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Information theory review

◮ Objective

◮ Establish notation

◮ Review the channel coding theorem

◮ Reference for this part: T. Cover and J. Thomas, Elements of

Information Theory, 2nd ed., Wiley: 2006.
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Notation - I

◮ Upper case letters X ,U,Y , . . . denote random variables

◮ Lower case letters x , u, y , . . . denote realization values

◮ Script letters X ,Y, · · · denote alphabets

◮ XN = (X1, . . . ,XN) denotes a vector of random variables

◮ X
j
i = (Xi , . . . ,Xj) denotes a sub-vector of XN

◮ Similar notation applies to realizations: xN and x
j
i
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Notation - II

◮ PX (x) denotes the probability mass function (PMF) on a
discrete rv X ; we also write X ∼ PX (x)

◮ Likewise, we use the standard notation PX ,Y (x , y), PX |Y (x |y)
to denote the joint and conditional PMF on pairs of discrete
rvs

◮ For simplicity, we drop the subscripts and write P(x), P(x , y),
etc., when there is no risk of ambiguity
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Entropy

Entropy of X ∼ P(x) is defined as

H(X ) = E

[

log
1

P(X )

]

=
∑

x∈X

P(x) log
1

P(x)

◮ H(X ) is a non-negative convex function of the PMF PX

◮ H(X ) = 0 iff X is deterministic

◮ H(X ) ≤ log |X | with equality iff PX is uniform over X
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Binary entropy function

For X ∼ Bern(p), i.e.,

X =

{

1, with prob. p,

0, with prob. 1− p

entropy is given by

H(X ) = H(p)

∆
= −p log2(p)− (1− p) log2(1− p) 0

0.5

1.0

0 0.5 1.0
p

H(p)
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Joint Entropy

◮ Joint entropy of (X ,Y ) ∼ P(x , y)

H(X ,Y ) = E

[

log
1

P(X ,Y )

]

=
∑

(x ,y)∈X×Y

P(x , y) log
1

P(x , y)

◮ Conditional entropy of X given Y

H(X |Y ) = H(X ,Y )− H(Y )

◮ H(X |Y ) ≥ 0 with eq. iff X if a function of Y

◮ H(X |Y ) ≤ H(X ) with eq. iff X and Y are independent
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Chain rule

◮ For any pair of rvs (X ,Y ),

◮ H(X ,Y ) = H(X ) + H(Y |X )

◮ H(X ,Y ) = H(Y ) + H(X |Y )

◮ H(X ,Y ) ≤ H(X ) + H(Y ) with equality iff X and Y are
independent.
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Chain rule - II

For any random vector XN = (X1, . . . ,XN)

H(XN) = H(X1) + H(X2|X1) + · · · + H(XN |X
N−1)

=

N
∑

i=1

H(Xi |X
i−1)

≤

N
∑

i=1

H(Xi )

with equality iff X1, . . . ,XN are independent.
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Mutual information

◮ For any (X ,Y ) ∼ P(x , y), the mutual information between
them is defined as

I (X ;Y ) = H(X ) − H(X |Y ) = E

[

log
P(X |Y )

P(X )

]

◮ Alternatively,

I (X ;Y ) = H(Y )− H(Y |Y )

or
I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )
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Conditional mutual information

◮ For any three-part ensemble (X ,Y ,Z ) ∼ P(x , y , z), the
mutual information between X and Y conditional on Z is
defined as

I (X ;Y |Z ) = H(X |Z )− H(X |YZ )

◮ Examples exist for both

I (X ;Y |Z ) < I (X ;Y ) and I (X ;Y |Z ) > I (X ;Y )
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Conditional mutual information: a special case

◮ If (X ,Y ,Z ) ∼ P(x)P(z)P(y |x , z) (i.e., if X and Z are
independent, then

I (X ;Y |Z ) = I (X ;Y ,Z )

◮ Proof.

I (X ;Y |Z ) = E

[

log
P(X ,Y |Z )

P(X |Z )P(Y |Z )

]

= E

[

log
P(X ,Y |Z )

P(X )P(Y |Z )

]

= E

[

log
P(X |Y ,Z )

P(X )

]

= I (X ;Y ,Z )
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Chain rule of mutual information

For any ensemble (XN ,Y ) ∼ P(x1, . . . , xN , y), we have

I (XN ;Y ) = I (X1;Y ) + I (X2;Y |X1) + · · ·+ I (XN ;Y |XN−1)

=
N
∑

i=1

I (Xi ;Y |X i−1)
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=
N
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If the components of XN are statistically independent, then the
chain rule can also be written as

I (XN ;Y ) = I (X1;Y ) + I (X2;Y ,X1) + · · ·+ I (XN ;Y ,XN−1)

=

N
∑

i=1

I (Xi ;Y ,X i−1)
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Discrete memoryless channels (DMC)

A DMC is a conditional probability assignment
{W (y |x) : x ∈ X , y ∈ Y} for two discrete alphabets X , Y.

WX Y

◮ We write W : X → Y or simply W to denote a DMC

◮ X is called the channel input alphabet

◮ Y is called the channel output alphabet

◮ W is called the channel transition probability matrix
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An example: Binary Symmetric Channel

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

BSC(ǫ)

◮ Input alphabet X = {0, 1}

◮ Output alphabet
Y = {0, 1}

◮ Transition probabilities
W (1|1) = W (0|0) = 1− ǫ,
W (0|1) = W (1|0) = ǫ
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Channel coding

Channel coding is an operation to achieve reliable communication
over an unreliable channel. It has two parts.

◮ An encoder that maps messages to codewords

◮ A decoder that maps channel outputs back to messages
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Block code

Given a channel W : X → Y, a block code with length N and rate
R is such that

◮ the message set consists of integers {1, . . . ,M = 2NR}

◮ the codeword for each message m is a sequence xN(m) of
length N over XN

◮ the decoder operates on channel output blocks yN over YN

and produces estimates m̂ of the transmitted message m.

◮ the performance is measured by the probability of frame
(block) error, also called frame error rate (FER), which is
defined as

Pe = Pr(m̂ 6= m)

where m is the transmitted message which is assumed
equiprobable over the message set and m̂ denotes the decoder
output.
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Channel capacity

The capacity C (W ) of a DMC W : X → Y is defined as the
maximum of I (X ;Y ) over all probability assignments of the form

PX ,Y (x , y) = Q(x)W (y |x)

where Q is an arbitrary probability assignment over the channel
input alphabet X , or briefly,

C (W ) = maxQ(x) I (X ;Y ).

1.1 Information theory review Channel coding theorem 18/18
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Lecture 2 – Channel polarization

◮ Objective: Explain channel polarization

◮ Topics:

◮ Channel codes as polarizers of information

◮ Low-complexity polarization by channel combining and splitting

◮ The main polarization theorem

◮ Rate of polarization
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The channel

Let W : X → Y be a binary-input discrete memoryless channel

WX Y

◮ input alphabet: X = {0, 1},

◮ output alphabet: Y,

◮ transition probabilities:

W (y |x), x ∈ X , y ∈ Y
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Channel capacity

Let W be an arbitrary binary-input DMC W : X = {0, 1} → Y.

◮ The capacity of W is defined as

C (W ) = maxQ I (X ;Y ), (X ,Y ) ∼ Q(x)W (y |x).

◮ The capacity of W with uniform inputs (also called symmetric

capacity) is defined as

I (W ) = I (X ;Y ), (X ,Y ) ∼ Qunif(x)W (y |x) =
1

2
W (y |x).

◮ We use base-2 logarithms so that Use base-2 logarithms:

0 ≤ I (W ) ≤ C (W ) ≤ 1
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W (y |x).

◮ We use base-2 logarithms so that Use base-2 logarithms:

0 ≤ I (W ) ≤ C (W ) ≤ 1
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Input-output symmetry for a binary-input channel

◮ A binary-input channel W : X = {0, 1} → Y is called
input-output symmetric if there exists a permutation π of the
output alphabet Y such that the following conditions are
satisfied:

◮ π−1 = π

◮ W (y |0) = W (π(y)|1) for all y ∈ Y.

◮ Fact: If W is input-output symmetric, then C (W ) = I (W ).

◮ Fact: I (W ) is the highest achievable rate by linear codes.
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Examples of input-output symmetric channels
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Assumption

In this presentation we will assume that the channel W under
consideration is (input-output) symmetric.

◮ For a symmetric W , the capacity is given by

I (W ) = H(X ) − H(X |Y ) = 1− H(X |Y ).

◮ The capacity of the BSC(ǫ):

I
[

BSC(ǫ)
]

= 1−H(ǫ)

◮ The capacity of the BEC(ǫ) is given by

I
[

BEC(ǫ)
]

= 1− ǫ
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The main idea

◮ Channel coding problem trivial for two types of channels

◮ Perfect: I (W ) = 1

◮ Useless: I (W ) = 0

◮ Transform ordinary W into such extreme channels
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The method: aggregate and redistribute symmetric

capacity
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Combining

◮ Begin with N copies of W ,
◮ use a 1-1 mapping

GN : {0, 1}N → {0, 1}N

◮ to create a vector channel

Wvec : U
N → Y N

W

W

W
XN

X2

X1

YN

Y2

Y1
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Conservation of symmetric capacity

Combining operation is lossless:
◮ Take U1, . . . ,UN i.i.d. unif. {0, 1}
◮ then, X1, . . . ,XN i.i.d. unif. {0, 1}
◮ and

I (Wvec) = I (UN ;Y N)

= I (XN ;Y N)

= NI (W )

W

W

W

GN

XN

X2

X1

YN

Y2

Y1

UN

U2

U1

Wvec
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Splitting

I (Wvec) = I (UN ;Y N)

Wvec

UN

Ui+1

Ui

Ui−1

U1

YN

Yi

Y1
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Splitting

I (Wvec) = I (UN ;Y N)

=

N
∑

i=1

I (Ui ;Y
N ,U i−1)

Wvec

UN

Ui+1

Ui

Ui−1

U1

YN

Yi

Y1
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Splitting

I (Wvec) = I (UN ;Y N)

=

N
∑

i=1

I (Ui ;Y
N ,U i−1)

Define bit-channels

Wi : Ui → (Y N ,U i−1)
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Polarization is commonplace

◮ Polarization is the rule not the
exception

◮ A random permutation

GN : {0, 1}N → {0, 1}N

is a good polarizer with high
probability

◮ Equivalent to Shannon’s random
coding approach
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U2
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Random polarizers: stepwise, isotropic
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Isotropy: any redistribution order is as good as any other.
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The complexity issue

◮ Random polarizers lack structure, too complex to implement

◮ Need a low-complexity polarizer

◮ May sacrifice stepwise, isotropic properties of random
polarizers in return for less complexity
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Basic module for a low-complexity scheme

Combine two copies of W

W

W
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X2

X1
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Basic module for a low-complexity scheme

Combine two copies of W

+

U2

U1

G2

W

W

Y2

Y1

X2

X1

and split to create two bit-channels

W1 : U1 → (Y1,Y2)

W2 : U2 → (Y1,Y2,U1)
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The first bit-channel W1

W1 : U1 → (Y1,Y2)

+

random U2

U1

W

W

Y2

Y1
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The first bit-channel W1

W1 : U1 → (Y1,Y2)

+

random U2

U1

W

W

Y2

Y1

I (W1) = I (U1;Y1,Y2)
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The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1
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The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

I (W2) = I (U2;Y1,Y2,U1)
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Symmetric capacity conserved but redistributed unevenly

+

U2

U1

W

W

Y2

Y1

X2

X1

◮ Conservation:

I (W1) + I (W2) = 2I (W )

◮ Extremization:

I (W1) ≤ I (W ) ≤ I (W2)

with equality iff I (W ) equals 0 or 1.
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Recursive extension

◮ The basic polarization operation can be denoted as:

(W ,W )
combine
−→ W2

split
−→ (W−,W+).

