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Preface

These notes on polar coding are prepared for a tutorial to be given at ISIT 2012.
The notes are based on the author’s paper “Channel polarization: A method for con-
structing capacity-achieving codes for symmetric binary-input memoryless chan-
nels,” published in the July 2009 issue of the IEEE Transactions on Information
Theory. The 2009 paper has been updated to cover two major advances that took
place since the publication of that paper: exponential error bounds for polar codes
and an efficient algorithm for constructing polar codes. Both of these topics are
now an integral part of the core theory of polar coding. In itspresent form, these
notes present the basic theory of polarization and polar coding in a fairly complete
manner. There have been many more important advances in polar coding in the
few years since the subject appeared: non-binary polarization, source polarization,
multi-terminal polarization, polarization under memory,quantum polar coding, to
name some. Also a large number of papers exist now on practical aspects of polar
coding and their potential for applications. These subjects are not covered in these
notes since the goal has been to present the basic theory within the confines of a
three-hour tutorial.

Ankara, E. Arıkan
June 2012
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Chapter 0
Preliminaries and Notation

Abstract This chapter gathers the notation and some basic facts that are used
throughout.

0.1 Notation

We denote random variables (RVs) by upper-case letters, such asX, Y, and their
realizations (sample values) by the corresponding lower-case letters, such asx, y.
For X a RV, PX denotes the probability assignment onX. For a joint ensemble of
RVs (X,Y), PX,Y denotes the joint probability assignment. We use the standard no-
tation I(X;Y), I(X;Y|Z) to denote the mutual information and its conditional form,
respectively.

We use the notationaN
1 as shorthand for denoting a row vector(a1, . . . ,aN). Given

such a vectoraN
1 , we writea j

i , 1≤ i, j ≤ N, to denote the subvector(ai , . . . ,a j); if
j < i, a j

i is regarded as void. GivenaN
1 andA ⊂ {1, . . . ,N}, we writeaA to denote

the subvector(ai : i ∈ A ). We writea j
1,o to denote the subvector with odd indices

(ak : 1 ≤ k ≤ j; k odd). We write a j
1,e to denote the subvector with even indices

(ak : 1≤ k≤ j; k even). For example, fora5
1 = (5,4,6,2,1), we havea4

2 = (4,6,2),
a5

1,e = (4,2), a4
1,o = (5,6). The notation 0N1 is used to denote the all-zero vector.

Code constructions in these notes will be carried out in vector spaces over the
binary field GF(2). Unless specified otherwise, all vectors,matrices, and operations
on them will be over GF(2). In particular, foraN

1 , bN
1 vectors over GF(2), we write

aN
1 ⊕bN

1 to denote their componentwise mod-2 sum. The Kronecker product of an
m-by-n matrixA= [Ai j ] and anr-by-smatrixB= [Bi j ] is defined as

A⊗B=







A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB






,

1



2 0 Preliminaries and Notation

which is anmr-by-nsmatrix. The Kronecker powerA⊗n is defined asA⊗A⊗(n−1)

for all n≥ 1. We will follow the convention thatA⊗0 ∆
= [1].

We write|A | to denote the number of elements in a setA . We write 1A to denote
the indicator function of a setA ; thus, 1A (x) equals 1 ifx∈A and 0 otherwise.

We use the standard Landau notationO(N), o(N), ω(N) to denote the asymptotic
behavior of functions.

Throughout log will denote logarithm to the base 2. The unit for channel capaci-
ties and code rates will bebits.

0.2 Binary Channels and Symmetric Capacity

We writeW : X →Y to denote a generic binary-input discrete memoryless channel
(B-DMC) with input alphabetX , output alphabetY , and transition probabilities
W(y|x), x ∈ X , y ∈ Y . The input alphabetX will always be{0,1}, the output
alphabet and the transition probabilities may be arbitrary. We writeWN to denote
the channel corresponding toN uses ofW; thus,WN : X N → Y N with WN(yN

1 |
xN

1 ) = ∏N
i=1W(yi | xi).

The symmetric capacity of a B-DMCW is defined as

I(W)
∆
= ∑

y∈Y
∑

x∈X

1
2

W(y|x) log
W(y|x)

1
2W(y|0)+ 1

2W(y|1)

Since we use base-2 logarithms,I(W) takes values in[0,1] and is measured in bits.
The symmetric capacityI(W) is the highest rate at which reliable communica-

tion is possible acrossW using the inputs ofW with equal frequency. It equals the
Shannon capacity whenW is a symmetricchannel, i.e., a channel for which there
exists a permutationπ of the output alphabetY such that (i)π−1 = π and (ii)
W(y|1) =W(π(y)|0) for all y∈ Y .

The binary symmetric channel (BSC) and the binary erasure channel (BEC) are
examples of symmetric channels. A BSC is a B-DMCW with Y = {0,1},W(0|0)=
W(1|1), andW(1|0) = W(0|1). A B-DMC W is called a BEC if for eachy ∈ Y ,
eitherW(y|0)W(y|1) = 0 orW(y|0) = W(y|1). In the latter case,y is said to be an
erasuresymbol. The sum ofW(y|0) over all erasure symbolsy is called the erasure
probability of the BEC.

0.3 Channel Bhattacharyya parameter: A measure of reliability

The Bhattacharyya parameter of a B-DMCW is defined as

Z(W)
∆
= ∑

y∈Y

√

W(y|0)W(y|1).
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The Bhattacharyya parameterZ(W) is an upper bound on the probability of MAP
decision error whenW is used only once to transmit a single bit, a-priori equally
likely to be 0 or 1. Hence,Z(W) serves as a measures ofreliability for W. It is easy
to see thatZ(W) takes values in[0,1].

Intuitively, one would expect thatI(W) ≈ 1 iff Z(W) ≈ 0, and I(W) ≈ 0 iff
Z(W)≈ 1. The following bounds make this precise.

Proposition 1 For any B-DMC W, we have

I(W)≥ log
2

1+Z(W)
, (0.1)

I(W)≤
√

1−Z(W)2. (0.2)

Furthermore,

I(W)+Z(W)≥ 1 (0.3)

with equality iff W is a BEC.

Proof of inequality(0.1):
This is proved easily by noting that

log
2

1+Z(W)

actually equals the channel parameter denoted byE0(1,Q) by Gallager [6, Sec-
tion 5.6] with Q taken as the uniform input distribution. (This parameter may be
called thesymmetric cutoff rateof the channel.) It is well known (and shown in the
same section of [6]) thatI(W)≥ E0(1,Q). This proves (0.1).

Proof of inequality(0.2):
For any B-DMCW : X → Y , define

d(W)
∆
=

1
2 ∑

y∈Y

|W(y|0)−W(y|1)|.

This is the variational distance between the two distributionsW(y|0) andW(y|1)
overy∈ Y .

Lemma 1 For any B-DMC W, I(W)≤ d(W).

