all data to compute g: Omniscience ≡ Xn
M

◮ Can we attain omniscience using F ⊥⊥
∼

Gn?

Total randomness: H(XM)

the randomness: RCO

Entropy of G

Communication required to share

Claim: Omniscience can be attained using F ⊥⊥
∼

Gn if:

H(G) < H (XM)− RCO

.
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Random Mappings For Omniscience

COMMUNICATION NETWORK

F

Xn
1 Xn

2 Xn
m

X̂
(n)
M X̂

(n)
MX̂

(n)
M

◮ Fi = Fi (X
n
i ): random mapping of rate Ri.

◮ With large probability, F1, ..., Fm result in omniscience if:
∑

i∈B

Ri ≥ H (XB|XBc) , B ( M.

◮ RCO = min
∑

i∈M Ri.

Csiszár-Körner ’80 Han-Kobayashi ’80 Csiszár-Narayan ’04 44



Independence Properties of Random Mappings

◮ P be a family of N pmfs on X s.t.

P

({

x ∈ X : P (x) >
1

2d

})

≤ ǫ, ∀ P ∈ P.

Balanced Coloring Lemma: Probability that a random
mapping F : X → {1, ..., 2r} fails to satisfy for some P ∈ P

2r
∑

i=1

∣

∣

∣

∣

P (F (X) = i)− 1

2r

∣

∣

∣

∣

≤ 3ǫ.

is less than exp
{

r + log(2N)− (ǫ2/3) 2(d−r)
}

.

Ahlswede-Csiszár ’93 and ’98
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Independence Properties of Random Mappings

◮ P be a family of N pmfs on X s.t.

P

({

x ∈ X : P (x) >
1

2d

})

≤ ǫ, ∀ P ∈ P.

Balanced Coloring Lemma: Probability that a random
mapping F : X → {1, ..., 2r} fails to satisfy for some P ∈ P

2r
∑

i=1

∣

∣

∣

∣

P (F (X) = i)− 1

2r

∣

∣

∣

∣

≤ 3ǫ.

is less than exp
{

r + log(2N)− (ǫ2/3) 2(d−r)
}

.

Generalized Privacy Amplification

Ahlswede-Csiszár ’93 and ’98 Bennett-Brassard-Crépeau-Maurer ’95
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Sufficiency of H(G) < H (XM)−RCO

Consider random mappings Fi = Fi (X
n
i ) of rates Ri such that

∑

i∈B

Ri ≥ H (XB|XBc) , B ( M.

◮ F results in omniscience at all the terminals.

◮ F is approximately independent of Gn.
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i∈B

Ri ≥ H (XB|XBc) , B ( M.

◮ F results in omniscience at all the terminals.
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Note: I(F1, ..., Fm ∧Gn) ≤∑m
i=1 I(Fi ∧Gn, FM\i)
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Sufficiency of H(G) < H (XM)−RCO

Consider random mappings Fi = Fi (X
n
i ) of rates Ri such that

∑

i∈B

Ri ≥ H (XB|XBc) , B ( M.

◮ F results in omniscience at all the terminals.

◮ F is approximately independent of Gn.

Note: I(F1, ..., Fm ∧Gn) ≤∑m
i=1 I(Fi ∧Gn, FM\i)

Show I(Fi ∧Gn, FM\i) ≈ 0 with probability close to 1

- using an extension of the BC Lemma [Lemma 2.7]
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