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Motivation

Multimedia applications fueling increased data consumption

In-network caching

Pre-fetch content during off-peak hours

Rate-benefits vs Memory
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Effect of number of users in multi-level coded caching1

server

C C C C

N files, K caches, K users

Placement
Place content in caches
Done without prior
knowledge of user requests

Delivery
Each user requests a file
Server assists in delivery

Given memory M, smallest
rate R?

1M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” ISIT 2013
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Uncoded caching example

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place first half of each file in
each cache

Delivery phase

Each user makes their request

Server unicasts missing piece
for each user

Users recover requested files
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Uncoded caching example

M = 1 file

R = 1 file

Total rate: R = 1 file
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Coded caching example2

R = 1
2 file

⊕ ⊕

= ⊕

M = 1 file

N = 2 files, K = 2 caches

Placement phase

Place different halves of each
file in the caches

Delivery phase

Each user makes their request

Server broadcasts common
coded message

Users recover requested files
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Coded Caching3

server

C C C C

memory M
size R

N files

K caches

K users
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Hachem, Karamchandani, Diggavi Coded Caching 7 / 26



Coded Caching3

Store content to create coded multicasting opportunities

Use coding in the broadcast

Achievable rate:

M

R

K

N

R ≈ min

{
N

M
− 1 , K

}

Scheme is order-optimal w.r.t information-theoretic bounds.
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Effect of number of users in multi-level coded caching

server

C C C C

Simple extension: multiple
users per cache
[H., K., D., 2014]

Users with identical side
information

No coding opportunities
possible

Treat each row separately
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Effect of number of users in multi-level coded caching

File popularity:
Likelihood of being requested by a
user

Different models in the
literature:

Uniform

Zipf (power law)

Arbitrary

Multi-level [H., K., D., 2014]
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Effect of number of users in multi-level coded caching

General

Files divided into popularity levels
(classes)

Uniform popularity within each level

Fixed fraction of users per level

Example

2 levels

75%–25%

files

users
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Effect of number of users in multi-level coded caching

Example: 2 levels of files, dividing users into 75%–25%

Same user profile at each cache
Predictability per cache

Different user profile at each cache
Predictability over all caches
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C C C C
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Predictability per cache

“Multi-user setup”
[H., K., D., 2014]

4 users per cache

Level 1: 3 users per cache;
Level 2: 1 user per cache

Proportion maintained at each
cache

Expected when number of
users per cache is large

Different user profile at each cache
Predictability over all caches
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Effect of number of users in multi-level coded caching
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Same user profile at each cache
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Effect of number of users in multi-level coded caching

Main Question: Are these two setups fundamentally different?

server

C C C C

server

C C C C

Yes! They require different strategies.
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Main results

Multi-user setup

Memory-sharing strategy

Separation of levels

Order-optimal

Threshold-and-cluster is
inefficient

Single-user setup

Threshold-and-cluster strategy

Merging of levels

Order-optimal

Memory-sharing is inefficient
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Why different strategies?

Two main forces drive any strategy:

Separating
levels

popularity-centric

More popular files get more
memory

No coding across popularity
levels

Favored by Multi-user setup

Merging
levels

coding-centric

Coding opportunities
maximized when files get same
memory

Code across popularity levels

Favored by Single-user setup
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Multi-user setup (formal)
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Strategy: memory-sharing
[H., K., D., 2014]

M

server

C C C C

Separate the popularity levels

Share memory M between the
levels

Level i gets memory αiM

Perform separate placement
and delivery for each level

Total rate = sum of individual
rates

Optimize over αi ’s
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Strategy: memory-sharing
[H., K., D., 2014]

3 sets of levels

most popular least popular

cut-off cut-off

fully store no storageshare remaining memory

Achieved rate:

R ≈
∑
h

KUh +

(∑
i

√
NiUi

)2
M −∑j Nj
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Order-optimality

Theorem (Order-optimality of memory-sharing for the multi-user setup)

In the multi-user setup:

rate achieved by memory-sharing

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: requires non-cut-set lower bounds on R∗
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Lower bounds for multi-user setup

Capture:

Necessity of level separation
All levels present at each cache

Achieve: R = R1 + R2 + R3

Want: R∗ ≥ aR1 + bR2 + cR3

Individual terms can be derived
using cut-set bounds

Combine?

Sliding-window subset entropy
inequality [Jiang et al., 2011]

=⇒ “non-cut-set” lower
bounds that account for each
level’s allocated memory,
without any restriction on the
scheme

15 files

40 files

45 files

5 BCs
1 cache

10 BCs15 BCs 3 caches2 caches

server

C C C C
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Single-user setup (formal)

N1

server

C C C CC C

# of caches

one user per cache

# of levels

For each level:

# of files
# of users
popularity ∝ users per file

Different possible
arrangements

Resources:

Cache memory M
Broadcast rate R
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Strategy: threshold-and-cluster

? ? ? ? ? ?

server

C C C CC C

Idea: merge some levels;
ignore the rest

Choose levels to merge

Files
User requests

Give all memory to merged
levels

Ignore remaining levels

Delivery phase

Different possible user
profiles
Send BC transmissions
Total rate = sum of rates
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Strategy: threshold-and-cluster

Which levels to merge?

cut-off

no storagemerge and store

most popular least popular

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26



Strategy: threshold-and-cluster

Which levels to merge?

cut-off

no storagemerge and store

most popular least popular

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26



Strategy: threshold-and-cluster

Which levels to merge?

most popular least popular

cut-off

no storagemerge and store

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26



Strategy: threshold-and-cluster

Which levels to merge?

most popular least popular

cut-off

no storagemerge and store

Achieved rate:

R ≈
∑
h

Kh +

∑
i Ni

M

Hachem, Karamchandani, Diggavi Coded Caching 22 / 26



Order-optimality

Theorem (Order-optimality of threshold-and-cluster for the single-user
setup)

In the single-user setup:

rate achieved by threshold-and-cluster

optimal rate R∗ ≤ c .

c is independent of problem parameters

Proof: cut-set lower bounds on R∗ are sufficient
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Lower bounds for single-user setup

Capture:

Necessity of level merging
Uncertainty of level at
caches

One cut-set bound:

Serve multiple levels
together
Different BC messages
assume different request
profiles

? ? ? ? ? ?

server

C C C CC C
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One strategy to rule them all?

Question: Could one (or both) strategy be order-optimal in both cases?

No!

Memory-sharing in single-user setup?

Wastes coding opportunities
Factor-L increase in R =⇒ not order-optimal!
(L is the number of levels)

Threshold-and-cluster in multi-user setup?

Inefficiently distributes memory
No coding opportunities gained
Arbitrarily large increase in R =⇒ not order-optimal!
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Summary

Coded caching

Multi-level popularities

Large vs small number of users per cache =⇒ Determinism vs
uncertainty in per-cache profiles

Multi-user Single-user

Memory-sharing

Threshold-and-cluster

Thank you!
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