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Spatial sampling is getting everywhere now 
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… … … … 

Emission monitoring with sensors Sampling along a path with vehicle 

Coverage region for TV transmitters Randomly sprayed smart-dust/paint 
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Sampling using vehicles: mobile-sampling 
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Sampling with moving vehicles can be (has been) used: 

◊ Difficulties: nonuniform vehicle speeds, imprecise locations, noise,    

   quantization, temporal variation 

◊ Aid to estimation: bandlimitedness, smoothness, oversampling 
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Spatial sampling with “unknown” location 
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Sampling with fixed array of 

randomly deployed sensors: 

◊ Difficulties: nonuniform 

unknown locations, 

quantization, noise, temporal 

variation 

◊ Aid to estimation: 

bandlimitedness, smoothness, 

oversampling 
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Unknown locations: to order or not to order 
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unknown locations  

(more difficult problem) 

ordered  unknown locations 

In these approachs, any effort/cost needed to localize the sensors is 

saved (which, by the way, is expensive!)  



Summary of the talk 

Consider spatially bandlimited fields, i.e., fields with finite number of non-

zero Fourier series coefficients 

With unknown but statistically distributed sensing locations we address the 

following problems: 

◊ Unique determination of the field without order information on samples 

◊ Field estimation with order of samples known in the presence of 

measurement noise 
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◊ Recovery of (narrowband) discrete-time bandlimited signals from samples taken at 

unknown locations [Marziliano and Vetterli’2000]  

◊ Recovery of a bandlimited signal from a finite number of ordered nonuniform 

samples at unknown sampling locations [Browning’2007]. 

◊ Estimation of periodic bandlimited signals in the presence of random sampling 

location under two models [Nordio, Chiasserini, and Viterbo’2008] 

• Reconstruction of bandlimited signal affected by noise at random but known  

   locations 

• Estimation of bandlimited signal from noisy samples on a location set obtained  

   by random perturbation of equi-spaced deterministic grid 

Related work 
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Organization 

◊ Sampling model, field model, and distortion 

◊ Field estimation without any knowledge of sampling location 

◊ Field estimation with order of samples known in the presence 

of measurement noise 

◊ Future work 
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Field and sensor-locations models 

g(x) 

x 

0 X 

sensors 

Sensor locations are unknown but their statistical distribution is known. For this 

work, U1
n = (U1, U2, …, Un) are i.i.d. Unif[0,X] 

U3 U4 U2 U1 
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–   –   – 

–   –   – 

We assume that a periodic extension of the field g(x) is bandlimited, that is, g(x) is 

given by a finite number of Fourier series coefficients, (WLOG)  |g(x)| ≤ 1, and X = 1 
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–   –   – 

–   –   – 

We assume that a periodic extension of the field g(x) is bandlimited, that is, g(x) is 

given by a finite number of Fourier series coefficients, (WLOG)  |g(x)| ≤ 1, and X = 1 



Measurement noise model 

g(x) 

x 

0 X 

sensors 

–   –   – 

–   –   – 

For the same model on random deployment of sensors for sampling the field with 

unknown sensor locations, two cases will be addressed: 

◊  Sensor measurements are not affected by noise with unordered    

    samples 

◊ Sensor measurements are affected by additive independent noise with 

finite variance, with ordered samples 
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Organization 

◊ Sampling model, field model, and distortion 

◊ Field estimation without any knowledge of sampling location 

◊ Field estimation with order of samples known in the presence 

of measurement noise 

◊ Future work 
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It is impossible to infer g(x) from g(U1
) 

g(x) 

x 

0 1 

sensors 

U3 U4 U2 U1 

–   –   – 

–   –   – 

Effectively, we are just collecting the empirical distribution or histogram of g(U1), 

g(U2), …, g(Un) and, in the limit of large n, the task is to estimate g(x) from the 

distribution of g(U) 
1 

g(U3) g(U1) g(U4) g(U2) 

¼ 

½ 
¾ 

0 

θ 
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It is impossible to infer g(x) from g(U1
) 

g(x) 

x 

0 1 

sensors 

U3 U4 U2 U1 

–   –   – 

–   –   – 

Consider the statistic 

◊ Then Fg,n(θ), x in set of reals and g(U1), g(U2), …, g(Un) are statistically 

equivalent 

◊ By the Glivenko Cantelli theorem, Fg,n(θ) converges almost surely to  

   Prob(g(U) ≤ θ) for each θ in set of real numbers [van der Vaart’1998] 
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g(x) 

x 

0 1 

Intuition into the limit of Fg,n  

So what does Prob(g(U) ≤ θ), for x in set of real numbers, looks like? 

θ 

◊ Prob(g(U) ≤ θ) for each θ is the probability of U belonging in the level-set. 

