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Do Not Leave Anything to CHANCE

New Philosophy

CHANCE WORKS WONDERS: MAKE IT WORK FOR YOU



Old adage

Do Not Leave Anything to CHANCE

New Philosophy

CHANCE WORKS WONDERS: MAKE IT WORK FOR YOU



Toss fair coin ONCE. Can you say anything?

NOT MUCH

Toss Fair Coin 1000 times. Can you say anything?

YES, We get Approximately 500 heads.

More number of outcomes did NOT lead to more uncertainty!
(if you think of right attribute)
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Collective behaviour of LARGE number of particles

Performance of a programme with LARGE number of components

Messages with LARGE number of signals.

A random variable that depends in a smooth way on
influence of a large number of independent random variables,
but not too much on any one of them,

is

essentially constant and satisfies Chernoff type bounds.

(M Talagrand/V D Milman)



(a)
P L Chebyshev X ≥ 0 t > 0:: P(X ≥ t) ≤ E (X )/t.
Use X ≥ X I(X≥t) ≥ t I(X≥t)

P(X ≥ t) ≤ E (X 2)/t2.

X a RV mean µ variance σ2 (finite)

P(|X − µ| > t) ≤ σ2/t2.

!NOT CONCENTRATION INEQUALITIES!
Usually CONCENTRATION refers to EXPONENTIAL TAIL
BOUNDS. (People differ)
THEN WHY AM I WASTING YOUR TIME ON THIS?



THIS ITSELF GIVES RESULTS if WE ARE CLEVER

ALWAYS THE SEED. YOU KEEP REFINING.

USUALLY X IS A FUNCTION OF SEVERAL INDEPENDENT
RANDOM VARIABLES.

USE FUNCTIONS OTHER THAN SQUARE

GET BETTER BOUNDS FOR σ2

OR DO BOTH



(b)
WEAK LAW of LARGE NUMBERS (WLLN)

X1,X2, · · · , INDEPENDENT IDENTICALLY DISTRIBUTED

mean µ variance σ2

An =
1

n

n∑
1

Xi

P(|An − µ| ≥ ε) ≤
1

n

σ2

ε2
→ 0

WHY IS IT INTERESTING?



(c)
WEIERSTRASS

f CONTINUOUS REAL VALUED FUNCTION on [0, 1]

for n ≥ 1

Pn(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

GIVEN ε > 0 THERE IS N SUCH THAT FOR ALL n ≥ N

sup
x∈[0,1]

|f (x)− Pn(x)| ≤ ε.

WHY IS THIS INTERESTING?



Use:: probabilities add to one.

|f (x)− Pn(x)| ≤
n∑

k=0

∣∣∣∣f (k

n

)
− f (x)

∣∣∣∣ (nk
)
xk(1− x)n−k

Choose:: δ > 0: |x − y | ≤ δ ⇒ |f (x)− f (y)| < ε/2.

≤
{

sum over k with |kn − x | ≤ δ
}

+
{

sum where |kn − x | > δ
}

.

≤ (ε/2) + 2Cnx(1− x)/n2δ2

N such that 2C/Nδ2 < ε/2. Here C is bound for f .
Use Chebyshev. Note: N does not depend on x .



(d)
ERDOS:

GIVEN INTEGERS k > 2 AND l > 2

THERE IS A GRAPH G WHICH

HAS CHROMATIC NUMBER AT LEAST k

HAS NO CYCLES OF LENGTH SMALLER THAN l .

Took more than a decade to actually construct!



0 < p < 1; G (n, p) is Erdos-Renyi graph on n vertices, edge
probability p. Choose θ such that θl < 1.
(for each n) Take p = nθ−1 (depending on n).
X RV; number of cycles of length at most l in G (n, p)

E (X ) =
l∑
3

(n)i
2i

pi ≤
l∑
3

ni
nθi−i

2i

≤
l∑
3

nθi

2i
= o(n)

Now CONSIDER LARGE n so that

P(X > n/2) < 1/2



Let I = cardinality of maximal independent set.

P(I ≥ x) ≤
(
n

x

)
(1− p)(x2) ≤

[
ne−p(x−1)/2

]x
Let x = 1 + Ceiling( 3

p log n) (depends on n)

ep(x−1)/2 ≥ n3/2; P(I ≥ x) = o(1).

Now CONSIDER n so large that

P(I > xn) < 1/2



Take large n so that both above hold. Pick a graph such that

I (G ) < xn ≤ 1 + 3n1−θ log n

X (G ) < n/2.

REMOVE ONE VERTEX FROM EACH OF ITS CYCLES of
LENGTH AT MOST l .
Have Graph G ∗ on at least n/2 vertices.
For any graph H

|H| ≤ I (H)χ(H)

WHY?



Colour with χ(H) colours. Vi vertices of colour i .
Vi is Independent set |Vi | ≤ I (H). H = ∪Vi

χ(G ∗) ≥ |G
∗|

I (G ∗)
≥ n/2

1 + 3n1−θ log n
↑ ∞.

For all large n right side exceeds k .



(e)
Cramer-Chernoff::

X1,X2, · · ·

i.i.d values ±1 probabilities 1/2 each. Sn =
∑n

1 Xi

For any λ > 0

P(Sn > t) = P(eλSn > eλt) ≤ E
(
eλSn

)
e−λt .

Minimized at λ = t/n giving

P(|Sn| > t) ≤ 2e−t
2/2n

This is concentration inequality.



E (eλSn) =

(
eλ + e−λ

2

)n

1

2
(eλ + e−λ) = 1 +

λ2

2!
+
λ4

4!
+
λ6

6
+ · · ·

≤ 1 +
λ2/2

1
+

(λ2/2)2

2!
+

(λ2/2)3

3!
+ · · ·

= eλ
2/2.

E (eλSn)e−λt ≤ exp{nλ
2

2
− λt}

So minimize. nλ− t = 0 or λ = t/n



(f)
STRONG LAW OF LARGE NUMBERS (SLLN)∑

n

P(|Sn/n| > t) ≤ 2
∑
n

e−nt
2/2 <∞.

Borel-Cantelli shows; Almost surely

Sn/n→ 0.

[An events
∑

P(An) <∞. Let A be the set of points which
belong to infinitely many of these events. Then P(A) = 0.]
Why is it interesting?



Points that belong to infinitely many sets Ai is

∞⋂
n=1

∞⋃
i=n

Ai .

probability of this set, whatever n you take, is smaller than∑∞
i=n P(Ai ) tail sum of a convergent series.

Hence probability of the set is zero.



(g) Main Point:

Z RV. Assume E{eλZ} <∞.
(at least for some λ > 0. We consider those positive λ below)

Ψ(λ) = log E (eλZ )

P(Z > t) ≤ eΨ(λ)e−λt = e−[λt−Ψ(λ)].

Set
Ψ∗(t) = sup{λt −Ψ(λ) : λ ≥ 0}

P(Z > t) ≤ e−Ψ∗(t).



(h) An example:

Z ∼ N(0, σ2)

Ψ(λ) = λ2σ2/2

Ψ∗(t) = t2/2σ2

For t > 0
P(Z > t) ≤ e−t

2/2σ2
.