Proof. Let W be an arbitrary B-DMC with output alphabetY = {1, . . . ,n} and put
Pi =W(i|0), Qi =W(i|1), i = 1, . . . ,n. By definition,

I(W) =
n

∑
i=1

1
2

[

Pi log
Pi

1
2Pi +

1
2Qi

+Qi log
Qi

1
2Pi +

1
2Qi

]

.
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The ith bracketed term under the summation is given by

f (x)
∆
= xlog

x
x+ δ

+(x+2δ ) log
x+2δ
x+ δ

wherex= min{Pi ,Qi} andδ = 1
2|Pi−Qi |. We now consider maximizingf (x) over

0≤ x≤ 1−2δ . We compute

d f
d x

=
1
2

log

√

x(x+2δ )
(x+ δ )

and recognize that
√

x(x+2δ ) and(x+δ ) are, respectively, the geometric and arith-
metic means of the numbersx and(x+2δ ). So,d f/dx≤ 0 and f (x) is maximized
at x= 0, giving the inequalityf (x)≤ 2δ . Using this in the expression forI(W), we
obtain the claim of the lemma,

I(W)≤∑
i=1

1
2
|Pi−Qi|= d(W).

Lemma 2 For any B-DMC W, d(W)≤
√

1−Z(W)2.

Proof. Let W be an arbitrary B-DMC with output alphabetY = {1, . . . ,n} and put

Pi = W(i|0), Qi = W(i|1), i = 1, . . . ,n. Let δi
∆
= 1

2|Pi −Qi |, δ ∆
= d(W) = ∑n

i=1 δi ,

and Ri
∆
= (Pi +Qi)/2. Then, we haveZ(W) = ∑n

i=1

√

(Ri− δi)(Ri + δi). Clearly,

Z(W) is upper-bounded by the maximum of∑n
i=1

√

R2
i − δ 2

i over {δi} subject to

the constraints that 0≤ δi ≤ Ri , i = 1, . . . ,n, and ∑n
i=1 δi = δ . To carry out this

maximization, we compute the partial derivatives ofZ(W) with respect toδi ,

∂Z
∂δi

=− δi
√

R2
i − δ 2

i

,
∂ 2Z

∂δ 2
i

=− R2
i

3/2
√

R2
i − δ 2

i

,

and observe thatZ(W) is a decreasing, concave function ofδi for eachi, within
the range 0≤ δi ≤ Ri . The maximum occurs at the solution of the set of equations
∂Z/∂δi = k, all i, wherek is a constant, i.e., atδi = Ri

√

k2/(1+ k2). Using the
constraint∑i δi = δ and the fact that∑n

i=1Ri = 1, we find
√

k2/(1+ k2) = δ . So,

the maximum occurs atδi = δRi and has the value∑n
i=1

√

R2
i − δ 2R2

i =
√

1− δ 2.

We have thus shown thatZ(W) ≤
√

1−d(W)2, which is equivalent tod(W) ≤
√

1−Z(W)2.

From the above two lemmas, the proof of (0.2) is immediate.
Proof of inequality(0.3): We defer this proof until Chapter 3 where it will follow

as a simple corollary to the results there.
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It can be seen that inequality 0.3 is stronger than inequality 0.1 and will prove
useful later on. The weaker inequality (0.1) is sufficient todevelop the polarization
results for the time being.





Chapter 1
Overview of Results

Abstract Shannon proved the achievability part of his noisy channel coding theorem
using a random-coding argument which showed the existence of capacity-achieving
code sequences without exhibiting any specific sequence [15]. Polar codes are an ex-
plicit construction that provably achieves channel capacity with low-complexity en-
coding, decoding, and code construction algorithms. This chapter gives an overview
of channel polarization and polar coding.

1.1 Channel polarization

Channel polarization is a transformation by which one manufactures out ofN inde-

pendent copies of a given B-DMCW a second set ofN channels{W(i)
N : 1≤ i ≤ N}

such that, asN becomes large, the symmetric capacity terms{I(W(i)
N )} tend towards

0 or 1 for all but a vanishing fraction of indicesi. The channel polarization operation
consists of a channel combining phase and a channel splitting phase.

1.1.1 Channel combining

This phase combines copies of a given B-DMCW in a recursive manner to produce
a vector channelWN : X N→Y N, whereN can be any power of two,N= 2n, n≥ 0.
The recursion begins at the 0-th level (n= 0) with only one copy ofW and we set

W1
∆
= W. The first level (n= 1) of the recursion combines two independent copies

of W1 as shown in Fig. 1 and obtains the channelW2 : X 2→Y 2 with the transition
probabilities

W2(y1,y2|u1,u2) =W(y1|u1⊕u2)W(y2|u2). (1.1)

7



8 1 Overview of Results

+ W

W
u2

u1

x2

x1

y2

y1

W2

Fig. 1.1 The channelW2.

The next level of the recursion is shown in Fig. 2 where two independent copies
of W2 are combined to create the channelW4 : X 4→ Y 4 with transition probabili-
tiesW4(y4

1|u4
1) =W2(y2

1|u1⊕u2,u3⊕u4)W2(y4
3|u2,u4).

+ W

W
x4

x3

y4

y3

W2

+ W

W
x2

x1

y2

y1

W2

+

+

W4

v2

v1

v4

v3

u1

u2

u3

u4

R4

Fig. 1.2 The channelW4 and its relation toW2 andW.

In Fig. 2, R4 is the permutation operation that maps an input(s1,s2,s3,s4) to
v4

1 =(s1,s3,s2,s4). The mappingu4
1 7→ x4

1 from the input ofW4 to the input ofW4 can

be written asx4
1 = u4

1G4 with G4 =

[

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

]

. Thus, we have the relationW4(y4
1|u4

1)=

W4(y4
1|u4

1G4) between the transition probabilities ofW4 and those ofW4.
The general form of the recursion is shown in Fig. 3 where two independent

copies ofWN/2 are combined to produce the channelWN. The input vectoruN
1 to

WN is first transformed intosN
1 so thats2i−1 = u2i−1⊕u2i ands2i = u2i for 1≤ i ≤
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WN

RN

WN/2

WN/2

u1 s1+
v1 y1

u2 s2 v2 y2

uN/2−1
sN/2−1
+

vN/2−1 yN/2−1

uN/2 sN/2 vN/2 yN/2

uN/2+1
sN/2+1
+

vN/2+1 yN/2+1

uN/2+2
sN/2+2

vN/2+2 yN/2+2

uN−1
sN−1

+
vN−1 yN−1

uN sN vN yN

...

...

...

...

...

...

...

...

Fig. 1.3 Recursive construction ofWN from two copies ofWN/2.