◮ The recursive extension will consist of the operations

(W−,W−) −→
(

W−
)

2
−→

(

W−−,W−+
)

(W+,W+) −→
(

W+
)

2
−→

(

W+−,W++
)

where we wrote W−− for
(

W−
)−

, etc.
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Characterization of the bad channel W−

The channel W− is related to W by

W−(y1, y2|u1) =
∑

u2

Qunif(u2)W2(y1, y2|u1, u2)

=
∑

u2

1

2
W (y1|u1 ⊕ u2)W (y2|u2)

+

random U2

U1

W

W

Y2

Y1

1.2 Channel polarization Recursive extension 21/37



Characterization of the good channel W+

The channel W+ is related to W by

W+(y1, y2, u1|u2) = PU1|U2
(u1|u2)W2(y1, y2|u1, u2)

=
1

2
W (y1|u1 ⊕ u2)W (y2|u2)

+

U2

U1

W

W

Y2

Y1
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Preservation of input-output symmetry

If W has input-output symmetry then W− and W+ each has
input-output symmetry.

Specifically, if W : X → Y has symmetry with permutation
π : Y → Y, then

◮ W− : X → Y2 is symmetric with

π−(y1, y2) = π(y1)π(y2)

◮ W+ : X → Y2 × X is symmetric with

π+(y1, y2, u1) = π(y1)π(y2)(u1 ⊕ 1)
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For the size-4 construction

+

W

W
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... duplicate the basic transform

+

+

W

W

W

W
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... obtain a pair of W− and W+ each

W+

W+

W−

W−
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... apply basic transform on each pair

+

+

W+

W+

W−

W−
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... decode in the indicated order

+

+

W+

W+

W−

W−

U4

U2

U3

U1
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... obtain the four new bit-channels

W++

W−+

W+−

W−−

U4

U2

U3

U1
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Overall size-4 construction
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+
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“Rewire” for standard-form size-4 construction
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+

+
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The first bit channel

+

W

W

+

+

+

+

W

W

W

W

U4

U2

U3

U1

Y4

Y2

Y3

Y1

V4

V2

V3

V1

X4

X2

X3

X1

Proposition

The first bit channel

W1 : U1 → Y 4
1

is equivalent to W−−.
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Proof that W1 = W−−

W1(y
4
1 |u1) =

∑

u4
2

P(y4
1 , u

4
2 |u1) =

∑

u4
2

P(u42 |u1)P(y
4
1 |u

4
1)

=
∑

u4
2

1

8
P(y4

1 |u1 ⊕ u2, u3 ⊕ u4, u2, u4)

=
∑

u2,v3,v4

1

8
P(y4

1 |u1 ⊕ u2, v3, u2, v4)

=
∑

u2,v3,v4

1

8
P(y1, y3|u1 ⊕ u2, v3)P(y2, y4|u2, v4)

=
∑

u2

1

2

(

∑

v3

1

2
P(y1, y3|u1 ⊕ u2, v3)

)(

∑

v4

1

2
P(y2, y4|u2, v4)

)

=
∑

u2

1

2
W−(y1, y3|u1 ⊕ u2)W

−(y2, y4|u2)

=
(

W−

)

−

(y4
1 |u1) = W−−(y4

1 |u1).
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The second bit channel

+

W

W

+

+

+

+

W

W

W

W

U4
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U3

U1

Y4

Y2

Y3

Y1

V4

V2

V3
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X3
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Proposition

The second bit channel

W2 : U2 → (Y 4
1 ,U1)

is equivalent to W−+.
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Proof that W2 = W−+

W2(y
4
1 , u1|u2) =

∑

u4
3

P(y4
1 , u1, u

4
3 |u2) =

∑

u4
3

1

8
P(y4

1 |u
4
1)

=
∑

u4
3

1

8
P(y4

1 |u1 ⊕ u2, u3 ⊕ u4, u2, u4)

=
∑

v4
3

1

8
P(y4

1 |u1 ⊕ u2, v3, u2, v4)

=
∑

v4
3

1

8
P(y1, y3|u1 ⊕ u2, v3)P(y2, y4|u2, v4)

=
1

2

(

∑

v3

1

2
P(y1, y3|u1 ⊕ u2, v3)

)(

∑

v4

1

2
P(y2, y4|u2, v4)

)

=
1

2
W−(y1, y3|u1 ⊕ u2)W

−(y2, y4|u2)

=
(

W−

)+
(y4

1 , u1|u2) = W−+(y4
1 , u1|u2).
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The third bit channel

+
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W
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Proposition

The third bit channel

W3 : U3 → (Y 4
1 ,U

2
1 )

is equivalent to W+−.
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Proof that W3 = W+−

W3(y
4
1 , u

2
1 |u3) =

∑

u4

P(y4
1 , u

2
1 , u4|u3) =

∑

u4

1

8
P(y4

1 |u
4
1)

=
∑

u4

1

8
P(y4

1 |u1 ⊕ u2, u3 ⊕ u4, u2, u4)

=
∑

v4

1

8
P(y4

1 |v1, v3, v2, v4)

=
∑

v4

1

2
P(y1, y3, v1|v3)P(y2, y4, v2|v4)

=
∑

v4

1

2
W+(y1, y3, v1|v3)W

+(y2, y4, v2|v4)

=
∑

u4

1

2
W+(y1, y3, v1|u3 ⊕ u4)W

+(y2, y4, v2|u4)

=
(

W+
)

−

(y4
1 , v

2
1 |u3) =

(

W+
)

−

(y4
1 , u

2
1 |u3)

= W+−(y4
1 , u

2
1 |u3).
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The fourth bit channel

+

W

W

+

+

+

+

W

W

W

W

U4

U2

U3

U1

Y4

Y2

Y3

Y1

V4

V2

V3

V1

X4

X2

X3

X1

Proposition

The fourth bit channel

W4 : U4 → (Y 4
1 ,U

3
1 )

is equivalent to W++.

1.2 Channel polarization Recursive extension 31/37



Proof that W4 = W++
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Size-8 construction
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Polarization of a BEC W

Polarization is easy to analyze when W is a BEC.

If W is a BEC(ǫ), then so are W−

and W+, with erasure probabili-
ties

ǫ−
∆
= 2ǫ− ǫ2

and
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∆
= ǫ2

respectively.
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0

?
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The first bit channel W−

The first bit channel W− is a BEC.

If W is a BEC(ǫ), then so are W−

and W+, with erasure probabili-
ties

ǫ−
∆
= 2ǫ− ǫ2

and
ǫ+

∆
= ǫ2

respectively.
1− ǫ−

1− ǫ−

ǫ−

ǫ−

1

0

1

0

?

W−

1.2 Channel polarization Recursive extension 34/37



The second bit channel W+

The second bit channel W+ is a BEC.

If W is a BEC(ǫ), then so are W−

and W+, with erasure probabili-
ties

ǫ−
∆
= 2ǫ− ǫ2

and
ǫ+

∆
= ǫ2

respectively.
1− ǫ+

1− ǫ+

ǫ+

ǫ+

1

0

1

0

?

W+

1.2 Channel polarization Recursive extension 34/37



Polarization for BEC(1
2
): N = 16
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Polarization for BEC(1
2
): N = 32
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Polarization for BEC(1
2
): N = 64
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Polarization for BEC(1
2
): N = 128
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Polarization for BEC(1
2
): N = 256

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bit channel index

C
ap

ac
ity

Capacity of bit channels

 

 

N=256

1.2 Channel polarization Recursive extension 35/37



Polarization for BEC(1
2
): N = 512
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Polarization for BEC(1
2
): N = 1024
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Polarization martingale for W = BEC(1
2
)

0

1

C(W )

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1

C(W )

C(W2)

C(W1)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22 3333

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22 3333 44444444

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22 3333 44444444 5555555555555555

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22 3333 44444444 5555555555555555 66666666666666666666666666666666

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22 3333 44444444 5555555555555555 66666666666666666666666666666666 7777777777777777777777777777777777777777777777777777777777777777

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Polarization martingale for W = BEC(1
2
)

0

1

1 22 3333 44444444 5555555555555555 66666666666666666666666666666666 7777777777777777777777777777777777777777777777777777777777777777 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888

C(W )

C(W2)

C(W1)

C(W++)

C(W−+)

C(W+−)

C(W−−)

1.2 Channel polarization Recursive extension 36/37



Theorem (Polarization, A. 2007)

The bit-channel capacities {I (Wi )} polarize: for any

δ ∈ (0, 1), as the construction size N grows

[

no. channels with I (Wi ) > 1− δ

N

]

−→ I (W )

and
[

no. channels with I (Wi ) < δ

N

]

−→ 1− I (W )

Theorem (Rate of polarization, A. and Telatar (2008))

Above theorem holds with δ = 2−N0.49
.

0

δ

1− δ

1
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Section 1.3: Polar coding

◮ Objective: Introduce polar coding

◮ Topics

◮ Code construction

◮ Encoding

◮ Decoding
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Polar code example: W = BEC(1
2
), N = 8, rate 1/2
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Encoding complexity

Theorem

Encoding complexity for polar coding is O(N logN).

Proof:

◮ Polar coding transform can be represented as a graph with
N[1 + log(N)] variables.

◮ The graph has (1 + log(N)) levels with N variables at each
level.

◮ Computation begins at the source level and can be carried out
level by level.

◮ Space complexity O(N), time complexity O(N logN).
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Encoding: an example
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Encoding: an example
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Successive Cancellation Decoding (SCD)

Theorem

The complexity of successive cancellation decoding for polar codes
is O(N logN).

Proof: Given below.
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SCD: Exploit the x = |a|a+ b| structure
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First phase: treat a as noise, decode (u1, u2, u3, u4)
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End of first phase
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û1

x8

x7

x6

x5

x4

x3

x2

x1

a4

a3

a2

a1

b̂4

b̂3

b̂2

b̂1

1.3 Polar coding Decoding 9/27



Second phase: Treat b̂ as known, decode (u5, u6, u7, u8)
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First phase in detail
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Decoding on W−
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b = |t|t + w|
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Decoding on W−−
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Decoding on W−−−

W−−−

u1 (y1, y2, . . . , y8)
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Decoding on W−−−

W−−−

u1 (y1, y2, . . . , y8)

Compute

L−−− ∆
=

W−−−(y1, . . . , y8 | u1 = 0)

W−−−(y1, . . . , y8 | u1 = 1)
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Decoding on W−−−

W−−−

u1 (y1, y2, . . . , y8)

Compute

L−−− ∆
=

W−−−(y1, . . . , y8 | u1 = 0)

W−−−(y1, . . . , y8 | u1 = 1)

and set

û1 =











u1 if u1 is frozen

0 else if L−−− > 0

1 else

1.3 Polar coding Decoding 20/27



Decoding on W−−+
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Decoding on W−−+

W−−+
u2 (y1, . . . , y8, û1)
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Decoding on W−−+

W−−+
u2 (y1, . . . , y8, û1)

Compute

L−−+ ∆
=

W−−+(y1, . . . , y8, û1 | u2 = 0)

W−−+(y1, . . . , y8, û1 | u2 = 1)

and set

û2 =











u2 if u2 is frozen

0 else if L−−+ > 0

1 else
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Complexity for successive cancelation decoding

◮ Let CN be the complexity of decoding a code of length N

◮ Decoding problem of size N for W reduced to two decoding
problems of size N/2 for W− and W+

◮ So
CN = 2CN/2 + kN

for some constant k

◮ This gives CN = O(N logN)
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Performance of polar codes

Probability of Error (A. and Telatar (2008)

For any binary-input symmetric channel W , the probability of frame
error for polar coding at rate R < I (W ) and using codes of length
N is bounded as

Pe(N,R) ≤ 2−N0.49

for sufficiently large N.