P(|Z | > t) ≤ 2e−t
2/2σ2

.



(i) JOHNSON-LINDENSTRAUSS:
Given: a set S of n points in RD ; 0 < ε < 1; 0 < δ < 1
Take

d ≥ 100

ε2
log(

n√
δ

)

Take W = ((Wij))d×D ; {Wij} i.i.d. N(0, 1).

X = 1√
d
W transforms RD to Rd .

CONCLUSION: With probability at least 1− δ; for v1, v2 ∈ S

(1− ε)||v1 − v2|| ≤ ||Xv1 − Xv2|| ≤ (1 + ε)||v1 − v2||.

Data compression. d did not depend on D, depended on n.



X is ‘ISOMETRY’ ‘ON THE AVERAGE’.
Wiv =

∑
j Wijvj ; Xiv = 1√

d
Wiv

Wv = (W1v , · · · ,WdV )′.; Xv = Wv/
√
d

let v ∈ RD . Then E (Wv) is zero vector.

Wiv ∼ N(0, ||v ||2); Xiv ∼ N(0, ||v ||2/d)

Wv ∼ Nd(0, ||v ||2 I ); Xv ∼ Nd(0, ||v ||2d−1 I )

E (‖Xv‖2) = ‖v‖2

proceed to do only one inequality of the theorem.



Now take v ∈ RD and ||v || = 1.

EeλWiv = eλ
2/2.

||Xv ||2 − 1 =
1

d

∑
i

[(Wiv)2 − 1] =
1

d
Z say

Have for 0 < λ < 1/2.

log Eeλ[(Wiv)2−1] = log
1√

1− 2λ
− λ ≤ λ2

1− 2λ

log EeλZ ≤ dλ2

1− 2λ



ξ standard normal. What is E (eλξ
2
)

No mathematical issues; assume 0 < λ < 1/2.∫
eλx

2
∫

1√
2π

e−x
2/2dx

=

∫
1√
2π

∫
e−

x2

2
(1−2λ)dx

1√
(1− 2λ)

1√
2π

∫
e−u

2/2du



0 < x < 1

log(1− x) = −x − x2

2
− x3

3
− · · ·

≥ −x − x2

2
− x3

2
− x4

2
− · · ·

≥ −x − x2

2

1

1− x

log
1√

(1− 2λ)
≤ λ+ λ2 1

1− 2λ



Accept: For t > 0

sup[tλ− dλ2

1− 2λ
: 0 < λ < 1/2] =

d

2

[
1 +

t

d
−
√

1 +
2t

d

]
(♠)

P(Z > u) ≤ e−[d+u−
√
d2+2ud ]/2

For t > 0

P(
1

d
Z >

√
4t

d
+

2t

d
) = P(Z >

√
4td + 2t)

≤ e−[d+2t+
√

4td−
√

d2+4td+2d
√

4td ]/2

= e−t



T = { v − w

||v − w ||
: v 6= w ; v ,w ∈ S}

P(||Wv ||2 − 1 >

√
4t

d
+

2t

d
for some v ∈ T ) ≤ n2e−t

Take t = log(n2/δ)
n2e−t = δ

Shall show √
4t

d
+

2t

d
< ε



4t

d
≤ 4 log(n2/δ)

100 log(n/
√
δ)
ε2 =

8ε2

100
≤ 2ε2/25√

4t

d
≤ 2ε/5

2t

d
≤ 4ε2

100
= ε/5

ADD and DONE!



Now proof of (♠) For t > 0

sup[tλ− d
λ2

1− 2λ
: 0 < λ < 1/2] =

d

2

[
1 +

t

d
−
√

1 +
2t

d

]

tλ− d
λ2

1− 2λ
= tλ+

d

4
[1 + 2λ− 1

1− 2λ
]

Derivative =0 gives

t +
d

4
[2− 2

(1− 2λ)2
] = 0

2t + d

2
=

d

2(1− 2λ)2

1− 2λ =

√
d

d + 2t



λ =
1

2
− 1

2

√
d

d + 2t
=

1

2
− 1

2α

α =

√
d + 2t

d

Also

1 + 2λ = 2− 1

α
; 1− 2λ =

1

α

Sup equals
t

2
− t

2α
+

d

4
[2− 1

α
− α]

1

α
+ α =

1 + α2

α
=

1 + d+2t
d

α
=

2d + 2t

dα



So sup equals
t

2
− t

2α
+

d

2
− d + t

2α

=
1

2
[d + t − d + 2t

α
]

=
1

2
[d + t −

√
d(d + 2t)]

=
d

2

[
1 +

t

d
−
√

1 + 2
t

d

]
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(j)

(Digression)
A RV Z with mean zero is SUBGAUSSIAN if

Ψ(λ) ≤ 1

2
λ2θ; λ ∈ R

for some θ > 0. If Z is so then −Z is also so.
For such a RV Z we have for t > 0,

P(Z > t) ≤ e−t
2/2θ

P(Z < −t) ≤ e−t
2/2θ

(Subgaussian with variance parameter θ)



(k)

(Digression) Nomenclature:
CRAMER transform:

Ψ∗(t) = sup{λt −Ψ(λ) : λ > 0}

FENCHEL-LEGENDRE transform

Ψ∗(t) = sup{λt −Ψ(λ) : λ ∈ R}

Jensen tells Ψ(λ) ≥ λE (Z ).
So: If t ≥ E (Z ) then for λ ≤ 0

λt −Ψ(λ) ≤ λ[t − E (Z )]

≤ 0 if λ < 0.

F-L is same as C.



(l)
(Digression) WHAT IF COIN IS BIASED?
X1,X2, · · · values 1/0 probabilities p and 1− p = q;independent..

Sn =
n∑
1

Xi ∼ B(n, p)

P(Sn > (p + t)n) ≤ (peλ + q)ne−(p+t)nλ.

Minimized at

eλ =
q(p + t)

p(q − t)
.

P(Sn > (p + t)n) ≤ e−nH

where

H = [(p + t) log
p + t

p
+ (q − t) log

q − t

q
]



Should minmize
(peλ + q)ne−nλ(p+t).

Minimize
(peλ + q)e−λ(p+t).

Or its logarithm
log(peλ + q)− λ(p + t)

derivative equate to zero.

peλ = (peλ + q)(p + t)

p(q − t)eλ = q(p + t); eλ =
q(p + t)

p(q − t)
.

Then

(peλ + q) =
q(p + t)

q − t
+ q =

q

q − t



e−λ(p+t) =

[
q(p + t)

p(q − t)

]p+t

(peλ + q)e−λ(p+t) =
q

q − t

[p(q − t)]p+t

[q(p + t)]p+t
.

=

(
p

p + t

)p+t (
q

q − t

)q−t

= exp{−(p + t) log
p + t

p
− (q − t) log

q − t

q
}

= e−H

(peλ + q)ne−nλ(p+t) = e−nH .



This is a glimpse of how ENTROPY enters!

H = [(p + t) log
p + t

p
+ (q − t) log

q − t

q
]

is Entropy of probability {p + t, q − t} w.r.t. {p, q}.
It is positive. More later.