N/2. The operatorRN in the figure is a permutation, known as thereverse shuffle
operation, and acts on its inputsN

1 to producevN
1 = (s1,s3, . . . ,sN−1,s2,s4, . . . ,sN),

which becomes the input to the two copies ofWN/2 as shown in the figure.
We observe that the mappinguN

1 7→ vN
1 is linear over GF(2). It follows by induc-

tion that the overall mappinguN
1 7→ xN

1 , from the input of the synthesized channel
WN to the input of the underlying raw channelsWN, is also linear and may be repre-
sented by a matrixGN so thatxN

1 = uN
1 GN. We callGN thegenerator matrixof size

N. The transition probabilities of the two channelsWN andWN are related by

WN(y
N
1 |uN

1 ) =WN(yN
1 |uN

1 GN) (1.2)

for all yN
1 ∈ Y N, uN

1 ∈X N. We will show in Sect. 5.1 thatGN equalsBNF⊗n for
any N = 2n, n≥ 0, whereBN is a permutation matrix known asbit-reversaland

F
∆
=
[

1 0
1 1

]

. Note that the channel combining operation is fully specified by the matrix
F . Also note thatGN andF⊗n have the same set of rows, but in a different (bit-
reversed) order; we will discuss this topic more fully in Sect. 5.1.
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1.1.2 Channel splitting

Having synthesized the vector channelWN out of WN, the next step of channel
polarization is to splitWN back into a set ofN binary-input coordinate channels

W(i)
N : X → Y N×X i−1, 1≤ i ≤ N, defined by the transition probabilities

W(i)
N (yN

1 ,u
i−1
1 |ui)

∆
= ∑

uN
i+1∈X N−i

1
2N−1WN(y

N
1 |uN

1 ), (1.3)

where(yN
1 ,u

i−1
1 ) denotes the output ofW(i)

N andui its input.

To gain an intuitive understanding of the channels{W(i)
N }, consider a genie-aided

successive cancellation decoder in which theith decision element estimatesui after
observingyN

1 and thepastchannel inputsui−1
1 (supplied correctly by the genie re-

gardless of any decision errors at earlier stages). IfuN
1 is a-priori uniform onX N,

thenW(i)
N is the effective channel seen by theith decision element in this scenario.

1.1.3 Channel polarization

Theorem 1 For any B-DMC W, the channels{W(i)
N } polarizein the sense that, for

any fixedδ ∈ (0,1), as N goes to infinity through powers of two, the fraction of

indices i∈ {1, . . . ,N} for which I(W(i)
N ) ∈ (1− δ ,1] goes to I(W) and the fraction

for which I(W(i)
N ) ∈ [0,δ ) goes to1− I(W).

This theorem is proved in Sect. 3.3.
The polarization effect is illustrated in Fig. 4 forW a BEC with erasure prob-

ability ε = 0.5. The numbers{I(W(i)
N )} have been computed using the recursive

relations

I(W(2i−1)
N ) = I(W(i)

N/2)
2,

I(W(2i)
N ) = 2I(W(i)

N/2)− I(W(i)
N/2)

2,
(1.4)

with I(W(1)
1 ) = 1− ε. This recursion is valid only for BECs and it is proved in

Sect. 2.2. Figure 4 shows thatI(W(i)) tends to be near 0 for smalli and near 1 for

largei. However,I(W(i)
N ) shows an erratic behavior for an intermediate range ofi.

For general B-DMCs, the calculation ofI(W(i)
N ) with sufficient degree of preci-

sion is an important problem for constructing polar codes. This issue is discussed in
Sect. 5.3.



1.1 Channel polarization 11

1 256 512 768 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channel index

S
ym

m
et

ric
 c

ap
ac

ity

Fig. 1.4 Plot of I(W(i)
N ) vs. i = 1, . . . ,N = 210 for a BEC withε = 0.5.

1.1.4 Rate of polarization

For proving coding theorems, the speed with which the polarization effect takes hold
as a function ofN is important. Our main result in this regard is given in termsof
the parameters

Z(W(i)
N ) = ∑

yN
1 ∈Y N

∑
ui−1

1 ∈X i−1

√

W(i)
N (yN

1 ,u
i−1
1 | 0)W(i)

N (yN
1 ,u

i−1
1 | 1). (1.5)

Theorem 2 Let W be a B-DMC. For any fixed rate R< I(W) and constantβ < 1
2,

there exists a sequence of sets{AN} such thatAN ⊂ {1, . . . ,N}, |AN| ≥ NR, and

∑
i∈AN

Z(W(i)
N ) = o(2−Nβ

). (1.6)

Conversely, if R> 0 and β > 1
2, then for any sequence of sets{AN} with AN ⊂

{1, . . . ,N}, |AN| ≥ NR, we have

max{Z(W(i)
N ) : i ∈AN}= ω(2−Nβ

). (1.7)

This theorem is proved in Chapter 3.

We stated the polarization result in Theorem 2 in terms{Z(W(i)
N )} rather than

{I(W(i)
N )} because this form is better suited to the coding results thatwe will de-
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velop. A rate of polarization result in terms of{I(W(i)
N )} can be obtained from The-

orem 2 with the help of Prop. 1.

1.2 Polar coding

Polar coding is a method that takes advantage of the polarization effect to construct
codes that achieve the symmetric channel capacityI(W). The basic idea of polar
coding is to create a coding system where one can access each coordinate channel

W(i)
N individually and send data only through those for whichZ(W(i)

N ) is near 0.

1.2.1 GN-coset codes

We first describe a class of block codes that contain polar codes—the codes of main
interest—as a special case. The block-lengthsN for this class are restricted to pow-
ers of two,N = 2n for somen≥ 0. For a givenN, each code in the class is encoded
in the same manner, namely,

xN
1 = uN

1 GN (1.8)

whereGN is the generator matrix of orderN, defined above. ForA an arbitrary
subset of{1, . . . ,N}, we may write (1.8) as

xN
1 = uA GN(A )⊕uA cGN(A

c) (1.9)

whereGN(A ) denotes the submatrix ofGN formed by the rows with indices inA .
If we now fix A anduA c, but leaveuA as a free variable, we obtain a map-

ping from source blocksuA to codeword blocksxN
1 . This mapping is acoset code:

it is a coset of the linear block code with generator matrixGN(A ), with the coset
determined by the fixed vectoruA cGN(A

c). We will refer to this class of codes
collectively asGN-coset codes. Individual GN-coset codes will be identified by a
parameter vector(N,K,A ,uA c), whereK is the code dimension and specifies the
size ofA .1 The ratioK/N is called thecode rate. We will refer toA as theinfor-
mation setand touA c ∈X N−K asfrozenbits or vector.

For example, the(4,2,{2,4},(1,0)) code has the encoder mapping

x4
1 = u4

1G4

= (u2,u4)

[

1 0 1 0
1 1 1 1

]

+(1,0)

[

1 0 0 0
1 1 0 0

]

. (1.10)

1 We include the redundant parameterK in the parameter set because often we consider an ensem-
ble of codes withK fixed andA free.
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For a source block(u2,u4) = (1,1), the coded block isx4
1 = (1,1,0,1).

Polar codes will be specified shortly by giving a particular rule for the selection
of the information setA .

1.2.2 A successive cancellation decoder

Consider aGN-coset code with parameter(N,K,A ,uA c). Let uN
1 be encoded into

a codewordxN
1 , let xN

1 be sent over the channelWN, and let a channel outputyN
1 be

received. The decoder’s task is to generate an estimate ˆuN
1 of uN

1 , given knowledge
of A , uA c, andyN

1 . Since the decoder can avoid errors in the frozen part by setting
ûA c = uA c, the real decoding task is to generate an estimate ˆuA of uA .

