Asymptotics of the SIR Distribution in General Cellular Networks

Radha Krishna Ganti rganti@ee.iitm.ac.in

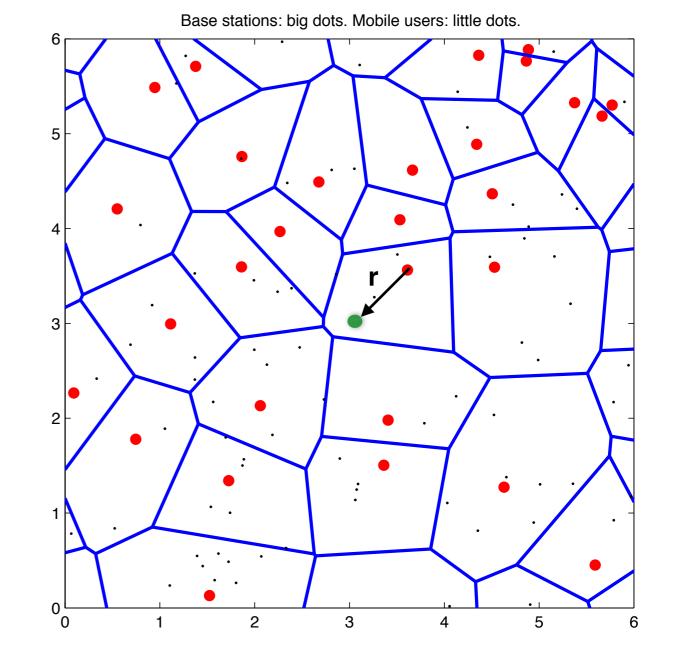
Joint work with Martin Haenggi

Signal-to-interference ratio

$$SIR = \frac{h_o r^{-\alpha}}{\sum_{y \in \Phi \setminus \{y_o\}} h_y \|y\|^{-\alpha}}$$

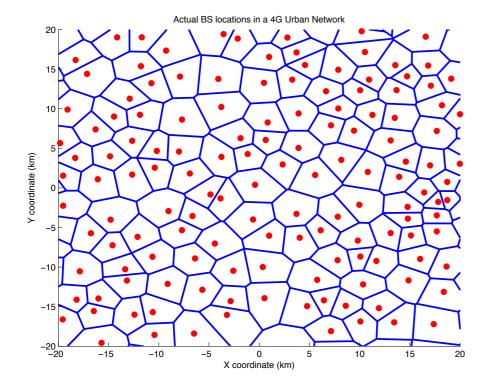
Sources of randomness

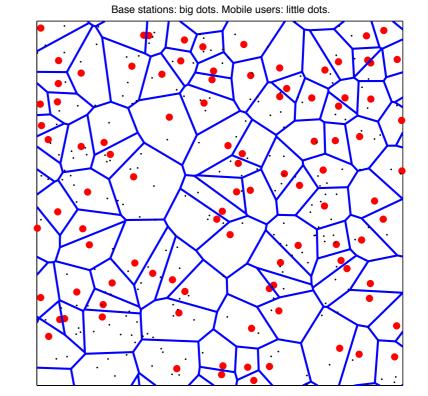
- Fading (Rayleigh)
- Base station locations
 - Serving
 - Interferers



For a fixed fading distribution, what can be said about the SIR CDF?

Models for spatial locations





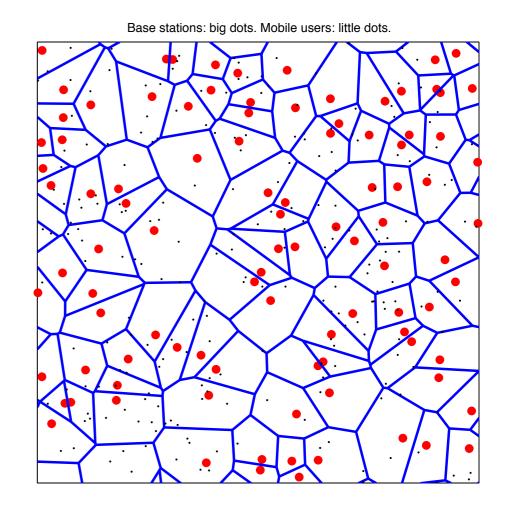
Assumptions

- Stationary point process $\Phi \stackrel{d}{=} \Phi + x$
- Simple and finite point process

