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Signal-to-interference ratio

• Fading (Rayleigh) 
• Base station locations 

• Serving 
• Interferers

Sources of randomness

For a fixed fading distribution, what can be said about the SIR CDF?
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Base stations: big dots. Mobile users: little dots.
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Models for spatial locations 
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Base stations: big dots. Mobile users: little dots.

Assumptions
• Stationary point process 
• Simple and finite point process

�
d
= �+ x



Poisson point process
• Easiest to analyze1 (similar to M/M/1) 

• Independence across node locations 

Base stations: big dots. Mobile users: little dots.

[1] J. G. Andrews, F. Baccelli, and R. K. Ganti. A tractable approach to coverage and rate in cellular networks. IEEE Trans. on Communications, 59(11):3122--3134, November 2011

Tractable and most work done using PPP

Pc(T ) =
1

1 + T 2/↵
R1
T�2/↵

1
1+u↵/2 du



SIR CCDF for other  
spatial distributions?

• Ginibre point process 

• Other point process

Motivation SIR analysis

Fact on SIR distributions

Only the PPP is tractable exactly—in some cases

If the base stations form a homogeneous Poisson point process (PPP):

ps(θ) ! F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)
, δ ! 2/α.

For α = 4 (δ = 1/2), ps(θ) =
(

1 +
√
θ arctan

√
θ
)−1

.

If the fading is not Rayleigh or if the point process is not Poisson, it gets
very hard very quickly.

For the second-simplest model (Ginibre point process) with Rayleigh fading:
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[Miyoshi and Shirai, "A Cellular Network Model with Ginibre Configured
Base Stations," Adv. Appl. Prob., vol. 46, 2014]
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Nothing known!
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MCP
PPP left shifted by 3.07 dB
Triangular Lattice
PPP right shifted by 3.73 dB

Fig. 1. The coverage probability of the PPP with intensity � = 0.1, the
MCP with �p = 0.01, c̄ = 10 and rc = 5 and the triangular lattice with
density � = 0.1 (see Section III-B for an explanation of these parameters)
for Rayleigh fading, path loss exponent ↵ = 4 and noise W = 0, which are
simulated on a 100 ⇥ 100 square. The lines are the coverage curves of the
three point processes, while the markers indicate the coverage curves of the
PPP shifted by the deployment gains of the MCP and the triangular lattice at
pt = 0.6.

general assumptions about the point process and the CDF of
the fading variable.

First we give several notations, based on which we introduce
the precise class of point processes we focus on. We define
⇠ , kNP

�

(o)k, and define the supremum of ⇠ as

⇠max , sup

x2R2

min

y2�

{kx� yk}. (7)

Due to the ergodicity [4, Ch. 2] of the point process (which
follows from the mixing property), ⇠

max

does not depend
on the realization of �. ⇠max = 1 in many mixing point
processes.

We define �

⇣

o

, (� | NP

�

(o) = ⇣). Note that for this point
process, ⇣ 2 �

⇣

o

and �

⇣

o

(b(o, k⇣k)) = 0. We compare the
interference in �

⇣

o

with the interference from a point process
where the desired BS ⇣ is not necessarily the closest one.
To this end, we define �

⇣ , (� | ⇣ 2 �) and consider
its interference except for a disk of radius k⇣k/2 around the
origin:

ˆI(�⇣

) =
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x2�
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T
b(o,k⇣k/2)c\{⇣}

h
x

`(x), (8)

where b(o, k⇣k/2)c = R2\b(o, k⇣k/2).
To better understand the above notations, we give an illus-

tration of them in Fig. 2. Both �

⇣

o

and �

⇣ have a point at
⇣ and k⇣k = y. All points of �

⇣

o

are located in the striped
region (outside b(o, y)) and I(�⇣

o

) is the interference from all
these points except ⇣. While, �⇣ may have points throughout
the whole plane, but ˆI(�⇣

) is the interference only from the
points of �

⇣ in the shaded region (outside b(o, y/2)) except
⇣.
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Fig. 2. An illustration of �⇣

o

, �⇣ , I(�⇣

o

) and Î(�⇣), where k⇣k = y.

Using the above notations, we define a general class of point
process distributions that we use to rigorously state our main
result on the coverage probability.