A more refined versions of this result has been given given by S. H.
Hassani, R. Mori, T. Tanaka, and R. L. Urbanke (2011).
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Construction complexity

Construction Complexity

Polar codes can be constructed in time O(Npoly(log(N))).

This result has been developed in a sequence of papers by

◮ R. Mori and T. Tanaka (2009)

◮ I. Tal and A. Vardy (2011)

◮ R. Pedarsani, S. H. Hassani, I. Tal, and E. Telatar (2011)
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Gaussian approximation

◮ Trifonov (2011) introduced a Gaussian approximation
technique for constructing polar codes

◮ Dai et al. (2015) studied various refinements of Gaussian
approximation for polar code construction

◮ These methods work extremely well although a satisfactory
explanation of why they work is still missing
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Example of Gaussian approximation

Polar code construction and performance estimation by Gaussian
approximation

0 1 2 3 4 5 6 7 8

E
s
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

Polar(65536,61440,8) - BPSK
Ultimate Shannon limit
BPSK Shannon limit
Threshold SNR at target FER
Gaussian approximation

Shannon BPSK limit

Shannon limit

Gap to ultimate capacity = 3.42
Gap to BPSK capacity = 1.06
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Polar coding summary

Summary

Given W , N = 2n, and R < I (W ), a polar code can be constructed
such that it has

◮ construction complexity O(Npoly(log(N))),
◮ encoding complexity ≈ N logN,
◮ successive-cancellation decoding complexity ≈ N logN,
◮ frame error probability Pe(N,R) = O(2−N0.49

).
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Section 1.4: Polar coding performance

◮ Objective: Discuss the performance of polar coding and
compare with state-of-the-art codes

◮ Topics

◮ Performance of polar codes under various decoding algorithms

◮ Comparisons with other codes

◮ Implementation complexity

◮ Concatenation schemes with polar codes
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Types of decoders for polar codes

◮ Maximum likelihood (ML)

◮ Successive cancellation (SC)

◮ Belief propagation (BP)

◮ List decoder

◮ List decoder with CRC

◮ Sphere-decoding
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Polar decoders as search heuristics

◮ Successive cancellation decoding: A depth-first search method
with complexity roughly N logN

◮ Sufficient to achieve channel capacity

◮ Not powerful enough to challenge LDPC and turbo codes in
short to moderate lengths

◮ List decoding: A breadth-first search algorithm with limited
branching (known as “beam search” in AI)

◮ Introduced by Tal and Vardy (2011) based on a similar scheme
for RM codes by Dumer and Shabunov (2000, 2002, 2006)

◮ Sufficient to challenge the state-of-the-art at short to
moderate lengths

◮ Complexity grows as O(LN logN) for a list size L

◮ Sphere-decoding: “British Museum” search with branch and
bound
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List decoder for polar codes

◮ First produce L candidate decisions

◮ Pick the most likely word from the list

◮ In the CRC version, first discard the candidates that do not
satisfy the CRC

◮ Complexity O(LN logN)
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Polar code performance

Successive cancellation decoder
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Polar code performance

Improvement by list-decoding: List-32
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Polar code performance

Improvement by list-decoding: List-1024
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Polar code performance

Comparison with ML bound
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Polar code performance

Introducing CRC improves performance at high SNR
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Polar code performance

Comparison with dispersion bound
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Polar codes vs WiMAX Turbo Codes

Comparable performance obtained with List-32 + CRC
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Polar codes vs WiMAX LDPC Codes

Better performance obtained with List-32 + CRC
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Polar Codes vs DVB-S2 LDPC Codes
LDPC (16200,13320), Polar (16384,13421). Rates = 0.82. BPSK-AWGN
channel.
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Polar codes vs IEEE 802.11ad LDPC codes

Park (2014) gives the following performance comparison.

(Park’s result on LDPC conflicts
with reference IEEE
802.11-10/0432r2. Whether
there exists an error floor as
shown needs to be confirmed
independently.)

Source: Youn Sung Park, “Energy-Effcient Decoders of Near-Capacity Channel

Codes,” PhD Dissertation, The University of Michigan, 2014.
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Summary of performance comparisons

◮ Successive cancellation decoder is simplest but inherently
sequential which limits throughput

◮ BP decoder improves throughput and with careful design
performance

◮ List decoder but significantly improves performance at low
SNR

◮ Adding CRC to list decoding improves performance
significantly at high SNR with little extra complexity

◮ Overall, polar codes under list-32 decoding with CRC offer
performance comparable to codes used in present wireless
standards
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Implementation performance metrics

Implementation performance is measured by

◮ Chip area (mm2)

◮ Throughput (Mbits/sec)

◮ Energy efficiency (nJ/bit)

◮ Hardware efficiency (Mb/s/mm2)
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Successive cancellation decoder comparisons

[1] [2]1 [3]2

Decoder Type SC SC BP

Block Length 1024 1024 1024

Technology 90 nm 65 nm 65 nm

Area [mm2 ] 3.213 0.68 1.476

Voltage [V] 1.0 1.2 1.0 0.475

Frequency [MHz] 2.79 1010 300 50

Power [mW] 32.75 - 477.5 18.6

Throughput [Mb/s] 2860 497 4676 779.3

Engy.-per-bit [pJ/b] 11.45 - 102.1 23.8

Hard. Eff. [Mb/s/mm2 ] 890 730 3168 528

[1] O. Dizdar and E. Arıkan, arXiv:1412.3829, 2014.

[2] Y. Fan and C.-Y. Tsui, “An efficient partial-sum network architecture for semi-parallel polar codes decoder
implementation,” Signal Processing, IEEE Transactions on, vol. 62, no. 12, pp. 3165-3179, June 2014.

[3] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency SC polar decoder architectures,” arxiv.org, 2011.

1Throughput 730 Mb/s calculated by technology conversion metrics
2Performance at 4 dB SNR with average no of iterations 6.57
1.4 Performance Implementation performance 18/20



BP decoder comparisons
Property Unit [1] [2] [3] [3] [4] [4]

Decoding type
and Scheduling

SCD with
folded
HPPSN

Specialized
SC

BP Circular
Unidirec-
tional

BP Circular
Unidirec-
tional

BP All-ON,
Fully

Parallel

BP Circular
Unidirec-
tional,

Reduced
Complexity

Block length 1024 16384 1024 1024 1024 1024
Rate 0.9 0.5 0.5 0.5 0.5

Technology CMOS
Altera

Stratix 4
CMOS CMOS CMOS CMOS

Process nm 65 40 65 65 45 45

Core area mm2 0.068 1.48 1.48 12.46 1.65
Supply V 1.2 1.35 1 0.475 1 1
Frequency MHz 1010 106 300 50 606 555
Power mW 477.5 18.6 2056.5 328.4
Iterations 1 1 15 15 15 15
Throughput∗ Mb/s 497 1091 1024 171 2068 1960
Energy
efficiency

pJ/b 102.1 23.8 110.5 19.3

Energy eff. per
iter.

pJ/b/iter 15.54 3.63 7.36 1.28

Area efficiency Mb/s/mm2 7306.78 693.77 99.80 166.01 1187.71

Normalized to 45 nm according to ITRS roadmap

Throughput∗ Mb/s 613.4 1263.8 210.6 2068 1960
Energy
efficiency

pJ/b 149.6 34.9 110.5 19.3

Area efficiency Mb/s/mm2 18036.5 1250.21 179.85 166.01 1187.71

∗ Throughput obtained by disabling the BP early-stopping rules for fair comparison.

[1] Y.-Z. Fan and C.-Y. Tsui, “An efficient partial-sum network architecture for semi-parallel polar codes decoder implementation,” IEEE
Transactions on Signal Processing, vol. 62, no. 12, pp. 3165–3179, June 2014.

[2] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm and implementation,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 5, pp. 946–957, May 2014.

[3] Y. S. Park, “Energy-efficient decoders of near-capacity channel codes,” in http://deepblue.lib.umich.edu/handle/2027.42/108731, 23
October 2014 PhD.

[4] A. D. G. Biroli, G. Masera, E. Arıkan, “High-throughput belief propagation decoder architectures for polar codes,” submitted 2015.
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Concatenation

Method Ref

Block turbo coding with polar constituents AKMOP (2009)
Generalized concatenated coding with polar inner AM (2009)
Reed-Solomon outer, polar inner BJE (2010)
Polar outer, block inner SH (2010)
Polar outer, LDPC inner EP (ISIT’2011)

AKMOP: A., Kim, Markarian, Özgür, Poyraz
GCC: A., Markarian
BJE: Bakshi, Jaggi, and Effros
SH: Seidl and Huber
EP: Eslami and Pishro-Nik
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The AWGN Channel

The AWGN channel is a continuous-time channel

Y (t) = X (t) + N(t)

such that the input X (t) is a random process bandlimited to W

subject to a power constraint X 2(t) ≤ P , and N(t) is white
Gaussian noise with power spectral density N0/2.
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Capacity

Shannon’s formula gives the capacity of the AWGN channel as

C[b/s] = W log2(1 + P/WN0) (bits/s)
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Discrete Time Model

An AWGN channel of bandwidth W gives rise to 2W independent
discrete time channels per second with input-output mapping

Y = X + N

◮ X is a random variable with mean 0 and energy
E [X 2] ≤ P/2W

◮ N is Gaussian noise with 0-mean and energy N0/2.

◮ It is customary to normalize the signal energies to joules per 2
dimensions and define

Es = P/W Joules/2D

as signal energy (per two dimensions).

◮ One defines the the signal-to-noise ratio as Es/N0.
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Capacity

The capacity of the discrete-time AWGN channel is given by

C =
1

2
log2(1 + Es/N0), (bits/D),

achieved by i.i.d. Gaussian inputs X ∼ N(0,Es/2) per dimension.
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Signal Design Problem

Now, we need a digital interface instead of real-valued inputs.

◮ Select a subset A ⊂ Rn as the “signal set” or “modulation
alphabet”.

◮ Finding a signal set with good Euclidean distance properties
and other desirable features is the “signal design” problem.

◮ Typically, the dimension n is 1 or 2, but can be higher.
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Separation of coding and modulation

◮ Each constellation A has a capacity CA (bits/D) which is a
function of Es/N0.

◮ The spectral efficiency ρ (bits/D) has to satisfy

ρ < CA(Es/N0)

at the operating Es/N0.

◮ The spectral efficiency is the product of two terms

ρ = R ×
log2(|A|)

dim(A)

where R (dimensionless) is the rate of the FEC.

◮ For a given ρ, there any many choices w.r.t. R and A.
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M-ary Pulse Amplitude Modulation

A 1-D signal set with A = {±α,±3α, . . . ,±(M − 1)}.