Poisson point process

- Easiest to analyze¹ (similar to M/M/1)
- Independence across node locations

$$P_c(T) = \frac{1}{1 + T^{2/\alpha} \int_{T^{-2/\alpha}}^{\infty} \frac{1}{1 + u^{\alpha/2}} du}$$



Tractable and most work done using PPP

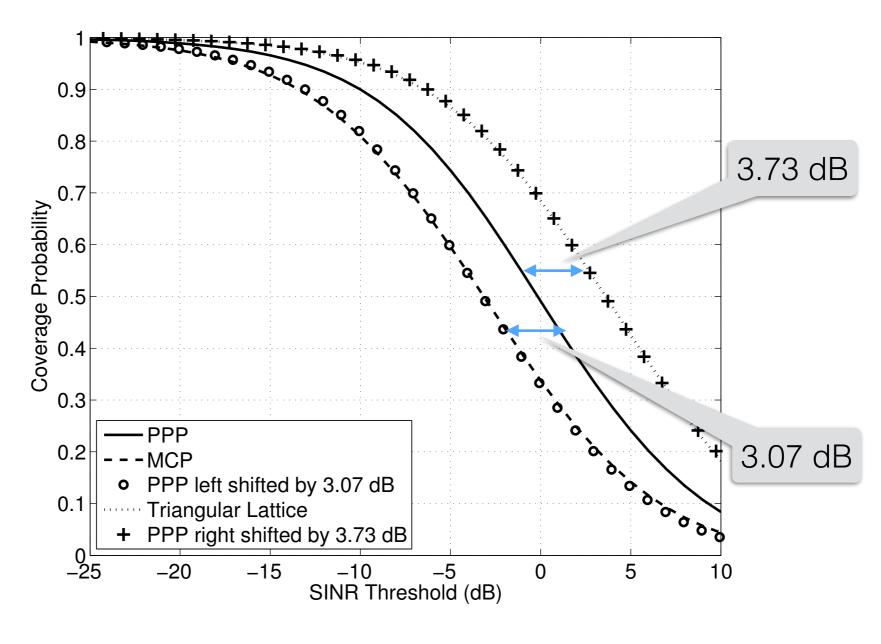
SIR CCDF for other spatial distributions?

• Ginibre point process

$$\int_0^\infty e^{-\nu} \left[\prod_{j=0}^\infty \frac{1}{j!} \int_{\nu}^\infty \frac{s^j e^{-s}}{1 + \theta(\nu/s)^{\alpha/2}} \mathrm{d}s \right] \left[\sum_{i=0}^\infty \nu^i \left(\int_{\nu}^\infty \frac{s^i e^{-s}}{1 + \theta(\nu/s)^{\alpha/2}} \mathrm{d}s \right)^{-1} \right] \mathrm{d}\nu$$

• Other point process

Observation (Martin)



 $P(T) \approx P_{\rm PPP}(\theta T)$

Horizontal shift of PPP CCDF (in dB scale)

