
Coded Caching: Dichotomy of the One and the Many

Nikhil Karamchandani

Indian Institute of Technology, Bombay

Joint work with Jad Hachem and Suhas Diggavi, UCLA

JTG Workshop 2015

Hachem, Karamchandani, Diggavi Coded Caching 1 / 26

Motivation

Multimedia applications fueling increased data consumption

In-network caching

Pre-fetch content during off-peak hours

Rate-benefits vs Memory

Hachem, Karamchandani, Diggavi Coded Caching 2 / 26

Motivation

Multimedia applications fueling increased data consumption

In-network caching

Pre-fetch content during off-peak hours

Rate-benefits vs Memory

Hachem, Karamchandani, Diggavi Coded Caching 2 / 26

Motivation

Multimedia applications fueling increased data consumption

In-network caching

Pre-fetch content during off-peak hours

Rate-benefits vs Memory

Hachem, Karamchandani, Diggavi Coded Caching 2 / 26

Motivation

Multimedia applications fueling increased data consumption

In-network caching

Pre-fetch content during off-peak hours

Rate-benefits vs Memory

Hachem, Karamchandani, Diggavi Coded Caching 2 / 26

Effect of number of users in multi-level coded caching

Hachem, Karamchandani, Diggavi Coded Caching 3 / 26

Effect of number of users in multi-level coded caching1

server

C C C C

N files, K caches, K users

Placement
Place content in caches
Done without prior
knowledge of user requests

Delivery
Each user requests a file
Server assists in delivery

Given memory M, smallest
rate R?

1M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 4 / 26

Effect of number of users in multi-level coded caching1

server

C C C C

N files, K caches, K users

Placement
Place content in caches
Done without prior
knowledge of user requests

Delivery
Each user requests a file
Server assists in delivery

Given memory M, smallest
rate R?

1M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 4 / 26

Effect of number of users in multi-level coded caching1

server

C C C C

N files, K caches, K users

Placement
Place content in caches
Done without prior
knowledge of user requests

Delivery
Each user requests a file
Server assists in delivery

Given memory M, smallest
rate R?

1M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 4 / 26

Effect of number of users in multi-level coded caching1

server

C C C C

memory M
size R

N files, K caches, K users

Placement
Place content in caches
Done without prior
knowledge of user requests

Delivery
Each user requests a file
Server assists in delivery

Given memory M, smallest
rate R?

1M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 4 / 26

Uncoded caching example

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place first half of each file in
each cache

Delivery phase

Each user makes their request

Server unicasts missing piece
for each user

Users recover requested files

Hachem, Karamchandani, Diggavi Coded Caching 5 / 26

Uncoded caching example

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place first half of each file in
each cache

Delivery phase

Each user makes their request

Server unicasts missing piece
for each user

Users recover requested files

Hachem, Karamchandani, Diggavi Coded Caching 5 / 26

Uncoded caching example

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

? ?

N = 2 files, K = 2 caches

Placement phase

Place first half of each file in
each cache

Delivery phase

Each user makes their request

Server unicasts missing piece
for each user

Users recover requested files

Hachem, Karamchandani, Diggavi Coded Caching 5 / 26

Uncoded caching example

R = 1 file

⊕ ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place first half of each file in
each cache

Delivery phase

Each user makes their request

Server unicasts missing piece
for each user

Users recover requested files

Hachem, Karamchandani, Diggavi Coded Caching 5 / 26

Uncoded caching example

R = 1 file

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place first half of each file in
each cache

Delivery phase

Each user makes their request

Server unicasts missing piece
for each user

Users recover requested files

Hachem, Karamchandani, Diggavi Coded Caching 5 / 26

Uncoded caching example

M = 1 file

R = 1 file

Total rate: R = 1 file

Hachem, Karamchandani, Diggavi Coded Caching 5 / 26

Coded caching example2

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place different halves of each
file in the caches

Delivery phase

Each user makes their request

Server broadcasts common
coded message

Users recover requested files

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 6 / 26

Coded caching example2

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place different halves of each
file in the caches

Delivery phase

Each user makes their request

Server broadcasts common
coded message

Users recover requested files

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 6 / 26

Coded caching example2

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

? ?