◮ Average energy: Es = 2α2(M2 − 1)/3 (J/2D)

◮ Consider the capacity, cutoff rate
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Capacity of M-PAM
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M-PAM is good enough from a capacity viewpoint.
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Conventional approach

Given a target spectral efficiency ρ and a target error rate Pe at a
specific Es/No ,

◮ select M large enough so that M-PAM capacity is close
enough to the Shannon capacity at the given Es/No

◮ apply coding external to modulation to achieve the desired Pe
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◮ select M large enough so that M-PAM capacity is close
enough to the Shannon capacity at the given Es/No

◮ apply coding external to modulation to achieve the desired Pe

Such separation of coding and modulation was first challenged
successfully by Ungerboeck (1981).

However, with the advent of powerful codes at affordable
complexity, there is a return to the conventional design
methodology.
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How does it work in practice?

Es/No in dB
4 5 6 7 8 9 10 11 12 13

F
E

R

10-5

10-4

10-3

10-2

10-1

100
WiMAX CTC Codes: Fixed Spectral Efficiency, Different Modulation 

CTC(576,432), 16-QAM
CTC(864,432), 64-QAM

Gap to Shannon
about 3 dB at FER 1E-3

It takes 144 symbols to carry
the payload in both cases.

Spectral efficiency = 3 b/2D
for both cases.

Provides a coding gain of 4.8 dB
over uncoded transmission

Theory and practice don’t match here!
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Why change modulation instead of just the code rate?

◮ Suppose we fix the modulation as 64-QAM and wish to
deliver data at spectral efficiencies 1, 2, 3, 4, 5 b/2D.

◮ We would need a coding scheme that works well at rates 1/6,
1/3, 1/2, 2/3, 5/6.

◮ The inability of delivering high quality coding over a wide
range of rates forces one to change the order of modulation.

◮ The difficulty here is practical: it is a challenge to have a
coding scheme that works well over all rates from 0 to 1.
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Alternative: Fixed code, variable modulation

Es/No in dB
0 2 4 6 8 10 12 14 16 18

F
E

R

10-5

10-4

10-3

10-2

10-1

100
WiMAX: Same rate-3/4 code with different order QAM modulations

CTC(576,432), 4-QAM
CTC(576,432), 16-QAM
CTC(576,432), 64-QAM

Gap to Shannon limit widens slightly with increasing 
modulation order but in general good agreement.

spec. eff. 4.5spec. eff. 3
spec. eff. 1.5
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Polar coding and modulation

Polar codes can be applied to modulation in at least three different
ways.

◮ Direct polarization

◮ Multi-level techniques

◮ Polar lattices

◮ BICM
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Direct Method

◮ Idea: Given a system with q-ary modulation, treat it as an
ordinary q-ary input memoryless channel and apply a suitable
polarization transform.

◮ Theory of q-ary polarization exists:

◮ Şasoğlu, E., E. Telatar, and E. Arıkan. “Polarization for
arbitrary discrete memoryless channels.” IEEE ITW 2009.

◮ Sahebi, A. G. and S. S. Pradhan, “Multilevel polarization of
polar codes over arbitrary discrete memoryless channels.” IEEE
Allerton, 2011.

◮ Park, W.-C. and A. Barg. “Polar codes for q-ary channels,”
IEEE Trans. Inform. Theory, 2013.

◮ ...

◮ Deserves to be studied further.
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polar codes over arbitrary discrete memoryless channels.” IEEE
Allerton, 2011.

◮ Park, W.-C. and A. Barg. “Polar codes for q-ary channels,”
IEEE Trans. Inform. Theory, 2013.

◮ ...

◮ Deserves to be studied further.
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Multi-Level Modulation (Imai and Hirakawa, 1977)

◮ Represent (if possible) each channel input symbol as a vector
X = (X1,X2, . . . ,Xr ); then the capacity can be written as a
sum of capacities of smaller channels by the chain rule:

I (X ;Y ) = I (X1,X2, . . . ,Xr ;Y )

=

r∑

i=1

I (Xi ;Y |X1, . . . ,Xi−1).

◮ This splits the original channel into r parallel channels, which
are encoded independently and decoded using successive
cancellation decoding.

◮ Polarization is a natural complement to MLM.
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Polar coding with multi-level modulation

Already a well-studied subject:

◮ Arıkan, E., “Polar Coding,” Plenary Talk, ISIT 2011.

◮ Seidl, M., Schenk, A., Stierstorfer, C., and Huber, J. B.
“Polar-coded modulation,” IEEE Trans. Comm. 2013.

◮ Seidl, M., Schenk, A., Stierstorfer, C., and Huber, J. B.
“Multilevel polar-coded modulation‘,” IEEE ISIT 2013

◮ Ionita, Corina, et al. ”On the design of binary polar codes for
high-order modulation.” IEEE GLOBECOM, 2014.

◮ Beygi, L., Agrell, E., Kahn, J. M., and Karlsson, M., “Coded
modulation for fiber-optic networks,” IEEE Sig. Proc. Mag.,
2014.

◮ ...
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Example: 8-PAM as 3 bit channels

◮ PAM signals selected by three bits (b1, b2, b3)

◮ Three layers of binary channels created

◮ Each layer encoded independently

◮ Layers decoded in the order b3, b2, b1

Bit b1 0 1

-4 42-PAM
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Polarization across layers by natural labeling
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Most coding work needs to be done at the least significant bits.
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Performance comparison: Polar vs. Turbo

Turbo code
◮ WiMAX CTC
◮ Duobinary, memory 3
◮ QAM over AWGN channel
◮ Gray mapping
◮ BICM
◮ Simulator: “Coded

Modulation Library”

Polar code
◮ Standard construction
◮ Successive cancellation

decoding
◮ QAM over AWGN channel
◮ Natural mapping
◮ Multi-level PAM
◮ PAM over AWGN channel
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Multi-layering jump-starts polarization

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

SNR (dB)

C
ap

ac
ity

 (
bi

ts
)

 

 

Layer 1 capacity
Layer 2 capacity
Layer 3 capacity
Sum of three layers
Shannon limit

2.1 Polar coding for bandlimited channels Performance comparisons 23/32



4-QAM, Rate 1/2
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16-QAM, Rate 3/4
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64-QAM, Rate 5/6
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Complexity comparison: 64-QAM, Rate 5/6

Average decoding time in milliseconds per codeword (ms/cw)

Eb/N0 CTC(576,432) Polar(768,640) Polar(384,320)

10 dB 6.23 0.92 0.48
11 dB 1.83 1.01 0.53

Both decoders implemented as MATLAB mex functions. Polar decoder is a successive

cancellation decoder. CTC decoder is a public domain decoder (CML). Profiling done

by MATLAB Profiler. Iteration limit for CTC decoder was 10; average no of iterations

was 10 at 10 dB and 3.3 at 11 dB. CTC decoder used a linear approximation to

log-MAP while polar decoder used exact log-MAP.
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Eb/N0 CTC(576,432) Polar(768,640) Polar(384,320)

10 dB 6.23 0.92 0.48
11 dB 1.83 1.01 0.53

Polar codes show a complexity advantage against CTC codes.
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Lattices and polar coding

Yan, Cong, and Liu explored the connection between lattices and
polar coding.

◮ Yan, Yanfei, and L. Cong, “A construction of lattices from
polar codes.” IEEE 2012 ITW.

◮ Yan, Yanfei, Ling Liu, Cong Ling, and Xiaofu Wu.
“Construction of capacity-achieving lattice codes: Polar
lattices.” arXiv preprint arXiv:1411.0187 (2014)
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Lattices and polar coding

Yan et al used the Barnes-Wall lattice contructions such as

BW16 = RM(1, 4) + 2RM(3, 4) + 4(Z16)

as a template for constructing polar lattices of the type

P16 = P(1, 4) + 2P(3, 4) + 4(Z16)

and demonstrated by simulations that polar lattices perform better.
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BICM

BICM [Zehavi, 1991], [Caire, Taricco, Biglieri, 1998] is the
dominant technique in modern wireless standards such as LTE.
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BICM

BICM [Zehavi, 1991], [Caire, Taricco, Biglieri, 1998] is the
dominant technique in modern wireless standards such as LTE.

As in MLM, BICM splits the channel input symbols into a vector
X = (X1,X2, . . . ,Xr ) but strives to do so such that

I (X ;Y ) = I (X1,X2, . . . ,Xr ;Y )

=

r∑

i=1

I (Xi ;Y |X1, . . . ,Xi−1)

≈
r∑

i=1

I (Xi ;Y ).
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BICM vs Multi Level Modulation

Why has BICM won over MLM and other techniques in practice?

◮ MLM is provably capacity-achieving; BICM is suboptimal but
the rate penalty is tolerable.

◮ MLM has to do delicate rate-matching at individual layers,
which is difficult with turbo and LDPC codes.

◮ BICM is well-matched to iterative decoding methods used
with turbo and LDPC codes.

◮ MLM suffers extra latency due to multi-stage decoding
(mitigated in part by the lack of need for protecting the upper
layers by long codes)

◮ With MLM, the overall code is split into shorter codes which
weakens performance (one may mix and match the block
lengths of each layer to alleviate this problem).
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BICM and Polar Coding

This subject, too, has been studied in connection with polar codes.

◮ Mahdavifar, H. and El-Khamy, M. and Lee, J. and Kang, I.,
“Polar Coding for Bit-Interleaved Coded Modulation,” IEEE
Trans. Veh. Tech., 2015.

◮ Afser, H., N. Tirpan, H. Delic, and M. Koca, “Bit-interleaved
polar-coded modulation,” Proc. IEEE WCNC, 2014.

◮ Chen, Kai, Kai Niu, and Jia-Ru Lin. “An efficient design of
bit-interleaved polar coded modulation.” IEEE PIMRC 2013.

◮ ...
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2.1 Polar coding for bandlimited channels

2.2 Polar codes for future applications
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2.2 Polar codes for future applications

◮ Objective: Review the literature on polar coding for selected
applications

◮ Topics

◮ 60 GHz wireless

◮ Optical access networks

◮ 5G

◮ Ultra reliable low latency communications (URLLC)

◮ Machine type communications (MTC)

◮ 5G channel coding at Gb/s throughput
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Millimeter Wave 60 GHz Communications

◮ 7 GHz of bandwidth available (57-64 GHz allocated in the US)

◮ Free-space path loss (4πd/λ)2 is high at λ = 5 mm but
compensated by large antenna arrays.

◮ Propagation range limited severely by O2 absorption. Cells
confined to rooms.
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Millimeter Wave 60 GHz Communications

◮ Recent IEEE 802.11.ad Wi-Fi standard operates at 60 GHz
ISM band and uses an LDPC code with block length 672 bits,
rates 1/2, 5/8, 3/4, 13/16.

◮ Two papers compare polar codes that study polar coding for
60 GHz applications:

◮ Z. Wei, B. Li, and C. Zhao, “On the polar code for the 60 GHz
millimeter-wave systems,” EURASIP, JWCN, 2015.

◮ Youn Sung Park, “Energy-Effcient Decoders of Near-Capacity
Channel Codes,” PhD Dissertation, The University of
Michigan, 2014.
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Millimeter Wave 60 GHz Communications

Wei et al compare polar codes with the LDPC codes used in the
standard using a nonlinear channel model

Wei, B. Li, and C. Zhao, “On the polar code for the 60 GHz millimeter-wave

systems,” EURASIP, JWCN, 2015.
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Polar codes vs IEEE 802.11ad LDPC codes

Park (2014) gives the following performance comparison.