Horizontal gap

$$G(p) = \frac{F^{-1}(p)}{F_{\rm PPP}^{-1}(p)}, \quad p \in (0,1)$$

In particular, we focus on G(0) and $G(\infty)$

$$P(T) \approx P_{\rm PPP}(G(0)T)$$

G(0) and $G(\infty)$ depend on the SIR asymptotes at 0 and ∞

Head behaviour

$$P_c(T) = \mathbb{P}\left(\frac{hr^{-\alpha}}{I} > T\right)$$

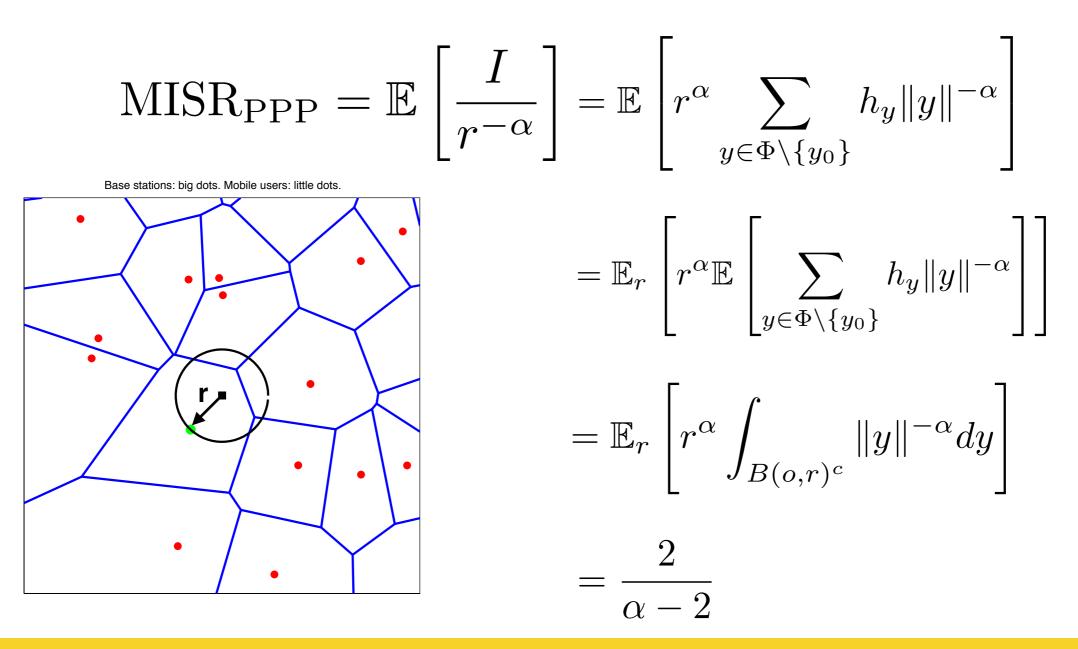
 $P_c(T) = \mathbb{E}\left[\exp(-Tr^{\alpha}I)\right]$

$$P_c(T) \sim 1 - T\mathbb{E}\left[\frac{I}{r^{-\alpha}}\right]$$

$$P_c(T) \sim 1 - T \text{MISR}$$

$$G(0) = \frac{\text{MISR}}{\text{MISR}_{\text{PPP}}}$$
Mean interference to signal ratio

Mean interference-to-signal ratio (PPP)



Signal power dominates for higher path loss and vice versa

Relative distance process

$$\begin{array}{l} \mathsf{CCDF of SIR:} \quad \mathbb{E}\left[F\left(\frac{I}{r^{-\alpha}}\right)\right] &= \mathbb{E}\left[F\left(\sum_{y \in \Phi \setminus \{y_o\}} h_y\left(\frac{\|y_o\|}{\|y\|}\right)^{-\alpha}\right)\right] \\ \\ \mathcal{R} \triangleq \{x \in \Phi \setminus \{y_o\} : \|y_o\| / \|y\|\} \subset (0,1) \end{array}$$

- Not a stationary process
- Not a finite point process

RDP of PPP(λ)