N = 2 files, K = 2 caches

Placement phase

Place different halves of each
file in the caches

Delivery phase

Each user makes their request

Server broadcasts common
coded message

Users recover requested files

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 6 / 26

Coded caching example2

R = 1
2 file

⊕ ⊕

M = 1 file

= ⊕ N = 2 files, K = 2 caches

Placement phase

Place different halves of each
file in the caches

Delivery phase

Each user makes their request

Server broadcasts common
coded message

Users recover requested files

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 6 / 26

Coded caching example2

R = 1
2 file

M = 1 file

⊕ ⊕

= ⊕ N = 2 files, K = 2 caches

Placement phase

Place different halves of each
file in the caches

Delivery phase

Each user makes their request

Server broadcasts common
coded message

Users recover requested files

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 6 / 26

Coded caching example2

M = 1 file

R = 1
2 file

⊕ ⊕

= ⊕

Total rate: R = 1
2 file

2M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 6 / 26

Coded Caching3

server

C C C C

memory M
size R

N files

K caches

K users

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

Coded Caching

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

Coded Caching

Uncoded Caching

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.

3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

Coded Caching

Uncoded Caching

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.
3M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013

Hachem, Karamchandani, Diggavi Coded Caching 7 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately

Hachem, Karamchandani, Diggavi Coded Caching 8 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

files (log)

popularity (log)

files

popularity

1 N

1/N

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Example: YouTube

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

p
o
p
u
l
a
r
i
t
i
e
s

files

empirical popularities
Zipf approximation

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

files

popularity

files (log)

popularity (log)

1 N

1/N

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

files (log)

popularity (log)

files

popularity

1 N

1/N

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Example: Netflix

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

p
o
p
u
l
a
r
i
t
i
e
s

files

empirical popularities
two-level approximation

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

files (log)

popularity (log)

files

popularity

1 N

1/N

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Example: Netflix

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

p
o
p
u
l
a
r
i
t
i
e
s

files

empirical popularities
two-level approximation

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]

files (log)

popularity (log)

files

popularity

1 N

1/N

Hachem, Karamchandani, Diggavi Coded Caching 9 / 26

Effect of number of users in multi-level coded caching

General

Files divided into popularity levels
(classes)

Uniform popularity within each level

Fixed fraction of users per level

Example

2 levels

75%–25%

files

users
Hachem, Karamchandani, Diggavi Coded Caching 10 / 26

Effect of number of users in multi-level coded caching

General

Files divided into popularity levels
(classes)

Uniform popularity within each level

Fixed fraction of users per level

Example

2 levels

75%–25%

files

users
Hachem, Karamchandani, Diggavi Coded Caching 10 / 26

Effect of number of users in multi-level coded caching

General

Files divided into popularity levels
(classes)

Uniform popularity within each level

Fixed fraction of users per level

Example

2 levels

75%–25%

files

users
Hachem, Karamchandani, Diggavi Coded Caching 10 / 26

Effect of number of users in multi-level coded caching

General

Files divided into popularity levels
(classes)

Uniform popularity within each level

Fixed fraction of users per level

Example

2 levels

75%–25%

files

users
Hachem, Karamchandani, Diggavi Coded Caching 10 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

Same user profile at each cache
Predictability per cache

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

“Multi-user setup”
[H., K., D., 2014]

4 users per cache

Level 1: 3 users per cache;
Level 2: 1 user per cache

Proportion maintained at each
cache

Expected when number of
users per cache is large

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

“Multi-user setup”
[H., K., D., 2014]

4 users per cache

Level 1: 3 users per cache;
Level 2: 1 user per cache

Proportion maintained at each
cache

Expected when number of
users per cache is large

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

“Multi-user setup”
[H., K., D., 2014]

4 users per cache

Level 1: 3 users per cache;
Level 2: 1 user per cache

Proportion maintained at each
cache

Expected when number of
users per cache is large

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

“Multi-user setup”
[H., K., D., 2014]