The coding results in this paper will be given with respect toa specific succes-
sive cancellation (SC) decoder, unless some other decoder is mentioned. Given any
(N,K,A ,uA c) GN-coset code, we will use a SC decoder that generates its decision
ûN

1 by computing

ûi
∆
=

{

ui , if i ∈A c

hi(yN
1 , û

i−1
1 ), if i ∈A

(1.11)

in the orderi from 1 toN, wherehi : Y N×X i−1→X , i ∈A , aredecision func-
tionsdefined as

hi(y
N
1 , û

i−1
1 )

∆
=







0, if
W(i)

N (yN
1 ,û

i−1
1 |0)

W(i)
N (yN

1 ,û
i−1
1 |1)

≥ 1

1, otherwise
(1.12)

for all yN
1 ∈ Y N, ûi−1

1 ∈X i−1. We will say that a decoderblock erroroccurred if
ûN

1 6= uN
1 or equivalently ifûA 6= uA .

The decision functions{hi} defined above resemble ML decision functions but
are not exactly so, because they treat thefuture frozen bits(u j : j > i, j ∈A c) as
RVs, rather than as known bits. In exchange for this suboptimality, {hi} can be com-
puted efficiently using recursive formulas, as we will show in Sect. 2.1. Apart from
algorithmic efficiency, the recursive structure of the decision functions is important
because it renders the performance analysis of the decoder tractable. Fortunately,
the loss in performance due to not using true ML decision functions happens to be
negligible:I(W) is still achievable.

1.2.3 Code performance

The notationPe(N,K,A ,uA c) will denote the probability of block error for a
(N,K,A ,uA c) code, assuming that each data vectoruA ∈X K is sent with proba-
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bility 2−K and decoding is done by the above SC decoder. More precisely,

Pe(N,K,A ,uA c)
∆
= ∑

uA ∈X K

1
2K ∑

yN
1 ∈Y N : ûN

1 (y
N
1 ) 6=uN

1

WN(y
N
1 |uN

1 ).

The average ofPe(N,K,A ,uA c) over all choices foruA c will be denoted by
Pe(N,K,A ):

Pe(N,K,A )
∆
= ∑

uA c∈X N−K

1
2N−K Pe(N,K,A ,uA c).

A key bound on block error probability under SC decoding is the following.

Proposition 2 For any B-DMC W and any choice of the parameters(N,K,A ),

Pe(N,K,A )≤ ∑
i∈A

Z(W(i)
N ). (1.13)

Hence, for each(N,K,A ), there exists a frozen vector uA c such that

Pe(N,K,A ,uA c)≤ ∑
i∈A

Z(W(i)
N ). (1.14)

This is proved in Sect. 4.3. This result suggests choosingA from among allK-
subsets of{1, . . . ,N} so as to minimize the RHS of (1.13). This idea leads to the
definition of polar codes.

1.2.4 Polar codes

Given a B-DMCW, aGN-coset code with parameter(N,K,A ,uA c) will be called
a polar codefor W if the information setA is chosen as aK-element subset of

{1, . . . ,N} such thatZ(W(i)
N )≤ Z(W( j)

N ) for all i ∈A , j ∈A c.
Polar codes are channel-specific designs: a polar code for one channel may not

be a polar code for another. The main result of this paper willbe to show that polar
coding achieves the symmetric capacityI(W) of any given B-DMCW.

An alternative rule for polar code definition would be to specify A as aK-

element subset of{1, . . . ,N} such thatI(W(i)
N ) ≥ I(W( j)

N ) for all i ∈ A , j ∈ A c.
This alternative rule would also achieveI(W). However, the rule based on the Bhat-
tacharyya parameters has the advantage of being connected with an explicit bound
on block error probability.

The polar code definition does not specify how the frozen vectoruA c is to be cho-
sen; it may be chosen at will. This degree of freedom in the choice ofuA c simplifies
the performance analysis of polar codes by allowing averaging over an ensemble.
However, it is not for analytical convenience alone that we do not specify a precise
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rule for selectinguA c, but also because it appears that the code performance is rel-
atively insensitive to that choice. In fact, we prove in Sect. 4.6 that, for symmetric
channels, any choice foruA c is as good as any other.

1.2.5 Coding theorems

Fix a B-DMCW and a numberR≥ 0. Let Pe(N,R) be defined asPe(N,⌊NR⌋,A )
with A selected in accordance with the polar coding rule forW. Thus,Pe(N,R)
is the probability of block error under SC decoding for polarcoding overW with
block-lengthN and rateR, averaged over all choices for the frozen bitsuA c. The
main coding result of this paper is the following:

Theorem 3 For polar coding on a B-DMC W at any fixed rate R< I(W), and any
fixedβ < 1

2,

Pe(N,R) = o(2−Nβ
). (1.15)

This theorem follows as an easy corollary to Theorem 2 and thebound (1.13),
as we show in Sect. 4.3. For symmetric channels, we have the following stronger
version of Theorem 3.

Theorem 4 For any symmetric B-DMC W, any fixedβ < 1
2, and any fixed R<

I(W), consider any sequence of GN-coset codes(N,K,A ,uA c) with N increasing
to infinity, K= ⌊NR⌋, A chosen in accordance with the polar coding rule for W,
and uA c fixed arbitrarily. The block error probability under successive cancellation
decoding satisfies

Pe(N,K,A ,uA c) = o(2−Nβ
). (1.16)

This is proved in Sect. 4.6. Note that for symmetric channelsI(W) equals the
Shannon capacity ofW.

1.2.6 A numerical example

The above results establish that polar codes achieve the symmetric capacity asymp-
totically. It is of interest to understand how quickly the polarization effect takes hold
and what performance can be expected of polar codes under SC decoding in the non-
asymptotic regime. To shed some light on this question, we give here a numerical
example.

LetW be a BEC with erasure probability 1/2. For the BEC, there are exact formu-

las for computing the parametersZ(W(i)
N ), unlike other channels where this is a diffi-
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cult problem. Figure 7 shows the rate vs. reliability trade-off for W using polar codes
with block-lengthsN∈ {210,215,220}. This figure is obtained by using codes whose

information sets are of the formA (η) ∆
= {i ∈ {1, . . . ,N} : Z(W(i)

N ) < η}, where
0≤ η ≤ 1 is a variable threshold parameter. There are two sets of three curves in

the plot. The solid lines are plots ofR(η) ∆
= |A (η)|/N vs.B(η) ∆

=∑i∈A (η)Z(W(i)
N ).

The dashed lines are plots ofR(η) vs.L(η) ∆
= maxi∈A (η){Z(W(i)

N )}. The parameter
η is varied over a subset of[0,1] to obtain the curves.
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Fig. 1.5 Rate vs. reliability for polar coding and SC decoding at block-lengths 210, 215, and 220 on
a BEC with erasure probability 1/2.