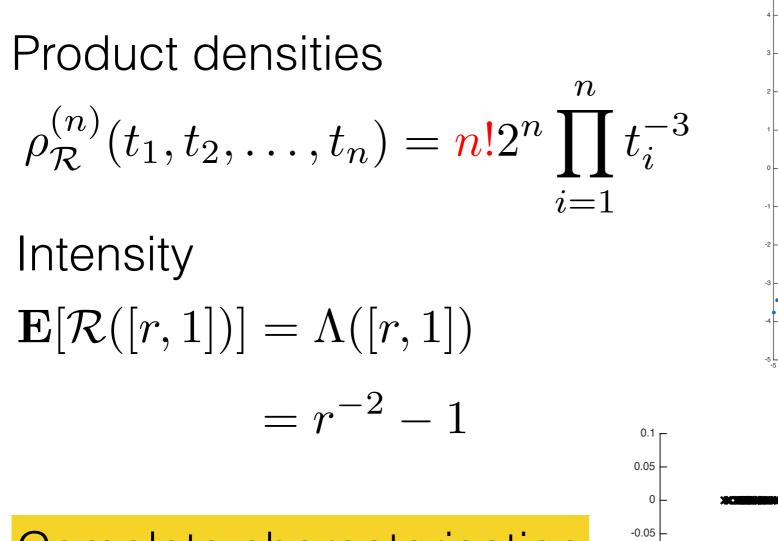
-0.1 L

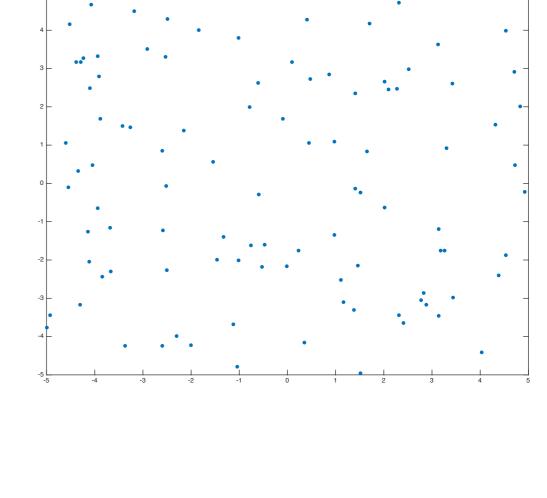
0.1

0.2

0.3

0.4





X

0.6

0.7

0.8

0.9

0.5

Complete characterisation

RDP of a general PP

Theorem. For an RDP generated by a stationary PP

$$\rho_{\mathcal{R}}^{(n)}(t_1, t_2, \dots, t_n) = \beta_n(t_1, \dots, t_n) n! 2^n \prod_{i=1}^n t_i^{-3}$$

Proof.

Joint pdf of
$$\frac{\|y_0\|}{\|y\|}, \quad y \in \Phi \setminus y_o$$

. .

$$f(y_o, \Phi \setminus y_o) = \sum_{x \in \Phi} f(x, \Phi \setminus x) \mathbf{1}(\Phi(B(o, ||x||) = 0))$$

MISR of general PP

Theorem. The MISR of a motion-invariant point process is

$$MISR = 2 \int_0^1 t^{\alpha - 3} \beta_1(t) dt$$

Proof. MISR =
$$E \sum_{y \in \mathcal{R}} y^{\alpha} = \int_0^1 t^{\alpha} \rho_{\mathcal{R}}^{(1)}(t) dt$$

Dependence on path loss exponent $MISR(\alpha) \sim \frac{2}{\alpha - 2} \beta_1(1), \quad \alpha \to \infty$

EFIR
$$\triangleq \left(\lambda \pi \mathbb{E}^{!o} \left[\left(\frac{h}{I_{\infty}} \right)^{2/\alpha} \right] \right)^{\alpha/2}$$

where
$$I_{\infty} = \sum_{x \in \Phi} h_x \|x\|^{-\alpha}$$

Examples

PPP

$\text{EFIR}_{\text{PPP}} = (\operatorname{sinc}(2/\alpha))^{\alpha/2}$

Square lattice

$$\frac{(\pi\Gamma(1+2/\alpha))^{\alpha/2}}{Z(\alpha)} \le \text{EFIR}_{\text{lat}} \le \left(\frac{\pi}{\text{sinc}(2/\alpha)}\right)^{\alpha/2} \frac{1}{Z(\alpha)}$$

Is EFIR independent of density?

Tail behaviour

Theorem. For a stationary BS point process,
$$P_c(T) \sim \left(\frac{T}{\text{EFIR}}\right)^{-2/\alpha}, \quad T \to \infty$$

Remarks:

- SIR is a heavy tailed distribution
- Sanity check: PPP $P_c(T) = \frac{1}{1 + T^{2/\alpha} \int_{T^{-2/\alpha}}^{\infty} \frac{1}{1 + u^{\alpha/2}} du} \sim \frac{T^{-2/\alpha}}{\int_0^{\infty} \frac{1}{1 + u^{\alpha/2}} du}$
- Similar results for Ginibre process [Miyoshi 14]

Relation to max SIR

Lemma. The tail of the max SIR distribution coincides with nearest neighbour connectivity, *i.e.*,

$$\left(\frac{T}{\text{EFIR}}\right)^{-2/\alpha} \sim P_c(T) \sim \mathbb{P}(\max_{x \in \Phi} \text{SIR}(x) > T)$$