4 users per cache

Level 1: 3 users per cache;
Level 2: 1 user per cache

Proportion maintained at each
cache

Expected when number of
users per cache is large

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

“Single-user setup”

One user per cache

4 users total

Level 1: 3 users;
Level 2: 1 user

Proportion maintained across
all caches

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

“Single-user setup”

One user per cache

4 users total

Level 1: 3 users;
Level 2: 1 user

Proportion maintained across
all caches

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

“Single-user setup”

One user per cache

4 users total

Level 1: 3 users;
Level 2: 1 user

Proportion maintained across
all caches

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

“Single-user setup”

One user per cache

4 users total

Level 1: 3 users;
Level 2: 1 user

Proportion maintained across
all caches

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache

Predictability per cache

server

C C C C

Different user profile at each cache

Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

server

C C C C

Same user profile at each cache
Predictability per cache

server

C C C C

Different user profile at each cache
Predictability over all caches

Hachem, Karamchandani, Diggavi Coded Caching 11 / 26

Effect of number of users in multi-level coded caching

Main Question: Are these two setups fundamentally different?

server

C C C C

server

C C C C

Yes! They require different strategies.

Hachem, Karamchandani, Diggavi Coded Caching 12 / 26

Effect of number of users in multi-level coded caching

Main Question: Are these two setups fundamentally different?

server

C C C C

server

C C C C

Yes! They require different strategies.
Hachem, Karamchandani, Diggavi Coded Caching 12 / 26

Main results

Multi-user setup

Memory-sharing strategy

Separation of levels

Order-optimal

Threshold-and-cluster is
inefficient

Single-user setup

Threshold-and-cluster strategy

Merging of levels

Order-optimal

Memory-sharing is inefficient

Hachem, Karamchandani, Diggavi Coded Caching 13 / 26

Main results

Multi-user setup

Memory-sharing strategy

Separation of levels

Order-optimal

Threshold-and-cluster is
inefficient

Single-user setup

Threshold-and-cluster strategy

Merging of levels

Order-optimal

Memory-sharing is inefficient

Hachem, Karamchandani, Diggavi Coded Caching 13 / 26

Main results

Multi-user setup

Memory-sharing strategy

Separation of levels

Order-optimal

Threshold-and-cluster is
inefficient

Single-user setup

Threshold-and-cluster strategy

Merging of levels

Order-optimal

Memory-sharing is inefficient

Hachem, Karamchandani, Diggavi Coded Caching 13 / 26

Main results

Multi-user setup

Memory-sharing strategy

Separation of levels

Order-optimal

Threshold-and-cluster is
inefficient

Single-user setup

Threshold-and-cluster strategy

Merging of levels

Order-optimal

Memory-sharing is inefficient

Hachem, Karamchandani, Diggavi Coded Caching 13 / 26

Main results

Multi-user setup

Memory-sharing strategy

Separation of levels

Order-optimal

Threshold-and-cluster is
inefficient

Single-user setup

Threshold-and-cluster strategy

Merging of levels

Order-optimal

Memory-sharing is inefficient

Hachem, Karamchandani, Diggavi Coded Caching 13 / 26

Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup

Hachem, Karamchandani, Diggavi Coded Caching 14 / 26

Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup

Hachem, Karamchandani, Diggavi Coded Caching 14 / 26

Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup

Hachem, Karamchandani, Diggavi Coded Caching 14 / 26

Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup

Hachem, Karamchandani, Diggavi Coded Caching 14 / 26

Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup

Hachem, Karamchandani, Diggavi Coded Caching 14 / 26

Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup

Hachem, Karamchandani, Diggavi Coded Caching 14 / 26

Multi-user setup (formal)

server

C C C C

of caches

of levels

For each level:

of files
of users per cache

popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Multi-user setup (formal)

K

server

C C C C

of caches

of levels

For each level:

of files
of users per cache

popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Multi-user setup (formal)

L levels

server

C C C C

of caches

of levels

For each level:

of files
of users per cache

popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Multi-user setup (formal)