The parameterR(η) corresponds to the code rate. The significance ofB(η) is
also clear: it is an upper-bound onPe(η), the probability of block-error for polar
coding at rateR(η) under SC decoding. The parameterL(η) is intended to serve as
a lower bound toPe(η).

This example provides some empirical evidence that polar coding achieves chan-
nel capacity as the block-length is increased—a fact that will be established by exact
proofs in the following. The example also shows that the rateof polarization is quite
slow, limiting the practical impact of polar codes.

1.2.7 Complexity

An important issue about polar coding is the complexity of encoding, decoding, and
code construction. The recursive structure of the channel polarization construction
leads to low-complexity encoding and decoding algorithms for the class ofGN-coset
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codes, and in particular, for polar codes. The computational model we use in stating
the following complexity results is a single CPU with a random access memory.

Theorem 5 For the class of GN-coset codes, the complexity of encoding and the
complexity of successive cancellation decoding are both O(N logN) as functions of
code block-length N.

This theorem is proved in Sections 5.1 and 5.2. Notice that the complexity bounds
in Theorem 5 are independent of the code rate and the way the frozen vector is
chosen. The bounds hold even at rates aboveI(W), but clearly this has no practical
significance.

In general, no exact method is known for polar code construction that is of poly-
nomial complexity. One exception is the case of a BEC for which we have a polar
code construction algorithm with complexityO(N). However, there exist approxi-
mation algorithms for constructing polar codes that have proven effective for prac-
tical purposes. These algorithms and their complexity willbe discussed in Sect. 5.3.

1.3 Relations to Reed-Muller codes

Polar coding has much in common with Reed-Muller (RM) coding[11], [14]. Ac-
cording to one construction of RM codes, for anyN = 2n, n≥ 0, and 0≤ K ≤ N,
an RM code with block-lengthN and dimensionK, denoted RM(N,K), is defined
as a linear code whose generator matrixGRM(N,K) is obtained by deleting(N−K)
of the rows ofF⊗n so that none of the deleted rows has a larger Hamming weight
(number of 1s in that row) than any of the remainingK rows. For instance,

GRM(4,4) = F⊗2 =

[

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

]

and
GRM(4,2) =

[

1 0 1 0
1 1 1 1

]

.

This construction brings out the similarities between RM codes and polar codes.
SinceGN andF⊗n have the same set of rows for anyN = 2n, it is clear that RM
codes belong to the class ofGN-coset codes. For example, RM(4,2) is theG4-coset
code with parameter(4,2,{2,4},(0,0)). So, RM coding and polar coding may be
regarded as two alternative rules for selecting the information setA of a GN-coset
code of a given size(N,K). Unlike polar coding, RM coding selects the information
set in a channel-independent manner; it is not as fine-tuned to the channel polariza-
tion phenomenon as polar coding is. It is shown in [1] that, atleast for the class of
BECs, the RM rule for information set selection leads to asymptotically unreliable
codes under SC decoding. So, polar coding goes beyond RM coding in a non-trivial
manner by paying closer attention to channel polarization.However, it is an open
question whether RM codes fail to achieve channel capacity under ML decoding.
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Another connection to existing work can be established by noting that polar codes
are multi-level|u|u+v| codes, which are a class of codes originating from Plotkin’s
method for code combining [13]. This connection is not surprising in view of the
fact that RM codes are also multi-level|u|u+ v| codes [9, pp. 114-125]. However,
unlike typical multi-level code constructions where one begins with specific small
codes to build larger ones, in polar coding the multi-level code is obtained by expur-
gating rows of a full-order generator matrix,GN, with respect to a channel-specific
criterion. The special structure ofGN ensures that, no matter how expurgation is
done, the resulting code is a multi-level|u|u+ v| code. In essence, polar coding en-
joys the freedom to pick a multi-level code from an ensemble of such codes so as
to suit the channel at hand, while conventional approaches to multi-level coding do
not have this degree of flexibility.

1.4 Outline of the rest of notes

The rest of the notes is organized as follows. Chapter 2 examines the basic channel
combining and splitting operation in detail, in particular, the recursive nature of that
transform. In Chapter 3, we develop the main polarization result. In Chapter 4, we
investigate the performance of polar codes and complete theproofs of polar coding
theorems. Chapter 5 we discuss the complexity of the polar coding algorithms.



Chapter 2
Channel Transformation

Abstract This chapter describes the basic channel transformation operation and in-
vestigates the wayI(W) andZ(W) get modified under this basic transformation. The
basic transformation shows the first traces of polarization. The asymptotic analysis
of polarization is left to the next chapter.

2.1 Recursive channel transformations

We have defined a blockwise channel combining and splitting operation by (1.2) and

(1.3) which transformedN independent copies ofW into W(1)
N , . . . ,W(N)

N . The goal
in this section is to show that this blockwise channel transformation can be broken
recursively into single-step channel transformations.

We say that a pair of binary-input channelsW′ : X → Ỹ andW′′ : X → Ỹ ×X
are obtained by a single-step transformation of two independent copies of a binary-
input channelW : X → Y and write

(W,W) 7→ (W′,W′′)

iff there exists a one-to-one mappingf : Y 2→ Ỹ such that

W′( f (y1,y2)|u1) = ∑
u′2

1
2

W(y1|u1⊕u′2)W(y2|u′2), (2.1)

W′′( f (y1,y2),u1|u2) =
1
2

W(y1|u1⊕u2)W(y2|u2) (2.2)

for all u1,u2 ∈X , y1,y2 ∈ Y .
According to this, we can write(W,W) 7→ (W(1)

2 ,W(2)
2 ) for any given B-DMCW

because

19
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W(1)
2 (y2

1|u1)
∆
= ∑

u2

1
2

W2(y
2
1|u2

1)

= ∑
u2

1
2

W(y1|u1⊕u2)W(y2|u2), (2.3)

W(2)
2 (y2

1,u1|u2)
∆
=

1
2

W2(y
2
1|u2

1)

=
1
2

W(y1|u1⊕u2)W(y2|u2), (2.4)

which are in the form of (2.1) and (2.2) by takingf as the identity mapping.
It turns out we can write, more generally,

(W(i)
N ,W(i)

N ) 7→ (W(2i−1)
2N ,W(2i)

2N ). (2.5)

This follows as a corollary to the following:

Proposition 3 For any n≥ 0, N = 2n, 1≤ i ≤ N,

W(2i−1)
2N (y2N

1 ,u2i−2
1 |u2i−1) =

∑
u2i

1
2

W(i)
N (yN

1 ,u
2i−2
1,o ⊕u2i−2

1,e |u2i−1⊕u2i)W
(i)
N (y2N

N+1,u
2i−2
1,e |u2i) (2.6)

and

W(2i)
2N (y2N

1 ,u2i−1
1 |u2i) =

1
2

W(i)
N (yN

1 ,u
2i−2
1,o ⊕u2i−2

1,e |u2i−1⊕u2i)W
(i)
N (y2N

N+1,u
2i−2
1,e |u2i). (2.7)

This proposition is proved in the Appendix. The transform relationship (2.5) can
now be justified by noting that (2.6) and (2.7) are identical in form to (2.1) and (2.2),
respectively, after the following substitutions:

W←W(i)
N , W′←W(2i−1)

2N ,

W′′←W(2i)
2N , u1← u2i−1,

u2← u2i, y1← (yN
1 ,u

2i−2
1,o ⊕u2i−2

1,e ),

y2← (y2N
N+1,u

2i−2
1,e ), f (y1,y2)← (y2N

1 ,u2i−2
1 ).