Thus, it is simply the length (measure) of level-set 

◊ We will now illustrate that two different fields g1(x) ≠ g2(x) can still lead to  

   Prob(g1(U) ≤ θ)  = Prob(g2(U) ≤ θ)  

Level-Set: {u: g(u) ≤ θ} 
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Graphical proof of first result 

◊ The length (measure) of the level-sets is the same in the two cases for every θ 

◊ Glivenko Cantelli theorem’s limit, is the same for two different signals. Thus, the  

   observed samples alone do not lead to a unique reconstruction of the field 

g1(x) 

x 

0 1 

θ 

Level-Set: {u: g(u) ≤ θ} 

g2(x) = g1(–x) 

x 

0 1 

θ 

Level-Set: {u: g(u) ≤ θ} 

g1(x) ≠ g2(x) does not imply Prob(g1(U) ≤ θ)  = Prob(g2(U) ≤ θ) 
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Can we infer g(x) from g(T1
)? 

Consider the setup where the field g(x) is sampled with a non-uniform 

distribution T. Can we design T to obtain g(x) uniquely? 
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This is a “design a distribution” problem as illustrated next! Key idea is to 

break the symmetry present in the uniform distribution 



Field samples and the Fourier series 

From (2b+1) equi-spaced samples of the field, the (2b+1) Fourier series coefficients 

(and hence the field) can be obtained as follows 

where sb = 1/(2b+1)  and b = exp(j2ksb) = exp(j2k/(2b+1)). In matrix notation and 

upon inversion 

g(x) 

x 

0 1 

–   –   – 

sb 2bsb 
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A bandlimited spatial field “detection” problem 

g(x) 

x 

0 1 

–   –   – 

sb 2bsb 
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p0 p1 p2b 

◊ Assume that T takes values 0, sb, 2sb, …, 2bsb 

◊ The samples g(T1), …, g(Tn) are available, but the values of T1, …, Tn are  

   not known 

◊ Assume that the values g(0), g(sb), …, g(2bsb) are distinct 

◊ Design a distribution (p0, p1, …, p2b) to maximize correct detection of  

   samples (hence the field) 

< < < 



Field detection as an optimization problem 

g(x) 

x 

0 1 

–   –   – 

sb 2bsb 
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p0 p1 p2b 

◊ N0, number of times g(0) is observed; N1, number of times g(sb) is  

   observed, …, N2b, number of times g(2bsb) is observed 

◊ Error doesn’t happen when 0 < N0 < N1 < … < N2b 

◊ To prevent error, it is desirable to space apart (p0, p1, …, p2b) 

◊ On the other hand p0 + p1 + … + p2b = 1  

< < < 



Main result of distribution optimization 

g(x) 

x 

0 1 

–   –   – 

sb 2bsb 
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Theorem: Using Sanov’s theorem and large-deviation theory we can show 

that the optimal distribution for minimizing error probability of field 

detection is given by [Mallick-Kumar (submitted to TSP)] 

p0 p1 p2b < < < 

Essentially, sqrt{p0} = sqrt{p1} – sqrt{p0} = sqrt{p2} – sqrt{p1} = … 



Organization 

◊ Sampling model, field model, and distortion 

◊ Field estimation without any knowledge of sampling location 

◊ Field estimation with order of samples known in the presence 

of measurement noise 

◊ Future work 
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The distortion criterion 

g(x) 

x 

0 1 

sensors 

(g(U1), g(U2), …, g(Un)) is collected without the knowledge of (U1, U2, …, Un)  

U3 U4 U2 U1 

–   –   – 

–   –   – 

We wish to estimate g(x) and measure the performance of estimate against the 

average mean-squared error, i.e., if Ĝ(x) is the estimate then 

23 24 Jul 2015 Animesh Kumar, EE, IIT Bombay 



Ordered samples in additive indep. noise 

◊ If the order (left to right) of sample locations is known and field is affected by 

independent measurement noise, a consistent estimate Ĝ(x) for the field of interest 

can be obtained as follows 

◊ Due to bandlimitedness, there are (2b+1) parameters to be learned or estimated 

g(x) 

x 

0 1 

sensors 

U1:n Un:n Ur:n 

–   –   – 

–   –   – 
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Fourier series coefficient estimates 

◊  It is assumed that b is known 

◊ The ordered samples Y(U1:n), …, Y(Un:n) are available, but the values of U1:n, …, 

Un:n are not known. The following estimate can be used 
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Main result 

Theorem:  Let Fourier series coefficient estimates for g(x) be obtained as  
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Then the average mean-squared error (distortion) between g(x) and its estimate G(x) 

with Fourier series coefficients above is bounded by 

where is the σ2 variance of the additive noise [Kumar’2015] 



Simulation results 
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Fourier series coefficients are given by [0.9134, 0.6324, 1.0000, 0.6324, 0.9134] 
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Future work 

◊ Extension of these results to more classes of fields (FRI, orthogonal 

spaces, non-bandlimited fields) 

◊ Multidimensional counterparts 

◊ What is the effect of quantization? 

◊ Estimates are not minimum risk. Or, techniques for finding maximum 

likelihood estimates will be useful 

◊ It is unclear if O(1/N) distortion obtained is optimal 

◊ Lot more … 
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