P

(
Sn
n
− p > t

)
≤ e−nH → 0

with a similar inequality leading to SLLN.



(m) Load balancing:
n jobs and m processors.
Each job is allotted at random to one of the m processors. How
balanced is the load. For Example take n = m logm. (not integer!
Do not worry, can make precise)
On the average each processor gets logm jobs. What are the
chances that load of some processor exceeds 2 logm.
Fix ONE processor. Number of jobs allotted to this processor. is
sum of n Bernoulli variables; p = 1/m. can show
P(S > 2 logm) ≤ exp{−m log 2} = 1/m2. Use union bound,

P(load of at least one processor exceeds 2 logm) ≤ 1/m



(n):

(Digression) unequal success probabilities.
X1, · · · ,Xn Bernoulli 1− 0 prob:p1, · · · , pn. X =

∑
Xi

E (eλX ) =
∏

(pie
λ + qi ) ≤ (peλ + q)n

p =
1

n

∑
pi ; q =

1

n

∑
qi

AM-GM inequality.



Sums but only of independent RV?
Independent RV but only sums?
(a) AZUMA HOEFFDING:
d1, · · · , dn bounded RV; E (di ) = 0
Expectation of distinct product is zero.

E (
k∏
1

dik ) = 0, 1 ≤ di1 < · · · < dik ≤ n

CONCLUSION: For t > 0

P(|
∑

di | > t) ≤ 2e−t
2/(2

∑
||di ||2).

Martingale differences are good examples. (‖di‖ is its bound)



Let |di | ≤ ci a.e. Fix λ > 0. Note eλx convex in x

eλx ≤ eλci + e−λci

2
+

eλci − e−λci

2

x

ci
; −ci ≤ x ≤ ci

eλdi ≤ eλci + e−λci

2
+

eλci − e−λci

2

di
ci
.

E

(
m∏
1

[αidi + βi ]

)
=

m∏
1

βi .

E (
∏

eλdi ) ≤
∏ eλci + e−λci

2
≤ eλ

2(
∑

c2
i /2).

P(
∑

di > t) ≤ eλ
2(
∑

c2
i /2)e−tλ

Minimized at λ = t/
∑

c2
i .



(b) Shamir-Spencer:

G (n, p) Erdos-Renyi model 0 < p < 1. µn = E (χ).

P(|χ(G )− µn| > t
√
n − 1) ≤ 2e−t

2/2

(µn is of the order n/logn)
n vertices: {1, 2, · · · , n}.
Iij one or zero edge ij present OR not.
Fk = {Iij : 1 ≤ i , j ≤ k} for k = 2, 3, · · · n.
X1 = E (χ) = µn; X2 = E (χ‖F2) · · · Xn = E (X‖Fn) = χ
di = Xi+1 − Xi for 1 ≤ i ≤ n − 1.
Claim: |di | ≤ 1
Since

∑
di = χ− µn we are done.



For want of a nail the shoe was lost
For want of a shoe the horse was lost
· · · · · · the kingdom was lost
And all for the want of a horseshoe nail

ignorant of a definition, computation was lost
ignorant of the computation, theorem was lost
ignorant of the theorem, beautiful application lost
And all for not knowing a little silly definition.
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(c) CONDITIONAL EXPECTATION

Have two random variables X and Y on same space.

X taking values {ai} and Y taking {bj}

P(X = ai ,Y = bj) = pij .

P(X = ai ) =
∑

j pij = pi•; P(Y = bj) =
∑

i pij = p•j ;

E (X |Y ) is a random variable. When Y takes the value bj then this
takes value

∑
i aipij/p•j

Conditional distribution of X given Y = bj is the following
probability: value ai with probability pij/p•j
Conditional expectation is nothing but expectation w.r.t.
conditional distribution.
Similar: conditional expectation given hundred random variables.



X ,Y have joint density f (x , y)

densities of X and Y are
f (x , •) =

∫
f (x , y)dy ; f (•, y) =

∫
f (x , y)dx

E (X |Y ) is a random variable; when Y takes the value y then this
takes the value

∫
xf (x , y)dx/f (•, y)

Conditional distribution of X given Y = y is the function
fX |Y (x) = f (x , y)/f (•, y) regarded as a function of x .

Conditional expectation is nothing but expectation w.r.t.
conditional distribution.

ZEROS (frightening but harmless)

Similar: conditional expectation given hundred variables.



If ξ is a function of (X ,Y ) then E (ξ · Z‖X ,Y ) = ξ · E (Z‖X ).
smothing:: E (Z‖X ,Y ) = W say E (W ‖X ) = U say Then
E (Z‖X ) = U Straight forward verification.
In particular, E [ E (Y ‖X ) ] = E (Y ). Effect of this for us is the
following: Have Z ,X1, · · · ,Xn

di = E (Z‖X1, · · · ,Xi )− E (Z‖X1, · · ·Xi−1)

Then this is a multiplicative family (H-Z hyp. holds). For example,

E (d4d5) = E [ E (d4d5‖X1, · · · ,X4) ]

inner thing = d4E (d5‖X1, · · · ,X4)
but d5 = E (Z‖X1, · · · ,X5)− E (Z‖X1, · · · ,X4), use smoothing.



(d) Chvatal-Sankoff:
Xi : i ≥ 1;Yi : i ≥ 1 i.i.d finite alphabet valued.

Ln = max

k :
∃1 ≤ i1 < i2 < · · · < ik ≤ n;
∃1 ≤ j1 < j2 < · · · < jk ≤ n;

Xi1 = Yj1 ;Xi2 = Yj2 , · · ·Xik = Yjk .


Understanding DNA sequences/large programs. an = E (Ln).

P(|Ln − an| ≥ t) ≤ 2e−t
2/8n

dk = E (Ln‖Xi ,Yi : i ≤ k)− E (Ln‖Xi ,Yi : i ≤ k − 1).∑
di = Ln − an; |di | ≤ 2.

As in SLLN, Ln/n converges if an/n converges. YES, THEY DO.



(e) Graphs again.

Cycle passing through all vertices is HAMILTONIAN CYCLE.

Deciding existence of such cycle is NP hard!

G (n, 1/2) has Hamiltonian cycle with high probability.
Means: Probability of this, say pn, converges to one.

(in fact, there is a polynomial algorithm to get the cycle!)
Shall not do but here is a step towards that.

G (n, 1/2) is TRACTABLE with high probability.

Means THREE things:



(i) w.h.p. Every vertex has between n
2 −

n
50 and n

2 + n
50 neighbors.

(ii) w.h.p. for every pair of vertices u, v ;

3

4
n − n

50
≤ |N(u) ∪ N(v)| ≤ 3

4
n − n

50

(iii) w.h.p. For every triple u, v ,w of vertices

7

8
n − n

50
≤ |N(u) ∪ N(v) ∪ N(w)| ≤ 7

8
n − n

50



For example, for each pair u, v the number

|N(u) ∪ N(v)− u − v |

is sum of n − 2 independent Bernoulli;
1 w.p. 3/4 and
0 w.p. 1/4.
Azuma says (ii) fails with probability at most

2 exp

{
−

( n
50 − 2)2

6(n − 2)

}
.