Thus, we have shown that the blockwise channel transformation from WN to
(W(1)

N , . . . ,W(N)
N ) breaks at a local level into single-step channel transformations

of the form (2.5). The full set of such transformations form afabric as shown in
Fig. 5 for N = 8. Reading from right to left, the figure starts with four copies of

the transformation(W,W) 7→ (W(1)
2 ,W(2)

2 ) and continues inbutterflypatterns, each
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Fig. 2.1 The channel transformation process withN = 8 channels.

representing a channel transformation of the form(W( j)
2i ,W( j)

2i ) 7→ (W(2 j−1)
2i+1 ,W(2 j)

2i+1 ).
The two channels at the right end-points of the butterflies are always identical and
independent. At the rightmost level there are 8 independentcopies ofW; at the next

level to the left, there are 4 independent copies ofW(1)
2 andW(2)

2 each; and so on.
Each step to the left doubles the number of channel types, buthalves the number of
independent copies.

2.2 Transformation of rate and reliability

We now investigate how the rate and reliability parameters,I(W(i)
N ) andZ(W(i)

N ),
change through a local (single-step) transformation (2.5). By understanding the lo-
cal behavior, we will be able to reach conclusions about the overall transformation
from WN to (W(1)

N , . . . ,W(N)
N ). Proofs of the results in this section are given in the

Appendix.
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2.2.1 Local transformation of rate and reliability

Proposition 4 Suppose(W,W) 7→ (W′,W′′) for some set of binary-input channels.
Then,

I(W′)+ I(W′′) = 2I(W), (2.8)

I(W′)≤ I(W′′) (2.9)

with equality iff I(W) equals 0 or 1.

The equality (2.8) indicates that the single-step channel transform preserves the
symmetric capacity. The inequality (2.9) together with (2.8) implies that the sym-
metric capacity remains unchanged under a single-step transform,I(W′) = I(W′′) =
I(W), iff W is either a perfect channel or a completely noisy one. IfW is neither per-
fect nor completely noisy, the single-step transform movesthe symmetric capacity
away from the center in the sense thatI(W′) < I(W) < I(W′′), thus helping polar-
ization.

Proposition 5 Suppose(W,W) 7→ (W′,W′′) for some set of binary-input channels.
Then,

Z(W′′) = Z(W)2, (2.10)

Z(W′)≤ 2Z(W)−Z(W)2, (2.11)

Z(W′)≥ Z(W)≥ Z(W′′). (2.12)

Equality holds in(2.11)iff W is a BEC. We have Z(W′) = Z(W′′) iff Z(W) equals 0
or 1, or equivalently, iff I(W) equals 1 or 0.

This result shows that reliability can only improve under a single-step channel
transform in the sense that

Z(W′)+Z(W′′)≤ 2Z(W) (2.13)

with equality iffW is a BEC.
Since the BEC plays a special role w.r.t. extremal behavior of reliability, it de-

serves special attention.

Proposition 6 Consider the channel transformation(W,W) 7→ (W′,W′′). If W is a
BEC with some erasure probabilityε, then the channels W′ and W′′ are BECs with
erasure probabilities2ε−ε2 andε2, respectively. Conversely, if W′ or W′′ is a BEC,
then W is BEC.

2.2.2 Rate and reliability forW(i)
N

We now return to the context at the end of Sect. 2.1.
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Proposition 7 For any B-DMC W, N= 2n, n≥ 0, 1≤ i ≤ N, the transformation

(W(i)
N ,W(i)

N ) 7→ (W(2i−1)
2N ,W(2i)

2N ) is rate-preserving and reliability-improving in the
sense that

I(W(2i−1)
2N )+ I(W(2i)

2N ) = 2I(W(i)
N ), (2.14)

Z(W(2i−1)
2N )+Z(W(2i)

2N )≤ 2Z(W(i)
N ), (2.15)

with equality in(2.15) iff W is a BEC. Channel splitting moves the rate and relia-
bility away from the center in the sense that

I(W(2i−1)
2N )≤ I(W(i)

N )≤ I(W(2i)
2N ), (2.16)

Z(W(2i−1)
2N )≥ Z(W(i)

N )≥ Z(W(2i)
2N ), (2.17)

with equality in(2.16)and(2.17)iff I (W) equals 0 or 1. The reliability terms further
satisfy

Z(W(2i−1)
2N )≤ 2Z(W(i)

N )−Z(W(i)
N )2, (2.18)

Z(W(2i)
2N ) = Z(W(i)

N )2, (2.19)

Z(W(2i)
2N )≤ Z(W(i)

N )≤ Z(W(2i−1)
2N ), (2.20)

with equality in(2.18)iff W is a BEC and with equality on either side of(2.20)iff
I(W) is either 0 or 1. The cumulative rate and reliability satisfy

N

∑
i=1

I(W(i)
N ) = NI(W), (2.21)

N

∑
i=1

Z(W(i)
N )≤ NZ(W), (2.22)

with equality in(2.22)iff W is a BEC.

This result follows from Prop. 4 and Prop. 5 as a special case and no separate
proof is needed. The cumulative relations (2.21) and (2.22)follow by repeated ap-
plication of (2.14) and (2.15), respectively. The conditions for equality in Prop. 4

are stated in terms ofW rather thanW(i)
N ; this is possible because: (i) by Prop. 4,

I(W) ∈ {0,1} iff I(W(i)
N ) ∈ {0,1}; and (ii) W is a BEC iff W(i)

N is a BEC, which
follows from Prop. 6 by induction.

For the special case thatW is a BEC with an erasure probabilityε, it follows

from Prop. 4 and Prop. 6 that the parameters{Z(W(i)
N )} can be computed through

the recursion

Z(W(2 j−1)
N ) = 2Z(W( j)

N/2)−Z(W( j)
N/2)

2,

Z(W(2 j)
N ) = Z(W( j)

N/2)
2,

(2.23)
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with Z(W(1)
1 ) = ε. The parameterZ(W(i)

N ) equals the erasure probability of the

channelW(i)
N . The recursive relations (1.4) follow from (2.23) by the fact that

I(W(i)
N ) = 1−Z(W(i)

N ) for W a BEC.