For large SIR threshold, signal fade does not matter

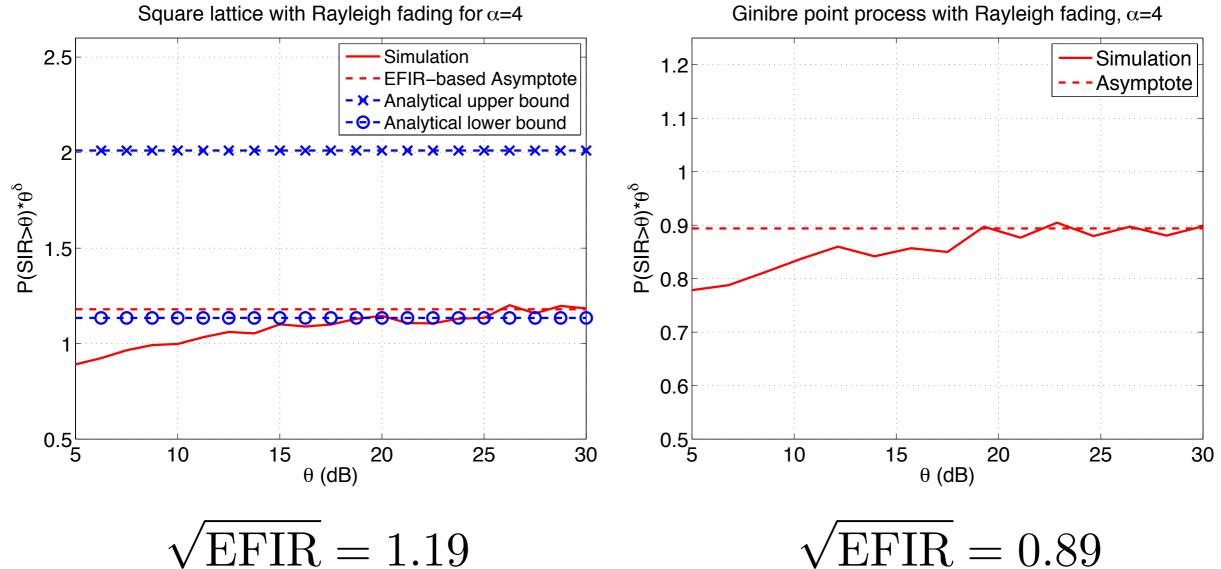
Forget interference

The received signal strength: $S = hr^{-\alpha}$

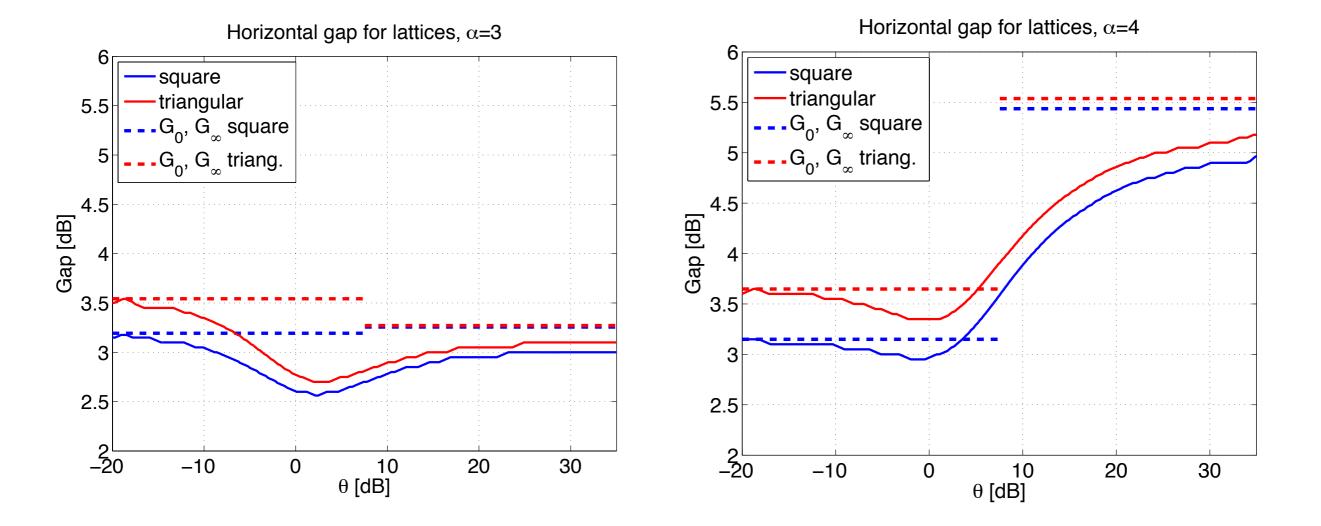
$$\mathbb{P}(S > T) \sim \lambda \pi \Gamma(1 + 2/\alpha) T^{-2/\alpha}, \quad T \to \infty$$

 $\mathbb{P}(S < T) \sim T\mathbb{E}[r^{\alpha}], \quad T \to 0$

At both ends of the SIR distribution, the interference affects only the pre-constant



Ginibre point process with Rayleigh fading, α =4



Conclusion

- SIR distribution asymptotes are characterised by MSIR and EFIR.
- RDP process captures the relevant information for computing SIR distribution. Easier to analyse??
- SIR CDF for non-PPP BSs is a horizontal shift of the PPP CDF