Chances of (ii) failing for at least one pair is at most n2 times
earlier and goes to zero.
(Frieze and Bruce Reed)



Objection:
Typical input is a uniformly chosen random graph? Unrealistic.

Answer:
No more unrealistic than the belief that
studying the pathological examples
constructed in NP completeness
yields information about typical instances.

Also Helps in Understanding
WHAT IS IT THAT MAKES THE PROBLEM DIFFICULT?

Erdos and Wilson: w.h.p. G (n, 1/2) graph has a unique vertex of
max degree.
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(f) HOEFFDING LEMMA:
X1, · · · ,Xn indep. ai ≤ Xi ≤ bi .

S =
∑

(Xi − EXi )

Then
(i) P(S > t) ≤ exp{−2t2/

∑
(bi − ai )

2} and
(ii) Variance Xi ≤ (bi − ai )

2/4.

Just note |Xi − (ai+bi
2 )| ≤ (bi − ai )/2

(i) is Azuma-Hoeffding . (ii) is immediate.

Can do much much better! Strengthen (ii) to give (i).



(g) HOEFFDING LEMMA AGAIN:
EY = 0; a ≤ Y ≤ b; Ψ(λ) = log EeλY

Then:
Ψ′′(λ) ≤ (b − a)2/4

Y is subgaussian variance parameter (b − a)2/4.
|Y − b+a

2 | ≤
b−a

2 variance(Y ) ≤ (b − a)2/4

Ψ′′(λ) = e−Ψ(λ)E (Y 2eλY )− e−2Ψ(λ)(E [YeλY ])2.

P distribution of Y
Think Z with distribution dQ = e−Ψ(λ)eλxdP(x).

Ψ′′(λ) = Var(Z ) ≤ (b − a)2/4. ∀ λ

Ψ(λ) = Ψ(0) + λΨ′(0) +
λ2

2
Ψ′′(?) ≤ λ2(b − a)2/8.

Sum of INDEP SUBGAUSSIAN things is again so.



Ψ(λ) = log EeλY

Ψ′(λ) =
1

EeλY
E (YeλY ) = e−Ψ(λ)E (YeλY )

Ψ′′(λ) = e−Ψ(λ)E (Y 2eλY )− e−2Ψ(λ)(E [YeλY ])2.

Y value yi prob: pi i ≥ 1
Z value yi prob: e−Ψ(λ)eλyipi i ≥ 1

E (Z 2) = e−Ψ(λ)E (Y 2eλY ); (EZ )2 = e−2Ψ(λ)(E [YeλY ])2.
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(h) YET ANOTHER LOOK at HOEFFDING.
we knew Ψ′′(λ) ≤ (b − a)2/4 So

λΨ′(λ)−Ψ(λ) =

∫ λ

0
θΨ′′(θ)dθ ≤ λ2v/2.

v = (b − a)2/4
1

λ
Ψ′(λ)− 1

λ2
Ψ(λ) ≤ v/2

So G (λ) = Ψ(λ)/λ satisfies G ′(λ) ≤ v/2
Known G → 0 as λ→ 0

G (λ) ≤ λv/2; Ψ(λ) ≤ λ2v/2.

Glimpse of Herbst argument!



(j) Better form of A-H popularized by McDIARMID

f : Ωn → R BOUNDED DIFFERENCE PROPERTY means
for each i ; 1 ≤ i ≤ n there is a number ci such that
if a, b ∈ Ωn differ only i-th coordinate

|f (a)− f (b)| ≤ ci

{Xi , i ≤ n} indep RV values in Ω;

McDIARMID INEQUALITY.
f on Ωn with Bounded Difference Property (with {ci})
Z = f (X1, · · · ,Xn). THEN

P(|Z − EZ | ≥ t) ≤ 2e−2t
2/(

∑
c2i ).



di = E (Z‖X1, · · · ,Xi )− E (Z‖X1, · · · ,Xi−1); i ≥ 1

n∑
1

di = Z − E (Z ); E (di ) = 0

Indeed E (di‖Xj : j ≤ i − 1) = 0

E (
n∏
1

eλdi )

condition on {Xi : i ≤ n − 1}

= E

{
n−1∏
1

eλdiE (eλdn‖Xi ; i ≤ n − 1)

}



Use Hoeffding conditionally

E (eλdn‖Xi ; i ≤ n − 1) ≤ eλ
2c2n/8

conditioned on (Xi : i ≤ n − 1)| need to know: dn has mean zero
and lies in an interval of length cn. Yes. THUS

E (
n∏
1

eλdi ) ≤ eλ
2c2n/8E [

n−1∏
1

eλdi ]

Now condition on {Xi : i ≤ n − 2} etc till you reach

E (
n∏
1

eλdi ) ≤ e
∑
λ2c2i /8.



Conditionally on X1, · · · ,Xi−1 the random variable di has mean
zero noted already as consequence of smoothing.
Point I could not convince you in the lecture is:

Conditionally on X1, · · · ,Xi−1 the random variable di takes values
in an interval of length ci :: ready for applying Hoeffding.

Setup: Product space Ωn;
points denoted x = (x1, · · · , xn)
product probability P(x) = p1(x1) · · · pn(xn) (independence)
Xi coordinate functions. X = (X1, · · · ,Xn);
Z = f (X ); Fix an i .
di = E (Z‖X1, · · · ,Xi )− E (Z‖X1, · · · ,Xi−1)
Conditioned on X1, · · · ,Xi−1 the second term in the above
difference is a constant.



Need only show: conditioned on X1, · · · ,Xi−1 the first term in the
above difference takes values in an interval of length ci .

Let g(x1, · · · , xi ) = E (Z‖X1 = x1, , · · · ,Xi = xi )
(g is a function on the product space but depends on the first i
coordinates.)

Only need to show that for fixed x1, · · · , xi−1, as the variable xi
varies, the function g takes values in an interval of length ci .
So fix a1, · · · , ai−1. It suffices to show that for any ai and a∗i we
have

g(a1, · · · , ai−1, ai )− g(a1, · · · , ai−1, a∗i ) ≤ ci



Use the definition of conditional expectation,
remember the conditional distribution of Xi+1, · · · ,Xn given
(X1, · · · ,Xi ) is just its usual product distribution by independence.
So that

g(a1, · · · , ai−1, ai ) =∑
f (a1, · · · , ai−1, ai , ui+1, · · · , un)pi+1(ui+1) · · · pn(un)

and
g(a1, · · · , ai−1, a∗i ) =∑

f (a1, · · · , ai−1, a∗i , ui+1, · · · , un)pi+1(ui+1) · · · pn(un)

where sum is over all the u′s in both the above.
Subtract and use hyp. on f . [without independence, the factor
multiplying f in the two places may be different and may not be
able to combine the two sums.]



(k) random function

Pick a function g at random from the nn functions of the set
{1, 2, · · · , n} to itself.
L(g) is the number of y such that g(x) = y has no solution.
Complement of Range of g. Then:

P
(∣∣∣L(g)− n

e

∣∣∣ > t
√
n + 1

)
≤ 2e−2t

2
.