(Park’s result on LDPC conflicts
with reference IEEE
802.11-10/0432r2. Whether
there exists an error floor as
shown needs to be confirmed
independently.)

Source: Youn Sung Park, “Energy-Effcient Decoders of Near-Capacity Channel

Codes,” PhD Dissertation, The University of Michigan, 2014.
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Polar codes vs IEEE 802.11ad LDPC codes

In terms of implementation complexity and throughput, Park
(2014) gives the following figures.

Source: Youn Sung Park, “Energy-Efficient Decoders of Near-Capacity Channel

Codes,” PhD Dissertation, The University of Michigan, 2014.
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Optical access/transport network

◮ 10-100 Gb/s at 1E-12 BER

◮ OTU4 (100 Gb/s Ethernet) and ITU G.975.1 standards use
Reed-Solomon (RS) codes

◮ The challenge is to provide high reliability at low hardware
complexity.
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Polar codes for optical access/transport

There have been some studies of polar codes fore optical
transmission.

◮ A. Eslami and H. Pishro-Nik, “A practical approach to polar
codes,” ISIT 2011. (Considers a polar-LDPC concatenated
code and compares it with OTU4 RS codes.)

◮ Z. Wu and B. Lankl, “Polar codes for low-complexity forward
error correction in optical access networks,” ITG-Fachbericht
248: Photonische Netze - 05, 06.05.2014, Leipzig. (Compares
polar codes with G.975.1 RS codes.)

◮ T. Ahmad, “Polar codes for optical communications”, MS
Thesis, Bilkent University, May 2016.

◮ L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Coded
modulation for fiber-optic networks,” IEEE Sig. Proc. Mag.,
Mar. 2014. (Coded modulation for optical transport.)
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Comparison of polar codes with G.975.1 RS codes

Source: Z. Wu and B. Lankl, above reference.
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Comparison of polar codes with all codes in G.975.1

In a recent MS thesis, T. Ahmad compared polar codes with
G.975.1 codes.
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Comparison of polar codes with all codes in G.975.1

The conclusion of Ahmad (2016) is that polar codes perform
better than all G.975.1 FEC schemes.

FEC Code BERin NCG (dB) CG (dB) Q (dB) Eb
No

(dB)

RS (255, 239) 1.82E-04 5.62 5.90 11.04 8.31
LDPC super FEC code 1.33E-03 7.10 7.39 9.56 6.83

RS (2720, 2550) 1.26E-03 7.06 7.34 9.60 6.87
Conc. RS/CSOC code(24.5%OH) 5.80E-03 7.95 8.90 8.04 5.31

Concatenated BCH code 3.30E-03 7.98 8.26 8.68 5.95
Conc. RS/BCH code 2.26E-03 7.63 7.91 9.06 6.34

Conc. RS/Product code 4.60E-03 8.40 8.68 8.30 5.57

Polar (2040, 1912) 2.81E-04 5.91 6.19 10.75 8.02
Polar (32640, 30592) 2.60E-03 7.74 8.02 8.92 6.20

Polar (130560, 122368) 4.61E-03 8.35 8.63 8.31 5.58
Polar (261120, 244736) 5.72E-03 8.60 8.89 8.06 5.33
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Comparison of polar codes with 3rd Generation FEC for

optical transport

Ahmad’s study finds that polar codes fall short of beating 3G FEC
proposed for optical transport.

FEC code NCG (dB) Comments
Polar (32640, 27200) 10.07 Ahmad (2016)

Polar (130560, 108800) 10.79 Ahmad (2016)
Polar (261120, 217600) 11.07 Ahmad (2016)
Polar (522240, 435200) 11.30 Ahmad (2016)
CC-LDPC (10032, 4, 24) 11.50 3G FEC, 12 iterations
QC-LDPC (18360, 15300) 11.30 3G FEC, 12 iterations
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Coded modulation for fiber-optic communication

Main reference for this part is the paper:

L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Coded
modulation for fiber-optic networks,” IEEE Sig. Proc. Mag., Mar.
2014.

◮ Data rates 100 Gb/s and beyond

◮ BER 1E-15

◮ Channel model: Self-interfering nonlinear distortion, additive
Gaussian noise
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Coded modulation: BICM approach

Split the 2q ’ary channel into q bit channels and decode them
independently.

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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Coded modulation: Multi-level approach

Split the 2q ’ary channel into q bit channels and decode them
successively.

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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Coded modulation: BICM approach

Split the 2q ’ary channel into q bit channels and decode them
independently.

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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Coded modulation: TCM approach

Split the 2q ’ary channels into two classes and encode the low-order
channels using a trellis hand-crafted for large Euclidean distance
and ML-decoded

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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Coded modulation: q’ary coding

No splitting; 2q ’ary processing applied; too complex

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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Coded modulation: Polar approach

Split the 2q ’ary channel into “good”, “mediocre”, and “bad” bit
channels; apply coding only to mediocre channels

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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Coded modulation: performance comparison

Figure source: Beygi, L., et al, “Coded modulation for fiber-optic networks,” IEEE

Sig. Proc. Mag., Mar. 2014.
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What is 5G?

Andrews et al.1 answer this question as follows.

◮ It willl not be an incremental advance over 4G.

◮ Will be characterized by

◮ Very high frequencies and massive bandwidths with very large
no of antennas

◮ Extreme base station and device connectivity

◮ Universal connectivity between 5G new air interfaces, LTE,
WiFi, etc.

1Andrews et al., “What will 5G be?” JSAC 2014
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Technical requirements for 5G

Again, according to Andrews et al., 5G will have to meet the
following requirements (not all at once):

◮ Data rates compared to 4G

◮ Aggregate: 1000 times more capacity/km2 compared to 4G

◮ Cell-edge: 100 - 1000 Mb/s/user with 95% guarantee

◮ Peak: 10s of Gb/s/user

◮ Round-trip latency: Some applications (tactile Internet,
two-way gaming, virtual reality) will require 1 ms latency
compared to 10-15 ms that 4G can provide

◮ Energy and cost: Link energy consumption should remain the
same as data rates increase, meaning that a 100-times more
energy-efficient link is required

◮ No of devices: 10,000 more low-rate devices for M2M
communications, along with traditional high-rate users
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Key technology ingredients for 5G

It is generally agreed that the 1000x aggregate data rate increase
will be possible through a combination of three types of gains.

◮ Densification of network access nodes

◮ Increased bandwidth (move to mm waves)

◮ Increased spectral efficiency through new communication
techniques:

◮ advanced MIMO

◮ improved multi-access

◮ better interference management

◮ improved coding and modulation schemes
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Summary

◮ With list-decoding and CRC polar codes deliver comparable
performance to LDPC and Turbo codes used in present
wireless standards

◮ SoA in coding is already close to theoretical limits for
low-order modulation, leaving little margin for improvement

◮ The biggest asset of polar coding compared to SoA is its
universal, flexible, and versatile nature

◮ Universal: the same hardware can be used with different code
lengths, rates, channels

◮ Flexible: the code rate can be adjusted readily to any number
between 0 and 1

◮ Versatile: can be used in multi-terminal coding scenarios
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Outlook

◮ There is need for new FEC techniques as we move to 5G
scenarios that call for very high spectral efficiencies and
advanced multi-user and multi-antenna techniques

◮ Extensive research is needed before any FEC method can be
declared a winner for 5G scenarios; the field is wide open for
introducing new techniques

◮ It is likely that the winner will emerge based on a trade-off
between the overall communication performance under a
diverse set of application scenarios and a number of
implementation metrics such as complexity and energy
efficiency
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Tree coding and sequential decoding (SD)

I Consider a tree code (of
rate 1/2)

I A path is chosen and
transmitted

I Given the channel output,
search the tree for the
correct (transmitted) path

I The tree structure turns
the ML decoding problem
into a tree search problem

I A depth-first search
algorithm exists called
sequential decoding (SD)
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Search metric

SD uses a “metric” to distinguish
the correct path from the
incorrect ones

Fano’s metric:

Γ(yn, xn) = log
P(yn|xn)

P(yn)
− nR

path length n
candidate path xn

received sequence yn

code rate R
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History
I Tree codes were introduced by Elias (1955) with the aim of

reducing the complexity of ML decoding (the tree structure
makes it possible to use search heuristics for ML decoding)

I Sequential decoding was introduced by Wozencraft (1957) as
part of his doctoral thesis

I Fano (1963) simplified the search algorithm and introduced
the above metric
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Drift properties of the metric

I On the correct path, the expectation of the metric per
channel symbol is∑

y ,x

p(x , y)

[
log

p(y |x)

P(y)
− R

]
= I (X ;Y )− R.

I On any incorrect path, the expectation is∑
x ,y

p(x)p(y)

[
log

p(y |x)

p(y)
− R

]
≤ −R

I A properly designed SD scheme – given enough time –
identifies the correct path with probability one at any rate
R < I (X ;Y ).
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Computation problem in sequential decoding

I Computation in sequential decoding is a random quantity,
depending on the code rate R and the noise realization

I Bursts of noise create barriers for the depth-first search
algorithm, necessitating excessive backtracking in the search

I Still, the average computation per decoded digit in sequential
decoding can be kept bounded provided the code rate R is
below the cutoff rate

R0
∆
= − log

∑
y

(∑
x

Q(x)
√
W (y |x)

)2

I So, SD solves the coding problem for rates below R0

I Indeed, SD was the method of choice in space
communications, albeit briefly

Sequential decoding and the cutoff rate 6 / 73



Computation problem in sequential decoding

I Computation in sequential decoding is a random quantity,
depending on the code rate R and the noise realization

I Bursts of noise create barriers for the depth-first search
algorithm, necessitating excessive backtracking in the search

I Still, the average computation per decoded digit in sequential
decoding can be kept bounded provided the code rate R is
below the cutoff rate

R0
∆
= − log

∑
y

(∑
x

Q(x)
√
W (y |x)

)2

I So, SD solves the coding problem for rates below R0

I Indeed, SD was the method of choice in space
communications, albeit briefly

Sequential decoding and the cutoff rate 6 / 73



Computation problem in sequential decoding

I Computation in sequential decoding is a random quantity,
depending on the code rate R and the noise realization

I Bursts of noise create barriers for the depth-first search
algorithm, necessitating excessive backtracking in the search

I Still, the average computation per decoded digit in sequential
decoding can be kept bounded provided the code rate R is
below the cutoff rate

R0
∆
= − log

∑
y

(∑
x

Q(x)
√
W (y |x)

)2

I So, SD solves the coding problem for rates below R0

I Indeed, SD was the method of choice in space
communications, albeit briefly

Sequential decoding and the cutoff rate 6 / 73



Computation problem in sequential decoding

I Computation in sequential decoding is a random quantity,
depending on the code rate R and the noise realization

I Bursts of noise create barriers for the depth-first search
algorithm, necessitating excessive backtracking in the search

I Still, the average computation per decoded digit in sequential
decoding can be kept bounded provided the code rate R is
below the cutoff rate

R0
∆
= − log

∑
y

(∑
x

Q(x)
√
W (y |x)

)2

I So, SD solves the coding problem for rates below R0

I Indeed, SD was the method of choice in space
communications, albeit briefly

Sequential decoding and the cutoff rate 6 / 73



Computation problem in sequential decoding

I Computation in sequential decoding is a random quantity,
depending on the code rate R and the noise realization

I Bursts of noise create barriers for the depth-first search
algorithm, necessitating excessive backtracking in the search

I Still, the average computation per decoded digit in sequential
decoding can be kept bounded provided the code rate R is
below the cutoff rate

R0
∆
= − log

∑
y

(∑
x

Q(x)
√
W (y |x)

)2

I So, SD solves the coding problem for rates below R0

I Indeed, SD was the method of choice in space
communications, albeit briefly

Sequential decoding and the cutoff rate 6 / 73



References on complexity of sequential decoding

I Achievability: Wozencraft (1957), Reiffen (1962), Fano
(1963), Stiglitz and Yudkin (1964)

I Converse: Jacobs and Berlekamp (1967)

I Refinements: Wozencraft and Jacobs (1965), Savage (1966),
Gallager (1968), Jelinek (1968), Forney (1974), Arıkan
(1986), Arıkan (1994)
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A computational model for sequential decoding

I SD visits nodes at level N in a certain order

I No “look-ahead” assumption: SD forgets what it saw beyond
level N upon backtracking

I Complexity measure GN : The number of nodes searched
(visited) at level N until the correct node is visited for the first
time
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A bound of computational complexity

I Let R be a fixed code rate.