N1

U1

server

C C C C

of caches

of levels

For each level:

of files
of users per cache

popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Multi-user setup (formal)

N2

U2

server

C C C C

of caches

of levels

For each level:

of files
of users per cache

popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Multi-user setup (formal)

N2

U2

server

C C C C

of caches

of levels

For each level:

of files
of users per cache
popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Multi-user setup (formal)

R

M

server

C C C C

of caches

of levels

For each level:

of files
of users per cache
popularity ∝ users per file

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 15 / 26

Strategy: memory-sharing
[H., K., D., 2014]

M

server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s

Hachem, Karamchandani, Diggavi Coded Caching 16 / 26

Strategy: memory-sharing
[H., K., D., 2014]

M

server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s

Hachem, Karamchandani, Diggavi Coded Caching 16 / 26

Strategy: memory-sharing
[H., K., D., 2014]

α1M α2MM

server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s

Hachem, Karamchandani, Diggavi Coded Caching 16 / 26

Strategy: memory-sharing
[H., K., D., 2014]

α1M α2MM

server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s

Hachem, Karamchandani, Diggavi Coded Caching 16 / 26

Strategy: memory-sharing
[H., K., D., 2014]

α1M α2MM

R1 R2

R = R1 +R2server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s

Hachem, Karamchandani, Diggavi Coded Caching 16 / 26

Strategy: memory-sharing
[H., K., D., 2014]

α1M α2MM

R1 R2

R = R1 +R2server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s

Hachem, Karamchandani, Diggavi Coded Caching 16 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

most popular least popular

cut-off cut-off

fully store no storageshare remaining memory

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

cut-off cut-off

fully store no storageshare remaining memory

most popular least popular

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

fully store no storageshare remaining memory

most popular least popular

cut-off cut-off

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

no storageshare remaining memory

most popular least popular

cut-off cut-off

fully store

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

share remaining memory

most popular least popular

cut-off cut-off

fully store no storage

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

most popular least popular

cut-off cut-off

fully store no storageshare remaining memory

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

most popular least popular

cut-off cut-off

fully store no storageshare remaining memory

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj

Hachem, Karamchandani, Diggavi Coded Caching 17 / 26

Order-optimality

Theorem (Order-optimality of memory-sharing for the multi-user setup)

In the multi-user setup:

rate achieved by memory-sharing

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: requires non-cut-set lower bounds on R∗

Hachem, Karamchandani, Diggavi Coded Caching 18 / 26

Order-optimality

Theorem (Order-optimality of memory-sharing for the multi-user setup)

In the multi-user setup:

rate achieved by memory-sharing

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: requires non-cut-set lower bounds on R∗

Hachem, Karamchandani, Diggavi Coded Caching 18 / 26

Order-optimality

Theorem (Order-optimality of memory-sharing for the multi-user setup)

In the multi-user setup:

rate achieved by memory-sharing

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: requires non-cut-set lower bounds on R∗

Hachem, Karamchandani, Diggavi Coded Caching 18 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

40 files

45 files

10 BCs15 BCs 3 caches2 caches

server

C C C C

15 files

5 BCs
1 cache

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

45 files

5 BCs
1 cache 15 BCs 3 caches

server

C C C C

40 files

10 BCs
2 caches

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

5 BCs
1 cache

10 BCs
2 caches

server

C C C C

45 files

15 BCs 3 caches

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C

Hachem, Karamchandani, Diggavi Coded Caching 19 / 26

Single-user setup (formal)

N1

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

K

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

L levels

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

K1

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users

popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

K2

N2

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users

popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

K3

N3

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users

popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

K3

N3

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

unknown arrangement

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

unknown arrangement

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

unknown arrangement

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

? ? ? ? ? ?

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Single-user setup (formal)

N1

? ? ? ? ? ?

M
R

server

C C C CC C

of caches

one user per cache

of levels

For each level:

of files
of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R

Hachem, Karamchandani, Diggavi Coded Caching 20 / 26

Strategy: threshold-and-cluster

? ? ? ? ? ?