Note, using indicators,

E (L) = n(1− 1

n
)n



(1− 1

n
)n ↑ 1/e

so E (L) ≤ n/e

Ln
n − 1

=
n

n − 1
(1− 1

n
)n =

1

(1 + 1
n−1)n−1

↓ 1

e

So L(n) ≥ (n − 1)/e. Think of L as a map from {1, 2, · · · , n}n by
identifying functions g as the point (g(1), · · · , g(n)).

Bounded difference property with ci = 1.
McDiarmid completes.



(1 +
1

n
)n =

1 + 1 +
1

2!
1.(1− 1

n
) +

1

3!
1.(1− 1

n
).(1− 1

n
)(1− 2

n
) + · · ·

increases in n. Also for x > 1;
x log(1− 1

x ) has derivative log(1− 1
x ) + 1

x−1

log(1− 1

x
) = −1

x
− 1

2x2
− 1

3x3
− · · ·

≥ −1

x
− 1

x2
− 1

x3
− · · ·

= − 1

x − 1

positive derivative; so function increases in x .



(l) EFFRON-STEIN:
X1, · · ·Xn INDEP. Z = f (X1,X2, · · · ,Xn)
E (i) cond.exp. given all but Xi : E (i)Z = E (Z‖Xj : j 6= i). THEN
1. Var(Z ) ≤

∑
E [(Z − E (i)Z )2] = v (say)

2. Let {Yi : i ≤ n} indep copy of X ’s and

Z ′i = f (X1, · · · ,Xi−1,Yi ,Xi+1, · · · ,Xn)

Then v =
1

2

∑
E [(Z − Z ′i )

2]

3. v = inf
∑

E [(Z − ξi )2]
inf over all {ξi} square integrable functions of {(X (i))}.



1. E [(Z − E (i)(Z ))2] = EE (i)[(Z − E (i)(Z ))2]

Var (Z ) ≤ E Var (i)(Z )

Total variation is smaller than average of ‘local variations’

Understanding overall Fluctuations through Local fluctuations.

3. useful in calculations of v .



Set
Yi = EiZ − Ei−1Z , Ei = E (· · · ‖Xj ; j ≤ i)

Z − EZ =
∑

Yi

E (Z − EZ )2 =
∑

EY 2
i

Ei [E
(i)Z ] = Ei−1Z

Yi = Ei [Z − E (i)Z ]

(Jensen) Y 2
i ≤ Ei [(Z − E (i)Z )2]

EY 2
i ≤ EEi{[Z − E (i)Z ]2} = E [(Z − E (i)Z )2]

Var(Z ) ≤ v .



For 2, observe X ,Y i.i.d. then var(X ) = E (X − Y )2/2

If {Yi} independent copy of {Xi} then

GIVEN X (i) = {Xj : j 6= i}; Z ′i is independent of Z So

E (i)[Z − E (i)Z )2] = var (i)(Z ) = E (i)(Z − Z ′i )
2/2

E [Z − E (i)Z )2] = EE (i)[Z − E (i)Z )2/2

= EE (i)(Z − Z ′i )
2/2 = E [(Z − Z ′i )

2]/2

For 3; use var(X ) = inf{E (X − a)2 : a ∈ R}.



(m)
If f on Ωn has bounded difference property with {ci} then
var(Z ) ≤

∑
c2i /4 Z = f (X1, · · · ,Xn)

(Assumed {Xi} independent)
To see this, Put

ξi =
1

2
[sup

a
f (X1, · · · ,Xi−1, a,Xi+1, · · ·Xn)

+ inf
b
f (X1, · · · ,Xi−1, b,Xi+1, · · ·Xn)]

then (Z − ξi )2 ≤ c2i /4.

Use part (3) of E-S.



(n)
Binpacking:
X1, · · · ,Xn uniformly picked from [0, 1].
Z = f (X1, · · · ,Xn) is the minimum number of bins of size one
needed to pack them.

Var(Z ) ≤ n/4.

Longest ‘matching’ subsequence
Z = f (X1, · · · ,Xn,Y1, · · · ,Yn)

Variance(Z ) ≤ 2n/4 = n/2.



(p)
SELFBOUNDING FUNCTION:
f : Sn → [0,∞)
There exist fi : Sn−1 → [0,∞) satisfying:

0 ≤ f (x1, · · · , xn)− fi (x1, · · · , xi−1, xi+1, · · · , xn) ≤ 1

n∑
1

[f (x1, · · · , xn)− fi (x1, · · · , xi−1, xi+1, · · · , xn]2 ≤ f (x1, · · · , xn)

Equivalently
0 ≤ f (x)− fi (x

(i)) ≤ 1∑
[f (x)− fi (x

(i))]2 ≤ f (x).



For self bounding function

Var f (X ) ≤ E [f (X )]

To see this,
Use Effron-Stein (part 3 and 1) taking

ξi = fi (X
(i))



(q) ↑-subsequences.
X1, · · · ,Xn i.i.d. uniform [0, 1].

f (x1, · · · , xn) is length of the largest increasing subsequence of
(x1, · · · , xn)

L = f (X1, · · · ,Xn).
var(L) ≤ E (L).

Because, fi : [0, 1]n−1 length of largest increasing subsequence of
this (n − 1)-tuple will serve our purpose.



notation:
x = (x1, · · · , xn)

x (i) = (x1, · · · , xi−1, xi+1, · · · , xn)

for all x and i ;
0 ≤ f (x)− f (x (i)) ≤ 1

for all x ∑
[f (x)− f (x (i))]2 ≤ f (x)



(r) Vapnik-Cervonenkis dimension.
X1, · · · ,Xn independent S-valued with continuous distribution.
A is a collection of subsets of S .

For x = (x1, · · · , xn), distinct points of S define

tr(x) = {A ∩ {x1, · · · , xn} : A ∈ A}

T (x) = |tr(x)|

x is shattered if T (x) = 2|x |

VC dimension D(x) is the size of the largest shattered subset of x .

D = D(X1, · · · ,Xn) This is almost surely well defined.

Then var(D) ≤ E (D) useful in learning theory.



(s) Configuration functions:

Have families of subsets: Π1 ⊂ S ; Π2 ⊂ S2; etc Πn ⊂ Sn.

This is Hereditary, that is, if (x1, · · · , xm) ∈ Πm and
1 ≤ i1 < i2 < · · · < ik ≤ m then (xi1 , · · · , xik ) ∈ Πk .

If x ∈ Sn then length of the largest subsequence of x with property
Π is denoted f (x).

X1, · · · ,Xn are independent S valued and Z = f (X1, · · · ,Xn) then

Var(Z ) ≤ E (Z ).



(t) concentration for self bounding functions:

Setup: Product space Sn; product probability,

coordinate variables (Xi ); self bounding function f

Z = f (X1, · · · ,Xn)

P(Z ≥ EZ + t) ≤ exp

{
− t2

2EZ + 2(t/3)

}
; t > 0

P(Z ≤ EZ − t) ≤ exp

{
− t2

2EZ

}
0 < t < EZ .