I There exist tree codes of rate R such that

E [GN ] ≤ 1 + 2−N(R0−R).

I Conversely, for any tree code of rate R,

E [GN ] & 1 + 2−N(R0−R)
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The Guessing Problem

I Alice draws a sample of a random variable X ∼ P.

I Bob wishes to determine X by asking questions of the form

“Is X equal to x ?”

which are answered truthfully by Alice.

I Bob’s goal is to minimize the expected number of questions
until he gets a YES answer.
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Guessing with Side Information

I Alice samples (X ,Y ) ∼ P(x , y).

I Bob observes Y and is to determine X by asking the same
type of questions

“Is X equal to x ?”

I The goal is to minimize the expected number of quesses.
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Optimal guessing strategies

I Let G be the number of guesses to determine X .

I The expected no of guesses is given by

E[G ] =
∑
x∈X

P(x)G (x)

I A guessing strategy minimizes E[G ] if

P(x) > P(x ′) =⇒ G (x) < G (x ′).
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Upper bound on guessing effort

For any optimal guessing function

E[G ∗(X )] ≤
[∑

x

√
P(x)

]2

Proof.

G ∗(x) ≤
∑
all x ′

√
P(x ′)/P(x) =

M∑
i=1

ipG (i)

E[G ∗(X )] ≤
∑
x

P(x)
∑
x ′

√
P(x ′)/P(x) =

[∑
x

√
P(x)

]2

.
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Lower bound on guessing effort

For any guessing function for a target r.v. X with M possible
values,

E[G (X )] ≥ (1 + lnM)−1

[∑
x

√
P(x)

]2

For the proof we use the following variant of Hölder’s inequality.
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Lemma

Let ai , pi be positive numbers.

∑
i

aipi ≥
[∑

i

a−1
i

]−1 [∑
i

√
pi

]2

.

Proof. Let λ = 1/2 and put Ai = a−1
i , Bi = aλi p

λ
i , in Hölder’s

inequality

∑
i

AiBi ≤
[∑

i

A
1/(1−λ)
i

]1−λ [∑
i

B
1/λ
i

]λ
.
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Proof of Lower Bound

E[G (X ) =
M∑
i=1

ipG (i)

≥
(

M∑
i=1

1/i

)−1( M∑
i=1

√
pG (i)

)2

=

(
M∑
i=1

1/i

)−1(∑
x

√
P(x)

)2

≥ (1 + lnM)−1

(∑
x

√
P(x)

)2
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Essense of the inequalities

For any set of real numbers p1 ≥ p2 ≥ · · · ≥ pM > 0,

1 ≥
∑M

i=1 i pi[∑M
i=1

√
pi

]2
≥ (1 + lnM)−1
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Guessing Random Vectors

I Let X = (X1, . . . ,Xn) ∼ P(x1, . . . , xn).

I Guessing X means asking questions of the form

“Is X = x ?”

for possible values x = (x1, . . . , xn) of X.

I Notice that coordinate-wise probes of the type

“Is Xi = xi ?”

are not allowed.
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Complexity of Vector Guessing

Suppose Xi has Mi possible values, i = 1, . . . , n. Then,

1 ≥ E[G ∗(X1, . . . ,Xn)][∑
x1,...,xn

√
P(x1, . . . , xn)

]2
≥ [1 + ln(M1 · · ·Mn)]−1

In particular, if X1, . . . ,Xn are i.i.d. ∼ P with a common alphabet
X ,

1 ≥ E[G ∗(X1, . . . ,Xn)][∑
x∈X

√
P(x)

]2n
≥ [1 + n ln |X |]−1
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Guessing with Side Information

I (X ,Y ) a pair of random variables with a joint distribution
P(x , y).

I Y known. X to be guessed as before.

I G (x |y) the number of guesses when X = x , Y = y .
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Lower Bound

For any guessing strategy and any ρ > 0,

E[G (X |Y )] ≥ (1 + lnM)−1
∑
y

[∑
x

√
P(x , y)

]2

where M is the number of possible values of X .

Proof. E[G (X |Y )] =
∑
y

P(y)E[G (X |Y = y)]

≥
∑
y

P(y)(1 + lnM)−1

[∑
x

√
P(x |y)

]2

= (1 + lnM)−1
∑
y

[∑
x

√
P(x , y)

]2
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Upper bound

Optimal guessing functions satisfy

E[G ∗(X |Y )] ≤
∑
y

[∑
x

√
P(x , y)

]2

.

Proof.

E[G ∗(X |Y )] =
∑
y

P(y)
∑
x

P(x |y)G ∗(x |y)

≤
∑
y

P(y)

[∑
x

√
P(x |y)

]2

=
∑
y

[∑
x

√
P(x , y)

]2

.
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Generalization to Random Vectors

For optimal guessing functions, for ρ > 0,

1 ≥ E[G ∗(X1, . . . ,Xk |Y1, . . . ,Yn)]∑
y1,...,yn

[∑
x1,...,xk

√
P(x1, . . . , xk , y1, . . . , yn)

]2

≥ [1 + ln(M1 · · ·Mk)]−1

where Mi denotes the number of possible values of Xi .
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A “guessing” decoder

I Consider a block code with M codewords x1, . . . , xM of block
length N.

I Suppose a codeword is chosen at random and sent over a
channel W

I Given the channel output y, a “guessing decoder” decodes by
asking questions of the form

“Is the correct codeword the mth one?”

to which it receives a truthful YES or NO answer.

I On a NO answer it repeats the question with a new m.

I The complexity C for this decoder is the number of questions
until a YES answer.

Guessing and cutoff rate 25 / 73



A “guessing” decoder

I Consider a block code with M codewords x1, . . . , xM of block
length N.

I Suppose a codeword is chosen at random and sent over a
channel W

I Given the channel output y, a “guessing decoder” decodes by
asking questions of the form

“Is the correct codeword the mth one?”

to which it receives a truthful YES or NO answer.

I On a NO answer it repeats the question with a new m.

I The complexity C for this decoder is the number of questions
until a YES answer.

Guessing and cutoff rate 25 / 73



A “guessing” decoder

I Consider a block code with M codewords x1, . . . , xM of block
length N.

I Suppose a codeword is chosen at random and sent over a
channel W

I Given the channel output y, a “guessing decoder” decodes by
asking questions of the form

“Is the correct codeword the mth one?”

to which it receives a truthful YES or NO answer.

I On a NO answer it repeats the question with a new m.

I The complexity C for this decoder is the number of questions
until a YES answer.

Guessing and cutoff rate 25 / 73



A “guessing” decoder

I Consider a block code with M codewords x1, . . . , xM of block
length N.

I Suppose a codeword is chosen at random and sent over a
channel W

I Given the channel output y, a “guessing decoder” decodes by
asking questions of the form

“Is the correct codeword the mth one?”

to which it receives a truthful YES or NO answer.

I On a NO answer it repeats the question with a new m.

I The complexity C for this decoder is the number of questions
until a YES answer.

Guessing and cutoff rate 25 / 73



A “guessing” decoder

I Consider a block code with M codewords x1, . . . , xM of block
length N.

I Suppose a codeword is chosen at random and sent over a
channel W

I Given the channel output y, a “guessing decoder” decodes by
asking questions of the form

“Is the correct codeword the mth one?”

to which it receives a truthful YES or NO answer.

I On a NO answer it repeats the question with a new m.

I The complexity C for this decoder is the number of questions
until a YES answer.

Guessing and cutoff rate 25 / 73



Optimal guessing decoder

An optimal guessing decoder is one that minimizes the expected
complexity E [C ].
Clearly, E [C ] is minimized by generating the guesses in decreasing
order of likelihoods W (y|xm).

xi1 ← 1st guess (the most likely codeword given y)

xi2 ← 2nd guess (2nd most likely codeword given y)

...

xL ← correct codeword obtained; guessing stops

Complexity C equals the number of guesses L
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Application to the guessing decoder

I A block code C = {x1, . . . , xM} with M = eNR codewords of
block length N.

I A codeword X chosen at random and sent over a DMC W .

I Given the channel output vector Y, the decoder guesses X.
A special case of guessing with side information where

P(X = x,Y = y) = e−NR
N∏
i=1

W (yi |xi ), x ∈ C
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Cutoff rate bound

E[G ∗(X|Y)] ≥ [1 + NR]−1
∑
y

[∑
x

√
P(x, y)

]2

= [1 + NR]−1 eNR
∑
y

[∑
x

QN(x)
√
WN(x, y)

]2N

≥ [1 + NR]−1 eN(R−R0(W ))

where

R0(W ) = max
Q

− ln
∑
y

[∑
x

Q(x)
√
W (y |x)

]2


is the channel cutoff rate.
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Boosting the cutoff rate

I It was clear almost from the beginning that R0 was at best
shaky in its role as a limit to practical communications

I There were many attempts to boost the cutoff rate by
devising clever schemes for searching a tree

I One striking example is Pinsker’s scheme that displayed the
strange nature of R0
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Binary Symmetric Channel
We will describe Pinsker’s scheme using the BSC example:

I Capacity

C = 1 + ε log2(ε) + (1− ε) log2(1− ε)
I Cutoff rate

R0 = log2
2

1 + 2
√
ε(1− ε)
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Capacity and cutoff rate for the BSC

R0 and C R0/C
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Pinsker’s scheme

Based on the observations that
as ε→ 0

R0(ε)

C (ε)
→ 1 and R0(ε)→ 1,

Pinsker (1965) proposed
concatenation scheme that
achieved capacity within
constant average cost per
decoded bit irrespective of the
level of reliability
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Pinsker’s scheme

d1
CE1

u1 û1
SD1

d̂1

x1
W

y1

d2
CE2

u2 û2
SD2

d̂2

x2
W

y2

dK2
CEK2

uK2
ûK2

SDK2

d̂K2

xN2

W
yN2

Block
encoder

Block
decoder
(ML)

K2 identical
convolutional

encoders
N2 independent

copies of W

K2 independent
sequential decoders

b

b

b

b

b

b

b

b

b

b

b

The inner block code does the initial clean-up at huge but finite
complexity; the outer convolutional encoding (CE) and sequential

decoding (SD) boosts the reliability at little extra cost.
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Discussion

I Although Pinsker’s scheme made a very strong theoretical
point, it was not practical.