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

? ? ? ? ? ?

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

? ? ? ? ? ?

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files

User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

? ? ? ? ? ?

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

? ? ? ? ? ?

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles

Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles

Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

full transmission coded transmission

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions

Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

full transmission coded transmission

R1 R2

R = R1 +R2

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates

Hachem, Karamchandani, Diggavi Coded Caching 21 / 26

Strategy: threshold-and-cluster

Which levels to merge?

cut-off

no storagemerge and store

most popular least popular

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26

Strategy: threshold-and-cluster

Which levels to merge?

cut-off

no storagemerge and store

most popular least popular

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26

Strategy: threshold-and-cluster

Which levels to merge?

most popular least popular

cut-off

no storagemerge and store

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26

Strategy: threshold-and-cluster

Which levels to merge?

most popular least popular

cut-off

no storagemerge and store

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26

Order-optimality

Theorem (Order-optimality of threshold-and-cluster for the single-user
setup)

In the single-user setup:

rate achieved by threshold-and-cluster

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: cut-set lower bounds on R∗ are sufficient

Hachem, Karamchandani, Diggavi Coded Caching 23 / 26

Order-optimality

Theorem (Order-optimality of threshold-and-cluster for the single-user
setup)

In the single-user setup:

rate achieved by threshold-and-cluster

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: cut-set lower bounds on R∗ are sufficient

Hachem, Karamchandani, Diggavi Coded Caching 23 / 26

Order-optimality

Theorem (Order-optimality of threshold-and-cluster for the single-user
setup)

In the single-user setup:

rate achieved by threshold-and-cluster

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: cut-set lower bounds on R∗ are sufficient

Hachem, Karamchandani, Diggavi Coded Caching 23 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

? ? ? ? ? ?

server

C C C CC C

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

? ? ? ? ? ?

server

C C C CC C

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

? ? ? ? ? ?

server

C C C CC C

10 BCs
3 caches

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

server

C C C CC C

10 BCs

for 6 BCs:

3 caches

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

server

C C C CC C

12 files 6 files

10 BCs

for 6 BCs:

3 caches

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

server

C C C CC C

10 BCs

for 6 BCs: 12 files 6 files

for 4 BCs:

3 caches

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

server

C C C CC C

10 BCs

for 6 BCs: 12 files 6 files

8 files 4 filesfor 4 BCs:

3 caches

Hachem, Karamchandani, Diggavi Coded Caching 24 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities

Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory

No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained

Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!

Hachem, Karamchandani, Diggavi Coded Caching 25 / 26

Summary

Coded caching

Multi-level popularities

Large vs small number of users per cache =⇒ Determinism vs
uncertainty in per-cache profiles

Multi-user Single-user

Memory-sharing

Threshold-and-cluster

Thank you!

Hachem, Karamchandani, Diggavi Coded Caching 26 / 26

Summary

Coded caching

Multi-level popularities

Large vs small number of users per cache =⇒ Determinism vs
uncertainty in per-cache profiles

Multi-user Single-user

Memory-sharing

Threshold-and-cluster

Thank you!

Hachem, Karamchandani, Diggavi Coded Caching 26 / 26

Summary

Coded caching

Multi-level popularities

Large vs small number of users per cache =⇒ Determinism vs
uncertainty in per-cache profiles

Multi-user Single-user

Memory-sharing

Threshold-and-cluster

Thank you!

Hachem, Karamchandani, Diggavi Coded Caching 26 / 26

Summary

Coded caching

Multi-level popularities

Large vs small number of users per cache =⇒ Determinism vs
uncertainty in per-cache profiles

Multi-user Single-user

Memory-sharing

Threshold-and-cluster

Thank you!

Hachem, Karamchandani, Diggavi Coded Caching 26 / 26

Summary

Coded caching

Multi-level popularities

Large vs small number of users per cache =⇒ Determinism vs
uncertainty in per-cache profiles

Multi-user Single-user

Memory-sharing

Threshold-and-cluster

Thank you!
Hachem, Karamchandani, Diggavi Coded Caching 26 / 26