Appendix

2.3 Proof of Proposition 3

To prove (2.6), we write

W(2i−1)
2N (y2N

1 ,u2i−2
1 |u2i−1) = ∑

u2N
2i

1
22N−1 W2N(y

2N
1 |u2N

1 )

= ∑
u2N

2i,o,u
2N
2i,e

1
22N−1 WN(y

N
1 |u2N

1,o⊕u2N
1,e)WN(y

2N
N+1|u2N

1,e)

= ∑
u2i

1
2 ∑

u2N
2i+1,e

1
2N−1 WN(y

2N
N+1|u2N

1,e) ∑
u2N

2i+1,o

1
2N−1 WN(y

N
1 |u2N

1,o⊕u2N
1,e). (2.24)

By definition (1.3), the sum overu2N
2i+1,o for any fixedu2N

1,e equals

W(i)
N (yN

1 ,u
2i−2
1,o ⊕u2i−2

1,e |u2i−1⊕u2i),

because, asu2N
2i+1,o ranges overX N−i , u2N

2i+1,o⊕u2N
2i+1,e ranges also overX N−i . We

now factor this term out of the middle sum in (2.24) and use (1.3) again to obtain
(2.6). For the proof of (2.7), we write

W(2i)
2N (y2N

1 ,u2i−1
1 |u2i) = ∑

u2N
2i+1

1
22N−1 W2N(y

2N
1 |u2N

1 )

=
1
2 ∑

u2N
2i+1,e

1
2N−1 WN(y

2N
N+1|u2N

1,e) ∑
u2N

2i+1,o

1
2N−1 WN(y

N
1 |u2N

1,o⊕u2N
1,e).

By carrying out the inner and outer sums in the same manner as in the proof of (2.6),
we obtain (2.7).

2.4 Proof of Proposition 4

Let us specify the channels as follows:W : X → Y , W′ : X → Ỹ, andW′′ :
X → Ỹ×X . By hypothesis there is a one-to-one functionf : Y → Ỹ such
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that (2.1) and (2.2) are satisfied. For the proof it is helpfulto define an ensemble
of RVs (U1,U2,X1,X2,Y1,Y2,Ỹ) so that the pair(U1,U2) is uniformly distributed
over X 2, (X1,X2) = (U1⊕U2,U2), PY1,Y2|X1,X2

(y1,y2|x1,x2) = W(y1|x1)W(y2|x2),
andỸ = f (Y1,Y2). We now have

W′(ỹ|u1) = PỸ|U1
(ỹ|u1),

W′′(ỹ,u1|u2) = PỸU1|U2
(ỹ,u1|u2).

From these and the fact that(Y1,Y2) 7→ Ỹ is invertible, we get

I(W′) = I(U1;Ỹ) = I(U1;Y1Y2),

I(W′′) = I(U2;ỸU1) = I(U2 ; Y1Y2U1).

SinceU1 andU2 are independent,I(U2;Y1Y2U1) equalsI(U2;Y1Y2|U1). So, by the
chain rule, we have

I(W′)+ I(W′′) = I(U1U2;Y1Y2) = I(X1X2;Y1Y2)

where the second equality is due to the one-to-one relationship between(X1,X2)
and(U1,U2). The proof of (2.8) is completed by noting thatI(X1X2;Y1Y2) equals
I(X1;Y1)+ I(X2;Y2) which in turn equals 2I(W).

To prove (2.9), we begin by noting that

I(W′′) = I(U2;Y1Y2U1)

= I(U2;Y2)+ I(U2;Y1U1|Y2)

= I(W)+ I(U2;Y1U1|Y2).

This shows thatI(W′′) ≥ I(W). This and (2.8) give (2.9). The above proof shows
that equality holds in (2.9) iffI(U2;Y1U1|Y2) = 0, which is equivalent to having

PU1,U2,Y1|Y2
(u1,u2,y1|y2) = PU1,Y1|Y2

(u1,y1|y2)PU2|Y2
(u2|y2)

for all (u1,u2,y1,y2) such thatPY2(y2)> 0, or equivalently,

PY1,Y2|U1,U2
(y1,y2|u1,u2)PY2(y2) = PY1,Y2|U1

(y1,y2|u1)PY2|U2
(y2|u2) (2.25)

for all (u1,u2,y1,y2). SincePY1,Y2|U1,U2
(y1,y2|u1,u2)=W(y1|u1⊕u2)W(y2|u2), eq. (2.25)

can be written as

W(y2|u2) [W(y1|u1⊕u2)PY2(y2)−PY1,Y2(y1,y2|u1)] = 0. (2.26)

SubstitutingPY2(y2) =
1
2W(y2|u2)+

1
2W(y2|u2⊕1) and

PY1,Y2|U1
(y1,y2|u1) =

1
2

W(y1|u1⊕u2)W(y2|u2)+
1
2

W(y1|u1⊕u2⊕1)W(y2|u2⊕1)
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into (2.26) and simplifying, we obtain

W(y2|u2)W(y2|u2⊕1) [W(y1|u1⊕u2)−W(y1|u1⊕u2⊕1)] = 0,

which for all four possible values of(u1,u2) is equivalent to

W(y2|0)W(y2|1) [W(y1|0)−W(y1|1)] = 0.

Thus, either there exists noy2 such thatW(y2|0)W(y2|1)> 0, in which caseI(W) =
1, or for ally1 we haveW(y1|0) =W(y1|1), which impliesI(W) = 0.

2.5 Proof of Proposition 5

Proof of (2.10) is straightforward.

Z(W′′) = ∑
y2
1,u1

√

W′′( f (y1,y2),u1|0)
√

W′′( f (y1,y2),u1|1)

= ∑
y2
1,u1

1
2

√

W(y1 | u1)W(y2 | 0)
√

W(y1 | u1⊕1)W(y2 | 1)

= ∑
y2

√

W(y2 | 0)W(y2 | 1) ∑
u1

1
2 ∑

y1

√

W(y1 | u1)W(y1 | u1⊕1)

= Z(W)2.

To prove (2.11), we put for shorthandα(y1) = W(y1|0), δ (y1) = W(y1|1),
β (y2) =W(y2|0), andγ(y2) =W(y2|1), and write

Z(W′) = ∑
y2
1

√

W′( f (y1,y2)|0)W′( f (y1,y2)|1)

= ∑
y2
1

1
2

√

α(y1)β (y2)+ δ (y1)γ(y2)
√

α(y1)γ(y2)+ δ (y1)β (y2)

≤∑
y2
1

1
2

[

√

α(y1)β (y2)+
√

δ (y1)γ(y2)
] [

√

α(y1)γ(y2)+
√

δ (y1)β (y2)
]

−∑
y2
1

√

α(y1)β (y2)δ (y1)γ(y2)

where the inequality follows from the identity

[

√

(αβ + δγ)(αγ + δβ )
]2

+2
√

αβ δγ (
√

α−
√

δ )2(
√

β −√γ)2

=
[

(
√

αβ +
√

δγ)(
√

αγ +
√

δβ )−2
√

αβ δγ
]2
.
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Next, we note that

∑
y2
1

α(y1)
√

β (y2)γ(y2) = Z(W).