I There were many more attempts to go around the R0 barrier
in 1960s:

I D. Falconer, “A Hybrid Sequential and Algebraic Decoding
Scheme,” Sc.D. thesis, Dept. of Elec. Eng., M.I.T., 1966.

I I. Stiglitz, Iterative sequential decoding, IEEE Transactions on
Information Theory, vol. 15, no. 6, pp. 715721, Nov. 1969.

I F. Jelinek and J. Cocke, “Bootstrap hybrid decoding for
symmetrical binary input channels,” Inform. Contr., vol. 18,
no. 3, pp. 261-298, Apr. 1971.
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R0 as practical capacity

I The failure to beat the cutoff rate bound in a meaningful
manner despite intense efforts elevated R0 to the status of a
“realistic” limit to reliable communications

I R0 appears as the key figure-of-merit for communication
system design in the influential works of the period:

I Wozencraft and Jacobs, Principles of Communication
Engineering, 1965

I Wozencraft and Kennedy, “Modulation and demodulation for
probabilistic coding,” IT Trans.,1966

I Massey, “Coding and modulation in digital communications,”
Zürich, 1974

I Forney (1995) gives a first-hand account of this situation in
his Shannon Lecture “Performance and Complexity”
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Other attempts to boost the cutoff rate

Efforts to beat the cutoff rate continues to this day

I D. J. Costello and F. Jelinek, 1972.

I P. R. Chevillat and D. J. Costello Jr., 1977.

I F. Hemmati, 1990.

I B. Radosavljevic, E. Arıkan, B. Hajek, 1992.

I J. Belzile and D. Haccoun, 1993.

I S. Kallel and K. Li, 1997.

I E. Arıkan, 2006

I ...

In fact, polar coding originates from such attempts.
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Sequential decoding and the cutoff rate

Guessing and cutoff rate

Boosting the cutoff rate

Pinsker’s scheme

Massey’s scheme

Polar coding
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The R0 debate
A case study by McEliece (1980) cast a big doubt on the
significance of R0 as a practical limit

I McEliece’s study was concerned with a
Pulse Position Modulation (PPM)
scheme, modeled as a q-ary erasure
channel

I Capacity: C (q) = (1− ε) log q

I Cutoff rate: R0(q) = log q
1+(q−1)ε

I As the bandwidth (q) grew,

R0(q)

C (q)
→ 0

I Algebraic coding (Reed-Solomon) scored
a big win over probabilistic coding!
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Massey meets the challenge

I Massey (1981) showed that there was a
different way of doing coding and
modulation on a q-ary erasure channel
that boosted R0 effortlessly

I Paradoxically, as Massey restored the
status of R0, he exhibited the “flaky”
nature of this parameter
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Channel splitting to boost cutoff rate (Massey, 1981)
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I Begin with a quaternary erasure channel (QEC)
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Channel splitting to boost cutoff rate (Massey, 1981)
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I Split the QEC into two binary erasure channels (BEC)

I BECs fully correlated: erasures occur jointly
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Capacity, cutoff rate for one QEC vs two BECs

Ordinary coding of QEC

C (QEC) = 2(1− ε)

R0(QEC) = log 4
1+3ε

E QEC D

Independent coding of BECs

C (BEC) = (1− ε)

R0(BEC) = log 2
1+ε

E BEC D

E BEC D

I C (QEC) = 2× C (BEC)

I R0(QEC) ≤ 2× R0(BEC) with equality iff ε = 0 or 1.
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Cutoff rate improvement by splitting
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Comparison of Pinsker’s and Massey’s schemes

I Pinsker
I Construct a superchannel by combining independent copies of

a given DMC W
I Split the superchannel into correlated subchannels
I Ignore correlations between the subchannels, encode and

decode them independently
I Can be used universally
I Can achieve capacity
I Not practical

I Massey
I Split the given DMC W into correlated subchannels
I Ignore correlations between the subchannels, encode and

decode them independently
I Applicable only to specific channels
I Cannot achieve capacity
I Practical
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A conservation law for the cutoff rate

Memoryless
Channel

W

Derived (Vector) Channel

Block
Encoder

Block
Decoder

N NK K

Rate K/N

I “Parallel channels” theorem (Gallager, 1965)

R0(Derived vector channel) ≤ N R0(W )

I “Cleaning up” the channel by pre-/post-processing can only
hurt R0

I Shows that boosting cutoff rate requires more than one
sequential decoder
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Sequential decoding and the cutoff rate

Guessing and cutoff rate

Boosting the cutoff rate

Pinsker’s scheme

Massey’s scheme

Polar coding
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Recap of Part 1

I There is a decoding algorithm for tree codes called sequential
decoding that more or less solves the coding problem for rates
below a certain cutoff rate R0

I As Pinsker’s example and Massey’s example showed, cutoff
rate is not a conserved quantity

I It can be boosted by employing independent sequential
decoding across artificially created correlated bit channels
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Prescription for a new scheme

I Consider small constructions

I Retain independent encoding for the subchannels

I Do not ignore correlations between subchannels at the
expense of capacity

I This points to multi-level coding and successive cancellation
decoding
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Multi-stage decoding architecture
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Prescription for a new scheme

I Consider small constructions

I Retain independent encoding for the subchannels

I Do not ignore correlations between subchannels at the
expense of capacity

I This points to multi-level coding and successive cancellation
decoding
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Notation

I Let V : F2
∆
= {0, 1} → Y be an arbitrary binary-input

memoryless channel

I Let (X ,Y ) be an input-output ensemble for channel V with
X uniform on F2

I The (symmetric) capacity is defined as

I (V )
∆
= I (X ;Y )

∆
=
∑
y∈Y

∑
x∈F2

1
2V (y |x) log

V (y |x)
1
2V (y |0) + 1

2V (y |1)

I The (symmetric) cutoff rate is defined as

R0(V )
∆
= R0(X ;Y )

∆
= − log

∑
y∈Y

∑
x∈F2

1
2

√
V (y |x)

2
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The basic construction
Given two copies of a binary input channel W : F2

∆
= {0, 1} → Y

W

WX1

X2

Y1

Y2

consider the transformation above to generate two channels
W− : F2 → Y2 and W+ : F2 → Y2 × F2 with

W−(y1y2|u1) =
∑
u2

1
2W (y1|u1 + u2)W (y2|u2)

W+(y1y2u1|u2) = 1
2W (y1|u1 + u2)W (y2|u2)
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The 2x2 transformation is information lossless

I With independent, uniform U1,U2,

I (W−) = I (U1;Y1Y2),

I (W+) = I (U2;Y1Y2U1).

I Thus,

I (W−) + I (W+) = I (U1U2;Y1Y2)

= 2I (W ),

I and I (W−) ≤ I (W ) ≤ I (W+).
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The 2x2 transformation “creates” cutoff rate

With independent, uniform U1,U2,

R0(W−) = R0(U1;Y1Y2),

R0(W+) = R0(U2;Y1Y2U1).

Theorem (2005)

Correlation helps create cutoff rate:

R0(W−) + R0(W+) ≥ 2R0(W )

with equality iff W is a perfect channel, I (W ) = 1, or a pure noise
channel, I (W ) = 0. Cutoff rates start polarizing:

R0(W−) ≤ R0(W ) ≤ R0(W+)
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Recursive continuation

Do the same recursively: Given W ,

I Duplicate W and obtain
W− and W+.

I Duplicate W− (W+),

I and obtain W−− and
W−+ (W+− and W++).

I Duplicate W−− (W−+,
W+−, W++) and obtain
W−−− and W−−+

(W−+−, W−++,
W+−−, W+−+, W++−,
W+++).

I . . .
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Polarization Process
Evolution of I = I (W ), I+ = I (W+), I− = I (W−), etc.

0

1

I
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Cutoff Rate Polarization

Theorem (2006)

The cutoff rates {R0(Ui ;Y
NU i−1)} of the channels created by the

recursive transformation converge to their extremal values, i.e.,

1

N
#
{
i : R0(Ui ;Y

NU i−1) ≈ 1
}
→ I (W )

and
1

N
#
{
i : R0(Ui ;Y

NU i−1) ≈ 0
}
→ 1− I (W ).

Remark: {I (Ui ;Y
NU i−1)} also polarize.
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Sequential decoding with successive cancellation

I Use the recursive construction to generate N bit-channels
with cutoff rates R0(Ui ;Y

NU i−1), 1 ≤ i ≤ N.

I Encode the bit-channels independently using convolutional
coding

I Decode the bit-channels one by one using sequential decoding
and successive cancellation

I Achievable sum cutoff rate is

N∑
i=1

R0(Ui ;Y
NU i−1)

which approaches N I (W ) as N increases.
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Final step: Doing away with sequential decoding

I Due to polarization, rate loss is negligible if one does not use
the “bad” bit-channels

I Rate of polarization is strong enough that a vanishing frame
error rate can be achieved even if the “good” bit-channels are
used uncoded

I The resulting system has no convolutional encoding and
sequential decoding, only successive cancellation decoding
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Polar coding

To communicate at rate R < I (W ):

I Pick N, and K = NR good indices i such that I (Ui ;Y
NU i−1)

is high,

I let the transmitter set Ui to be uncoded binary data for good
indices, and set Ui to random but publicly known values for
the rest,

I let the receiver decode the Ui successively: U1 from Y N ; Ui

from Y N Û i−1.
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Polar coding complexity and performance

Theorem (2007)

With the particular one-to-one mapping described here and with
the successive cancellation decoding, polar codes achieve the
capacity I (W ) with

I encoding complexity N logN,

I decoding complexity N logN,

I and probability of frame error better than 2−N
0.49
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Basics Polarization Speed Complexity

Building block

Given two copies of a binary input channel W : F2 → Y

Set
X1 = U1 + U2

X2 = U2

with U1,U2 i.i.d., uniform on F2.

W

WX1

X2

Y1

Y2

This induces two synthetic channels W− : F2 → Y2

and
W + : F2 → Y2 × F2.

How come U1 appears at the output of W +? Are we being
cheated?
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Basics Polarization Speed Complexity

Building block: successive decoding

Consider successively decoding U1,U2, . . . ,UN from Y

(a) with a genie-aided decoder:

Û1 = φ1(Y )

Û2 = φ2(Y ,U1)

Û3 = φ3(Y ,U2)

. . .

ÛN = φN(Y ,UN−1)

vs

(b) a Standalone decoder:

Û1 = φ1(Y )

Û2 = φ2(Y , Û1)

Û3 = φ3(Y , Û2)

. . .

ÛN = φN(Y , ÛN−1).

If the genie-aided decoder makes no errors, then, the standalone
decoder makes no errors. The block error events of the two
decoders are the same. As long as the block error probability of
the genie-aided decoder is shown to be small, we are not cheated.
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Û1 = φ1(Y )
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ÛN = φN(Y , ÛN−1).
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Polarization Example: Erasure channel

Suppose W is a BEC(p), i.e., Y = X with probabilty 1− p, Y =?
otherwise.

W−

W +

We already begin to see some extremalization: W + is better
than W , while W− is worse.
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Building block: properties

Properties of W 7→ (W−,W +):

I (W−) = I (U1; Y1Y2)

I (W +) = I (U2; Y1Y2U1)

I (W−) + I (W +) = I (U1U2; Y1Y2)

= I (X1X2; Y1Y2)

W

WU1
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Y2

1
2 I (W−) + 1

2 I (W +) = I (W ).

I (W +) ≥ I (W )

≥ I (W−).
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Building block: properties

Properties of W 7→ (W−,W +):

1
2 I (W−) + 1

2 I (W +) = I (W ).

I (W +) ≥ I (W ) ≥ I (W−).