Proof is via Entropy techniques.
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(u) Sourav Chatterjee:

X Random variable values in S .
f : S → R E [f (X )] = 0.
Assume:
(i) Exists RV X ′ such that (X ,X ′) EXCHANGEABLE.
(ii) Exists F : S2 → R such that

F (a, b) = −F (b, a); E (F (X ,X ′)‖X ) = f (X ).

Exchangeable means: (X ,X ′) and (X ′,X ) have the same
distribution.
PLAN: Learn f using F .

v(x) =
1

2
E{|[f (X )− f (X ′)]F (X ,X ′)| ‖ X = x}



THEOREM:
h : S → R and E |h(X )F (X ,X ′)| <∞. Then

E [h(X )f (X )] =
1

2
E{[h(X )− h(X ′)]F (X ,X ′)}

Varf (X ) =
1

2
E{[f (X )− f (X ′)]F (X ,X ′)}

Proof: condition on (f ,F ) says

E [h(X )f (X )] = E [h(X )F (X ,X ′)]

Exchangeability says = E [h(X ′)F (X ′,X )]

hypothesis on F says = E [−h(X ′)F (X ,X ′)]



So each equals half of sum.
For last equality take h = f . Note Ef (X ) = 0. Done.

ASSUME:

E [eλf (X )|F (X ,X ′)|] <∞; |v(x)| ≤ c

THEN CONCLUSION:

Eeλf (X ) ≤ ecλ
2/2; P(|f (X )| > t) ≤ 2e−t

2/2c .

Proof: Put m(λ) = Eeλf (X ), Use earlier theorem.

m′(λ) =
1

2
E{[eλf (X ) − eλf (X

′)]F (X ,X ′)}



∣∣∣∣ex − ey

x − y

∣∣∣∣ =

∫ 1

0
etx+(1−t)ydt

≤
∫ 1

0
tex + (1− t)ey dt =

1

2
[ex + ey ]

So |ex − ey | ≤ 1
2 |e

x + ey | |x − y |

|m′(λ)| ≤ |λ|
4

E
{

[eλf (X ) + eλf (X
′)] |[f (X )− f (X ′)] F (X ,X ′)|

}
=
|λ|
2

E [eλf (X )v(X ) + eλf (X
′)v(X ′)]

= |λ|E{eλf (X )v(X )} ≤ c|λ|m(λ).



For λ > 0,
{log m(λ)}′ ≤ cλ; m(0) = 1

log m(λ) ≤ cλ2/2

The main reason for doing this is the following: I did not see
applications of this in the computer science, coding,
communication literature. Of course has several applications, some
mentioned in Sourav’s thesis.

Briefly leaf through one application.



(v) CURIE-WEISS
c ∈ R; β > 0 fixed.

H(σ) = −1

n

∑
i<j

σiσj − c
∑

σi ; σ ∈ {−1,+1}n

Probability space: set of configurations= {−1,+1}n
Probability: p(σ) ∝ e−βH(σ). Gibbs probability.

Magnetization: m(σ) = 1
n

∑
σi .

Belief: concentrated at solution of x = tanh(βx + βc).



THEOREM:

E [m − tanh(βm + βc)]2 ≤ 2 + 2β

n
+
β2

n2
.

P{|m − tanh(βm + βc)| > β

n
+ t} ≤ 2e−nt

2/(4+4β).

Reason:
Shall produce (σ, σ′) exchangeable pair.
σ according to Gibbs distribution.
Pick σ, choose a coordinate I at random
Calculate conditional distribution of I -th coord. Given all others
Replace I -th coordinate of σ according to this distribution.
This is σ′.



F (σ, σ′) =
∑

(σi − σ′i ); mi (σ) =
1

n

∑
j 6=i

σj .

E (σi‖σj : j 6= i) = tanh(βmi + βc)

f (σ) = E{F (σ, σ′)‖σ) =
1

n

∑
[σi − E (σi‖σj : j 6= i)]

= m(σ)− 1

n

n∑
1

tanh(βmi + βc).

|F (σ, σ′)| ≤ 2 ; σ and σ′ differ in only one coordinate. tanh x is
1-Lip function.

|f (σ)− f (σ′)| ≤ |m(σ)−m(σ′)|+ β

n

∑
|mi (σ)−mi (σ

′)|

≤ 2(1 + β)

n



By earlier Theorems

Var[m − 1

n

n∑
1

tanh(βmi + βc)] ≤ 2(1 + β)/n

P{|m − 1

n

∑
tanh(βmi + βc)| ≥ t} ≤ 2e−nt

2/(4+4β).

Also by Lip nature of F ,

| tanh(βmi + βc)− tanh(βm + βc)| ≤ β/n

Done.



(a) Entropy
f non-negative function on a probability space.
Deal with finite sets. However makes sense in general with
appropriate integrability conditions.

Ent(f ) = E (f log f )− E (f ) log E (f ).

Compare
Var(f ) = E (f 2)− (Ef )2

Both are E (Φ(f ))− Φ(Ef ); in one case Φ(x) = x2 and in the
other Φ(x) = x log x (defined for x ≥ 0)
For example Z is non-negative random variable E (Z ) = 1 then

Ent(Z ) = E (Z log Z )



If on your space have a probability Q with dQ/dP = Z then of
course, usual divergence D(Q|P) is just our Ent(Z ).

We consider X1, · · · ,Xn independent and Z = f (X1, · · · ,Xn)
Loosely refer Ent(f ) for Ent(Z ) = Ent{f (X1, · · · ,Xn)}
Effron Stein:

var(Z ) ≤
∑

E [var (i)(Z )]

Or
E (Z 2)− (EZ )2 ≤

∑
E [E (i)(Z 2)− {E (i)(Z )}2].

Or if Φ(x) = x2 then

E (Φ(Z ))− Φ(EZ ) ≤
∑

E [E (i)(Φ(Z ))− Φ{E (i)(Z )}].



Suggests:

Theorem:(Subadditivity of entropy)

Ent(Z ) ≤ E
n∑
1

Ent(i)(Z )

where

Ent(i)(Z ) = E (i)(Z log Z )− E (i)(Z ) log E (i)(Z ).

Shall do modulo Han. First show Log Sobolev inequality for the
cube



{−1, 1}n uniform probability
coordinate variables X1, · · · ,Xn and X = (X1, · · ·Xn)
f a real function on the cube.
Shall put

ε(f ) =
1

2
E [
∑
{f (X )− f (X ′i )}2]

X ′i is X with i-th coordinate replaced by a variable X ′i independent
of everything you see and which has same distribution as Xi .
Thus takes values ±1 with prob. 1/2.
Observation: No need of independent copy.

ε(f ) =
1

4
E [
∑
{f (X )− f (X ∗i )}2]

X ∗i is just X with i-th coordinate flipped.



First def:

ε(f ) =
1

2

∑
EE (i){f (X )− f (X ′i )}2

second def:

ε(f ) =
1

4

∑
EE (i){f (X )− f (X ∗i )}2

Enough to show

E (i)[{f (X )− f (X ∗i )}2] =
1

2
E (i)[{f (X )− f (X ∗i )}2]

Fix one value of X (i) say a(i).