Definition 3 (Set A): The set A = {P
�

} is the set of
all point process distributions P

�

that are mixing and that
satisfy the following four conditions. If a point process � is
distributed as P

�

2 A,
1) ⇠max = 1;
2) for all y > 0, 9⇣ 2 R2 with k⇣k = y, such that

P(�⇣

(b(o, y)) = 0) 6= 0;
3) 9y

0

> 0, such that for all y > y
0

and k⇣k = y, ˆI(�⇣

)

stochastically dominates I(�⇣

o

), i.e., P(I(�⇣

o

) > z) 
P(ˆI(�⇣

) > z), for all z � 0;
4) 8n 2 N, the n-th moment of ⇠ is bounded, i.e., 9b

n

2
(0,+1), s.t. E(⇠n) < b

n

.
The four conditions in Def. 3 are quite mild; they are

satisfied by most point processes that are usually considered
in wireless networks and in stochastic geometry, such as the
PPP, the MCP and the Matérn hard-core process (MHP) [4,
Ch. 3]. The triangular lattice is not included, since it is not
mixing. We will prove that the laws of the PPP, the MCP and
the MHP belong to A in Section III-B.

Before introducing the main theorem, we show a property
of the distribution of I(�⇣

o

) under certain assumptions.
Lemma 1: For P

�

2 A, if the fading has at most an
exponential tail, i.e., � logF c

h

(x) = ⌦(x), where F c

h

(x) is
the CCDF of the fading variable h, then the interference tail
is bounded by an exponential, i.e., � logF c

I(�

⇣

o

)

(x) = ⌦(x),
where F c

I(�

⇣

o

)

(x) is the CCDF of I(�⇣

o

).
Proof: See Appendix A.

A similar property has been derived in [6], namely, that in ad
hoc networks modeled by m.i. point processes, an exponential
tail in the fading distribution implies an exponential tail in the
interference distribution. The result cannot be directly applied
to cellular networks. Because in the cellular network that we
consider, each user communicates with its nearest BS u and
thus no interferers can be nearer than u, while the authors in
[6] assume the receiver communicates with a transmitter with
a fixed location and there can be some interferers nearer to
the receiver than the transmitter.

Horizontal shift of PPP CCDF (in dB scale)

Observation (Martin)

3.73 dB

3.07 dB

P (T ) ⇡ PPPP(✓T )



Horizontal gap

G(p) =
F�1(p)

F�1
PPP(p)

, p 2 (0, 1)

In particular, we focus on G(0) and G(∞)

P (T ) ⇡ PPPP(G(0)T )

G(0) and G(∞) depend on the SIR asymptotes at 0 and ∞ 



Head behaviour
Pc(T ) = P
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Mean interference 
to signal ratio



Mean interference-to-signal 
ratio (PPP)
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Signal power dominates for higher path loss and vice versa 

Base stations: big dots. Mobile users: little dots.
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Relative distance process
CCDF of SIR: E
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• Not a stationary process 
• Not a finite point process



RDP of PPP(  )

Product densities 
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Complete characterisation
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RDP of a general PP
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Theorem. For an RDP generated by a stationary PP

Proof.



MISR of general PP
Theorem. The MISR of a motion-invariant point process is 

MISR = 2

Z 1

0
t↵�3�1(t)dt

MISR = E
X

y2R
y↵ =

Z 1

0
t↵⇢(1)R (t)dtProof.

Dependence on path loss exponent

MISR(↵) ⇠ 2

↵� 2
�1(1), ↵ ! 1



Expected fading-to-
interference ratio (EFIR)
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Examples

EFIRPPP = (sinc(2/↵))↵/2

PPP

Square lattice

Is EFIR independent of density?
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Tail behaviour
Theorem. For a stationary BS point process,

Pc(T ) ⇠
✓

T

EFIR

◆�2/↵

, T ! 1

Remarks: 
• SIR is a heavy tailed distribution 
• Sanity check: PPP 
• Similar results for Ginibre process [Miyoshi 14]

Pc(T ) =
1

1 + T 2/↵
R1
T�2/↵

1
1+u↵/2 du

⇠ T�2/↵

R1
0

1
1+u↵/2 du



Relation to max SIR
Lemma. The tail of the max SIR  distribution coincides with 
nearest neighbour connectivity, i.e., 

✓
T

EFIR

◆�2/↵

⇠ P

c
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x2�
SIR(x) > T )

For large SIR threshold, signal fade does not matter



Forget interference
The received signal strength: S = hr�↵

P(S > T ) ⇠ �⇡�(1 + 2/↵)T�2/↵, T ! 1

P(S < T ) ⇠ TE[r↵], T ! 0

At both ends of the SIR distribution, the interference affects only the pre-constant 
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Simulation
EFIR−based Asymptote
Analytical upper bound
Analytical lower bound
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Simulation
Asymptote
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EFIR = 1.19
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EFIR = 0.89
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Conclusion
• SIR distribution asymptotes are characterised by MSIR and 

EFIR. 

• RDP process captures the relevant information for computing 
SIR distribution. Easier to analyse?? 

• SIR CDF for non-PPP BSs is a horizontal shift of the PPP CDF
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Poisson
triangular lattice
exp(−θ)

Just use PPP!