‘Guaranteed progress’ unless
already extremal.

|I (W±)− I (W )| < δ implies

I (W ) 6∈ (ε, 1− ε),

with ε(δ)→ 0 as δ → 0.
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Guaranteed progress

Notation: h(p) = −p log2 p − (1− p) log2(1− p), denotes the
binary entropy function.
Define p ∗ q := p(1− q) + (1− p)q; handy when expressing the
distribution of the mod-2 sum of independent binary RVs.

Lemma

If (X1,Y1) and (X2,Y2) are independent, X1 and X2 are binary,
H(X1|Y1) = h(p1), and H(X2|Y2) = h(p2), then,

H(X1 + X2|Y1Y2) ≥ h(p1 ∗ p2).

Proof (Lazy).

This is just Mrs Gerber’s Lemma.
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Guaranteed progress

Corollary

If I (W ) = 1− h(p), then I (W−) ≤ 1− h(p ∗ p), and thus
I (W )− I (W−) ≥ h(p ∗ p)− h(p).

Proof.

From I (W ) = 1− h(p) we find H(Xi |Yi ) = h(p). Consequently,

I (W−) = I (U1; Y1Y2)

= 1− H(U1|Y1Y2)

= 1− H(X1 + X2|Y1Y2)

≤ 1− h(p ∗ p)
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Guaranteed progress

Corollary

For every ε > 0, there exists δ > 0 such that∣∣I (W )− I (W±)
∣∣ < δ

implies
I (W ) 6∈ (ε, 1− ε).

Proof.

See figure.



Basics Polarization Speed Complexity

Polarization: why?

Recall the polar construction:

Duplicate W and obtain W−

and W +.

Duplicate W− (and W +),

and obtain W−− and W−+

(and W +− and W ++).

Duplicate W−− (and W−+,
W +−, W ++) and obtain
W−−− and W−−+ (and
W−+−, W−++, W +−−,
W +−+, W ++−, W +++).

. . .
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Polarization: why?

At the nth level into this process we have transformed N = 2n uses
of the channel W to one use each of the 2n channels

W b1...bn , bj ∈ {+,−}.

The meaning of polarizatoin is that the 2n quantities

I (W−···−), . . . , I (W +···+)

are all close to 0 or 1 except for a vanishing fraction (as n grows).
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Polarization: why?

Organize the synthetic channels as a tree.

Pick a random path climbing the tree
according to fair coin flips.
This path uniformly samples
the nodes at any level n.

The I (·) sequence we
encounter satisfies
E
[
In+1

∣∣ I0, . . . , In
]
= In.

Thus, the differences
Jn = In+1 − In are zero
mean, uncorrelated random
variables.

W

W−

W +

W−−

W−+

W +−

W ++

W−−−

W−−+

W−+−

W−++

W +−−

W +−+

W ++−

W +++
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Polarization: why?

1 ≥ (In − I0)2 =
(n−1∑

k=0

Jk

)2
=

n−1∑
i ,k=0

JiJk

Thus 1 ≥
n−1∑
k=0

E [J2
k ].

So, E [J2
n ]→ 0, thus, for any δ > 0, Pr(|Jn| > δ)→ 0.

By ‘guaranteed progress property’ the event {|Jn| > δ}
includes the event {In ∈ (ε, 1− ε)}.
Thus the fraction paths for which In ∈ (ε, 1− ε) approaches
zero as n gets large. Done!

Thanks: H.A. Loeliger
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Polarization

We have shown that limn Pr{In ∈ (ε, 1− ε)} = 0.

Together with E [In] = I )(W ) this implies

Pr(In ≥ 1− ε)→ I (W ) and Pr(In ≤ ε)→ 1− I (W ).

Even stronger statements can be made by appealing to the
martingale convergence theorem:

Pr{lim
n

In = 1} = I (W ) and Pr{lim
n

In = 0} = 1− I (W ).
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Polarization speed

We have seen that polarization takes place.

But how fast? Fast enough to arrest error propagation?

Introduce the Bhattacharyya parameter

Z (W ) =
∑
y

√
W (y |0)W (y |1)

as a companion to I (W ). Note that this is an upper bound on
probability of error for uncoded transmission over W .
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A useful representation

I (W ) = 1− H(X |Y )

=
∑
y

W (y)
[
1− H(X |Y = y)

]
=
∑
y

W (y)
[
1− h

(
W (0|y)

)]

Similarly

Z (W ) =
∑
y

√
W (y |0)W (y |1)

=
∑
y

W (y)
√

4W (0|y)W (1|y)

=
∑
y

W (y)
√

4W (0|y)(1−W (0|y))

So

I (W ) = E [1− h(∆)]

Z (W ) = E [
√

4∆(1−∆)]

Consequently
(
I (W ),Z (W )

)
belongs to the Convex hull of
the curve{(

1− h(δ),
√

4δ(1− δ)
)

:

δ ∈ [0, 1]
}
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Polarization speed

Properties of Z (W ):

Z (W ) ≈ 0 iff I (W ) ≈ 1.

Z (W ) ≈ 1 iff I (W ) ≈ 0.

Z (W +) = Z (W )2.

Z (W−) ≤ 2Z (W ).

Z (W )

I (W )

1

1
0

0

Since Z (W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis
of Z (W ). The sum of the Z ’s of the chosen channels will upper
bound the block error probability. Good reason to study the
polarization speed of Z .
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Polarization speed

Recall the channels
organized in a tree.

Let Z0,Z1, . . . be the Z (·)
values we encouter we climb
the tree.

We know that
P(Zn → 0) = I (W ).

We want to show that when
Zn → 0 it does so fast.

W

W−

W +

W−−

W−+

W +−

W ++

W−−−

W−−+

W−+−

W−++

W +−−

W +−+

W ++−

W +++
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Polarization speed

It is more convenient to work with Vn = log2 Zn. This takes
values in (−∞, 0], We already know that Vn → −∞ with
probability I (W ), and want to show that it goes to −∞ fast
when it does.

Vn’s obey

Vn+1 = 2Vn for a ‘plus’ move

Vn+1 ≤ Vn + 1 for a ‘minus’ move

E.g., starting with Vm = −20, and sequence moves: −, −, +,
−, −, +, +, −, we will see a sequence dominated by

−20,

−19,−18,−36,−35,−34,−68,−136,−135,. . .

The amounts the ‘minus’ moves change the V values are
negligible compared to the changes made by the ‘plus’ moves.
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Polarizaton speed: heuristics

To the first approximation, Vn process behaves like

Ṽn+1 = 2Ṽn for a ‘plus’ move

Ṽn+1 = Ṽn for a ‘minus’ move

In a long sequence of moves we will typlically see an almost
equal number of + and −’s, thus

Ṽn = O
(
−2n/2

)
= O(−

√
N).

So we expect Zn to behave roughly like 2−
√

N .
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Polarization speed: more formally

In going from Vm to Vn we make n −m moves. If Sm,n of
these are ‘plus’ moves, then

Vn ≤ [Vm + (n −m − Sm,n)]2Sm,n

≤ [Vm + n −m]2Sm,n

Note that the bound is useful only when n ≤ m − Vm. So one
cannot show too strong a convergence speed based on this
alone.

But using the bound twice by introducing an intermediate
destination k :

Vn ≤ [Vk + n − k]2Sk,n

≤
[
[Vm + k −m]2Sm,k + n − k

]
2Sk,n
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Polarization speed: more formally

If Vm were less than −2m, we could take k = 2m, and n = m2 to
obtain

Vm2 ≤ [−m2Sm,2m + m2 − 2m]2S2m,m2

= [−m2m(1−ε) + m2 − 2m]2(m2−m)(1−ε)/2 (typically)

= O
(
− 2m2(0.5−ε))

Equivalently,
Vn ≤ O(−N0.5−ε)



Basics Polarization Speed Complexity

Polarization speed: more formally

Only thing left to show is that Vm ≤ −2m is a typical event
for the paths where Vn → −∞.

On such paths, there will come a time n0 so that Vn ≤ −11
for all n ≥ n0. The evolution of Vn then satisfies

Vn+1 ≤ 2Vn ≤ Vn − 11 ‘plus’ moves

Vn+1 ≤ Vn + 1 ‘minus’ moves

Thus from n0 onwards, Vn is dominated by a random walk
with average drift −5.

Thus at time m = 2n0 the typical value of Vm is dominated
by −5n0 = −2.5m ≤ −2m, which is what we want (with
room to spare).
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Basics Polarization Speed Complexity

Construction complexity

Let V �W denote that V is stochastically degraded with respect
to W .

Lemma

If V �W then V± �W±.

Proof.

Obvious.
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Construction complexity

Lemma

Given any symmetric channel W , and δ > 0 there is a symmetric
channel V such that

V �W

I (W )− I (V ) ≤ δ
V has an output alphabet of cardinality ≤ 2/δ.

Moreover, one can efficiently find such a V .
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Construction complexity

If we take the tree of channels,

Replace a channel on a node by
a stochastically degraded
version (E.g., replace W + by a
V �W +) whose mutual
information is differs from the
original by δ, (E.g,
I (W +)− I (V ) = δ)

Then the average loss of mutual
information the descendants of
this node at any level equals δ.

W

W−

W +

W−−

W−+

W +−

W ++

W−−−

W−−+

W−+−

W−++

W +−−

W +−+

W ++−

W +++



Basics Polarization Speed Complexity

Construction complexity

If we take the tree of channels,

Replace a channel on a node by
a stochastically degraded
version (E.g., replace W + by a
V �W +) whose mutual
information is differs from the
original by δ, (E.g,
I (W +)− I (V ) = δ)

Then the average loss of mutual
information the descendants of
this node at any level equals δ.

W

W−

W−−

W−+

W−−−

W−−+

W−+−

W−++

V

V−

V +

V−−

V−+

V +−

V ++



Basics Polarization Speed Complexity

Construction complexity

If we take the tree of channels,

Replace a channel on a node by
a stochastically degraded
version (E.g., replace W + by a
V �W +) whose mutual
information is differs from the
original by δ, (E.g,
I (W +)− I (V ) = δ)

Then the average loss of mutual
information the descendants of
this node at any level equals δ.

W

W−

W−−

W−+

W−−−

W−−+

W−+−

W−++

V

V−

V +

V−−

V−+

V +−

V ++



Basics Polarization Speed Complexity

Construction complexity

W

If each of the replacements are as in
the lemma, their total effect on
average loss of mutual information on
the nth level of the tree is (n + 1)δ

Choosing δ = 1/(n + 1)n ensures
that the average loss is at most 1/n.

In particular the fraction of channels
that suffer a loss more than 1/

√
n is

less than 1/
√

n.
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V0

V−0

V +
0

If each of the replacements are as in
the lemma, their total effect on
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the nth level of the tree is (n + 1)δ

Choosing δ = 1/(n + 1)n ensures
that the average loss is at most 1/n.

In particular the fraction of channels
that suffer a loss more than 1/

√
n is

less than 1/
√

n.



Basics Polarization Speed Complexity

Construction complexity

V0

V1

V2

If each of the replacements are as in
the lemma, their total effect on
average loss of mutual information on
the nth level of the tree is (n + 1)δ
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