Then LHS equals

1

4
[f (a(i),±1)− f (a(i),±1)]2

1

4
{[f (a(i),+1)− f (a(i),−1)]2 + [f (a(i),+1)− f (a(i),−1)]2}

=
1

2
[f (a(i),+1)− f (a(i),−1)]2

=
1

2
E (i){[{f (X )− f (X ∗i )}2]‖X (i) = a(i)}

Loosely, we are using (a(i), 1) for the point with i-th coordinate
one and others as in a(i).



LogSobolev for the cube
As above we have:
cube; uniform probability; X coordinate vector ; Z = f (X )
THEOREM:

Ent(Z 2) ≤ 2ε(Z ); or Ent(f 2) ≤ 2ε(f )

Proof: Sub additivity of entropy says

Ent(Z 2) ≤ E
∑

Ent(i)(Z 2)

Enough to show

Ent(i)(Z 2) ≤ 1

2
E (i)[f (X )− f (X ∗i ]2.



Given X (i) the RV Z takes two values a, b. So amounts to showing

a2

2
log a2 +

b2

2
log b2 − a2 + b2

2
log

a2 + b2

2

≤ 1

2
(a− b)2

No loss to assume 0 < b < a use (|a| − |b|)2 ≤ (a− b)2

Fix b. Define on [b,∞)

ϕ(a) =
a2

2
log a2 +

b2

2
log b2 − a2 + b2

2
log

a2 + b2

2
− 1

2
(a− b)2



ϕ(b) = 0

ϕ′(a) = a log
2a2

a2 + b2
− (a− b)

ϕ′(b) = 0

ϕ′′(a) = 1 + log
2a2

a2 + b2
− 2a2

a2 + b2
≤ 0

(log x ≤ x − 1) Enough to say ϕ(a) ≤ 0 for all a ≥ b.



special case: f = IA. A subset of cube.

Ent(f 2) = −P(A) log P(A)

4ε(f ) = Influence(A)

What is influence of A.?
Influence of i-th coordinate is
Influencei (A) = P[IA(x) 6= IA(x∗i )]
Total influence is sum of influences of all coordinates
Influence(A) =

∑
Influencei (A)

So

P(A) log
1

P(A)
≤ Influence(A)/2



Before subadditivity, an observation:

Ent(Z ) = E (Z log Z )− (EZ ) log(EZ )

Let c > 0

Ent(cZ ) = E [cZ log(cZ )]− (EcZ ) log E (cZ )

= c{E (Z ) log c + E (Z log Z )− E (Z ) log(EZ )− (EZ ) log c}

= cEnt(Z )



back to Ent(Z ) ≤ E
∑n

1 Ent(i)(Z ) (discrete case)

If holds for Z then holds for cZ . So Assume EZ = 1

Need to fix up notation;

Ωn is the space with product probability

points x = (x1, · · · , xn)

p(x) = p1(x1)p2(x2) · · · pn(xn)

(Xi are coordinate variables, etc)

Q is the probability Q(x) = Z (x)p(x)



then
Ent(Z ) = D(Q‖P)

Recall
D(Q‖P) =

∑
Q(x) log[Q(x)/P(x)]

= EP(Z log Z )

By Han for relative entropy (P product measure; Q any)

D(Q‖P) ≤
∑

[D(Q‖P)− D(Q(i)‖P(i))]

Shall show, to complete proof,∑
[D(Q‖P)− D(Q(i)‖P(i))] = E

∑
Ent(i)(Z )



Recall, Q(i) is the marginal of Q on the space Ωn−1 which is
product Ωn with i-th coordinate space removed.
Or, marginal distribution of X (i) under Q.
Similarly P(i) is marginal distribution of X (i) under P

Q(i)(u(i)) =
∑
y

Z (u(i), y)p(u(i), y)

= P(i)(u(i))
∑
y

Z (u(i), y)
p(u(i), y)

P(i)(u(i))

= P(i)(u(i))E (i)(Z ) use def of E (i)(Z )



D(Q(i)‖P(i))

=
∑
u(i)

Q(i)(u(i)) log[Q(i)(u(i))/P(i)(u(i)]

=
∑
u(i)

E (i)(Z )P(i)(u(i)) log E (i)(Z ) by above

=
∑
u(i)

E (i)(Z ) log E (i)(Z ) P(i)(u(i)) rearrange

= E {E (i)(Z ) log E (i)(Z )}

by definition of expectation of function of X (i).



Also D(Q‖P) = E (Z log Z ) = E E (i)(Z log Z )

Subtract and see.
Han for relative entropy is Han for entropy plus algebra. Shall not
do. Recall H(X ) = −

∑
p(x) log p(x) etc.

Here is Hahn for entropy: X1, · · · ,Xn random variables
X = (X1, · · · ,Xn) and X (i) is X WITHOUT Xi .
Theorem:

H(X1, · · · ,Xn) ≤ 1

n − 1

∑
H(X (i))

Proof:
H(X ) = H(X (i)) + H(Xi‖X (i))

≤ H(X (i)) + H(Xi‖X1, · · · ,Xi−1)

Add over i etc.
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(a) LogSobolev −→ concentration: cube.

Cube; uniform probability, f a function. Z = f (X )
Put g = eλf (X )/2 = eλZ/2

Ent(g2) = Ent(eλZ ) = λE (ZeλZ )− EeλZ log EeλZ

F (λ) = EeλZ

Ent(g2) = λF ′(λ)− F (λ) log F (λ)

Ent(g2) ≤
∑

E [{(eλf (X )/2 − eλf (X
∗i )/2)+}2]

For z > y

ez/2 − ey/2 ≤ (z − y)

2
ez/2



Ent(g2) ≤ λ2

4
E
∑

[(f (X )− f (X ∗i ))2+e
λf (X )]

=
λ2

4
E [eλf (X )

∑
(f (X )− f (X ∗i ))2+]

v = max

{
n∑
1

[f (x)− f (x∗i )]2+ : x in the cube

}

Ent(eλf ) ≤ vλ2

4
Eeλf (X )



λF ′(λ)− F (λ) log F (λ) ≤ vλ2

4
F (λ)

F ′

λF
− log F

λ2
≤ v

4

Set

G (λ) =
log F (λ)

λ

Then
G ′(λ) ≤ v/4; G (λ)→ EZ as λ→ 0

Take λ > 0. Integrate from 0 to λ to see



G (λ) ≤ EZ +
vλ

4
. F (λ) ≤ eλEZ+ vλ2

4 . λ > 0.

Thus
Eeλ(Z−EZ) ≤ evλ

2/4.

P(Z > EZ + t) ≤ e−t
2/v

Similarly (integrating from −λ to 0 etc etc)

P(Z < EZ − t) ≤ e−t
2/v



(b) Talagrand:

Product space set up: Sn product probability P.
f bounded difference property; c1, c2, · · · , cn > 0
McDiarmid

P(|f (X )− Ef (X )| > t) ≤ 2e−2t
2/

∑
c2i .

Keep in mind one sided inequality too.
In particular for Hamming distance and set A

P

{
dH(X ,A) ≥ t +

√
n

2
log

1

P(A)

}
≤ e−2t

2/n.



because (one-sided) McD with t = EdH(X ,A); gives

P(EdH − dH ≥ t) ≤ e−2t
2/n

P(dH(X ,A) ≤ 0) ≤ e−2t
2/n

P(A) ≤ e−2t
2/n; EdH(X ,A) ≤

√
n

2
log

1

P(A).

The other side of McD is gives, for any t > 0;

P(dH > EdH + t) ≤ e−2t
2/n giving



P

{
dH(X ,A) ≥ t +

√
n

2
log

1

P(A)

}
≤ e−2t

2/n.

if P(A) ≥ 1/2; P{dH ≥ t +
√

n(log 2)/2} ≤ e−2t
2/n

For nearly almost all points
need to change only

√
n (order) many coordinates

to bring the point inside A !!!

for general positive weights (ci ) and dc(x , y) =
∑

ci I(xi 6=yi )

P

{
dc(X ,A) ≥ t +

√
||c ||2

2
log

1

P(A)

}
≤ e−2t

2/||c||2 .



P

{
dH(X ,A) ≥ t +

√
n

2
log

1

P(A)

}
≤ e−2t

2/n.

if P(A) ≥ 1/2; P{dH ≥ t +
√

n(log 2)/2} ≤ e−2t
2/n

For nearly almost all points
need to change only

√
n (order) many coordinates

to bring the point inside A !!!

for general positive weights (ci ) and dc(x , y) =
∑

ci I(xi 6=yi )

P

{
dc(X ,A) ≥ t +

√
||c ||2

2
log

1

P(A)

}
≤ e−2t

2/||c||2 .



If ||c || = 1 then P
{
dc(X ,A) ≥ t +

√
1
2 log 1

P(A)

}
≤ e−2t

2
.(♠)

Some algebra to put this in better form.

Put u(A) =
√

1
2 log 1

P(A)

2u ≥ t −→ P(A) ≤ e−t
2/2.

2u ≤ t → 2t − 2u ≥ 2t − t = t → 2(t − u)2 ≥ t2/2.

So
P[dc(X ,A) ≥ t] ≤ e−t

2/2

Use t − u instead of t in (♠)



2u ≥ t → u ≥ t/2→ u2 ≥ t2/4

1

2
log

1

P(A)
≥ t2/4

1

P(A)
≥ et

2/2



Either case
P(A) P[dc(X ,A) ≥ t] ≤ e−t

2/2.

Talagrand: even if you increase the second set such a thing holds!

Talagrand’s convex distance:

dT (x ,A) = sup{dc(x ,A) : ||c|| = 1; c ≥ 0}

Talagrand convex distance inequality: THEOREM

P(A)P(dT (x ,A) ≥ t) ≤ e−t
2/4

Shall only make you believe ≤ e−t
2/10.

Need several ingradients.



First: f : Sn → [0,∞); a > 0
Say: f is self bounding by factor of a or (a-self bounding) if

there are non-negative fi on Sn−1 such that for all x ∈ Sn

(i) 0 ≤ f (x)− fi (x
(i)) ≤ 1

(ii)
∑

[f (x)− fi (x
(i))]2 ≤ af (x)

Fact: for such f and Z = f (X );

log Eeλ(Z−EZ) ≤ λ2 a(EZ )

2− aλ
; P(Z ≤ EZ − t) ≤ e

t2

2aE(Z)



second ingradient: Take f (x) = [dT (x ,A)]2.

Then f is (4)-self bounding; following functions witness.

fi (x
(i)) = inf{f (x1, · · · , xi−1, y , xi+1, · · · , xn) : y ∈ S}.

Accept!

Taking Z = d2
T (X ,A) and t = Ed2

T above inequality tells

P(A) = (d2
T ≤ Ed2

T − t) ≤ e−t
2/(8Ed2

T ) = e−Ed
2
T /8



Taking λ = 1/10 we get

log Eed
2
T /10 ≤ 1

40
Ed2

T +
1

10
Ed2

T =
1

8
Ed2

T

So Eed
2
T /10 ≤ eEd

2
T /8

P(dT ≥ t) ≤ Eed
2
T /10e−t

2/10 ≤ eEd
2
T /8e−t

2/10

P(A)P(dT ≥ t) ≤ e−Ed
2
T /8eEd

2
T /8e−t

2/10 = e−t
2/10



Talagrand distance is NOT distance between points; it is not a
metric on the space. It only defines distance between a point and a
set A in a product space.

It is called convex distance due to the following reason: Let U be
the set of vectors α = (α1, · · · , αn) ∈ Rn with the following
properties:
(i) for each i ; αi is either zero or one;
(ii) there is a y ∈ Ωn such that {i : αi = 0} ⊂ {i : xi = yi}.

Convex hull of U be denoted V . Then distance of the origin from
A, that is, inf{‖v‖ : v ∈ V } is precisely dT (x ,A).



(c) Stochastic Travelling Salesman Given n distinct points

z = (z1, · · · , zn)

of the unit square [0, 1]× [0, 1] at random Find tour (cycle) of
least possible length. This length is denoted L(z).

Theorem: There is a number c > 0 (not depending on n) such that

P{|L−M(L)| > t} ≤ 2e−t
2/4c

M(L) is median of L.



For a random variable Z median

M(Z ) = sup{t : P(Z ≤ t) ≤ 1/2}

Several other ways of defining

Concentration around the median?

Shifted party from mean to median?

It does not matter



I was not clear about the constants, but tried to outline a
deduction of the theorem above from Talagrand using Lipschitz
map of [0, 1] onto the square [0, 1]× [0, 1].

But see book of Dubhashi and Panconesi who outline a simpler
argument.



Another example from Dubhashi and Panconesi
Product set up, have Ωn product probability

Suppose f : Ωn → [0,∞) and r ≥ 1 integer.

Say f is r -certifiable if for each x there is a set
J(x) ⊂ {1, 2, · · · , n} satisfying two conditions.

(i) |J(x)| ≤ rf (x)
(ii) If y agrees with x on these coordinates then f (y) ≥ f (x)

J(x) is a certificate for f (x).



Suppose f is r -certifiable. It is Hamming Lipschitz with constant
c . That is changing one coordinate of x changes value of f (x) by
at most c .

Theorem:

P{f > M(f ) + t} ≤ 2 exp

{
− t2

4c2r [M(f ) + t]

}

P{f < M(f )− t} ≤ 2 exp

{
− t2

4c2rM(f )

}



isoperimetry:
Consider standard Gaussian probability P on R. For a given
number 0 < c < 1 which sets A with P(A) = c have largest
measure for their t-blowup (= {x : d(x ,A) ≤ t})? Answer: half
lines H with P(H) = c . Moreover as soon as P(H) ≥ 1/2 the
probability of the complement of blowup decreases rapidly.

Similar result holds for (normalized) surface area of a sphere and
spherical caps instead of half spaces. Also as soon as the spherical
cap has area more than half,then area of the complement of the
blowup decreases rapidly.

Such results are at the heart of Talagrand inequality. Possibly this
is the reason for calling it iso-perimetric inequality.
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