Likewise, each term obtained by expanding

(
√

α(y1)β (y2)+
√

δ (y1)γ(y2))(
√

α(y1)γ(y2)+
√

δ (y1)β (y2))

givesZ(W) when summed overy2
1. Also,

√

α(y1)β (y2)δ (y1)γ(y2) summed overy2
1

equalsZ(W)2. Combining these, we obtain the claim (2.11). Equality holds in (2.11)
iff, for any choice ofy2

1, one of the following is true:α(y1)β (y2)γ(y2)δ (y1) = 0 or
α(y1) = δ (y1) or β (y2) = γ(y2). This is satisfied ifW is a BEC. Conversely, if we
takey1 = y2, we see that for equality in (2.11), we must have, for any choice of
y1, eitherα(y1)δ (y1) = 0 or α(y1) = δ (y1); this is equivalent to saying thatW is a
BEC.

To prove (2.12), we need the following result which states that the parameter
Z(W) is a convex function of the channel transition probabilities.

Lemma 3 Given any collection of B-DMCs Wj : X →Y , j ∈J , and a probability
distribution Q onJ , defineW: X →Y as the channelW(y|x)=∑ j∈J Q( j)Wj (y|x).
Then,

∑
j∈J

Q( j)Z(Wj )≤ Z(W). (2.27)

Proof. This follows by first rewritingZ(W) in a different form and then applying
Minkowsky’s inequality [6, p. 524, ineq. (h)].

Z(W) = ∑
y

√

W(y|0)W(y|1)

=−1+
1
2 ∑

y

[

∑
x

√

W(y|x)
]2

≥−1+
1
2 ∑

y
∑

j∈J

Q( j)

[

∑
x

√

Wj(y|x)
]2

= ∑
j∈J

Q( j)Z(Wj ).

We now writeW′ as the mixture

W′( f (y1,y2)|u1) =
1
2

[

W0(y
2
1 | u1)+W1(y

2
1|u1)

]

where

W0(y
2
1|u1) =W(y1|u1)W(y2|0),
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W1(y
2
1|u1) =W(y1|u1⊕1)W(y2|1),

and apply Lemma 3 to obtain the claimed inequality

Z(W′)≥ 1
2
[Z(W0)+Z(W1)] = Z(W).

Since 0≤ Z(W) ≤ 1 andZ(W′′) = Z(W)2, we haveZ(W) ≥ Z(W′′), with equality
iff Z(W) equals 0 or 1. SinceZ(W′)≥ Z(W), this also shows thatZ(W′) = Z(W′′)
iff Z(W) equals 0 or 1. So, by Prop. 1,Z(W′) = Z(W′′) iff I(W) equal to 1 or 0.

2.6 Proof of Proposition 6

From (2.1), we have the identities

W′( f (y1,y2)|0)W′( f (y1,y2)|1) =
1
4

[

W(y1|0)2+W(y1|1)2]W(y2|0)W(y2|1)+
1
4

[

W(y2|0)2+W(y2|1)2]W(y1|0)W(y1|1) (2.28)

and

W′( f (y1,y2)|0)−W′( f (y1,y2)|1) =
1
2
[W(y1|0)−W(y1|1)] [W(y2|0)−W(y2|1)] . (2.29)

SupposeW is a BEC, butW′ is not. Then, there exists(y1,y2) such that the left
sides of (2.28) and (2.29) are both different from zero. From(2.29), we infer that
neithery1 nor y2 is an erasure symbol forW. But then the RHS of (2.28) must be
zero, which is a contradiction. Thus,W′ must be a BEC. From (2.29), we conclude
that f (y1,y2) is an erasure symbol forW′ iff either y1 or y2 is an erasure symbol for
W. This shows that the erasure probability forW′ is 2ε− ε2, whereε is the erasure
probability ofW.

Conversely, supposeW′ is a BEC butW is not. Then, there existsy1 such that
W(y1|0)W(y1|1) > 0 andW(y1|0)−W(y1|1) 6= 0. By takingy2 = y1, we see that
the RHSs of (2.28) and (2.29) can both be made non-zero, whichcontradicts the
assumption thatW′ is a BEC.

The other claims follow from the identities

W′′( f (y1,y2),u1|0)W′′( f (y1,y2),u1|1)

=
1
4

W(y1|u1)W(y1|u1⊕1)W(y2|0)W(y2|1)

and
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W′′( f (y1,y2),u1|0)−W′′( f (y1,y2),u1|1)

=
1
2
[W(y1|u1)W(y2|0)−W(y1|u1⊕1)W(y2|1)] .

The arguments are similar to the ones already given and we omit the details, other
than noting that( f (y1,y2),u1) is an erasure symbol forW′′ iff both y1 andy2 are
erasure symbols forW.





Chapter 3
Channel Polarization

Abstract This chapter proves the main polarization theorems.

3.1 Polarization Theorems

The goal of this chapter is to prove the main polarization theorems, restated below.

Theorem 1 For any B-DMC W, the channels{W(i)
N } polarizein the sense that, for

any fixedδ ∈ (0,1), as N goes to infinity through powers of two, the fraction of

indices i∈ {1, . . . ,N} for which I(W(i)
N ) ∈ (1− δ ,1] goes to I(W) and the fraction

for which I(W(i)
N ) ∈ [0,δ ) goes to1− I(W).

Theorem 2 Let W be a B-DMC. For any fixed rate R< I(W) and constantβ < 1
2,

there exists a sequence of sets{AN} such thatAN ⊂ {1, . . . ,N}, |AN| ≥ NR, and

∑
i∈AN

Z(W(i)
N ) = o(2−Nβ

). (3.1)

Conversely, if R> 0 and β > 1
2, then for any sequence of sets{AN} with AN ⊂

{1, . . . ,N}, |AN| ≥ NR, we have

max{Z(W(i)
N ) : i ∈AN}= ω(2−Nβ

). (3.2)

3.2 A stochastic process framework for analysis

The analysis is based on the recursive relationships depicted in Fig. 5; however,
it will be more convenient to re-sketch Fig. 5 as a binary treeas shown in Fig. 6.
The root node of the tree is associated with the channelW. The rootW gives birth

31
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to an upper channelW(1)
2 and a lower channelW(2)

2 , which are associated with the

two nodes at level 1. The channelW(1)
2 in turn gives birth to the channelsW(1)

4 and

W(2)
4 , and so on. The channelW(i)

2n is located at leveln of the tree at node numberi
counting from the top.

There is a natural indexing of nodes of the tree in Fig. 6 by bitsequences. The root
node is indexed with the null sequence. The upper node at level 1 is indexed with 0
and the lower node with 1. Given a node at leveln with indexb1b2 · · ·bn, the upper
node emanating from it has the labelb1b2 · · ·bn0 and the lower nodeb1b2 · · ·bn1.

According to this labeling, the channelW(i)
2n is situated at the nodeb1b2 · · ·bn with

i = 1+∑n
j=1b j2n− j . We denote the channelW(i)

2n located at nodeb1b2 · · ·bn alterna-
tively asWb1...bn.

0

1

W

W(1)
2 =W0

W(2)
2 =W1

W(1)
4 =W00

W(2)
4 =W01

W(3)
4 =W10

W(4)
4 =W11

W(1)
8 =W000

W(2)
8 =W001

W(3)
8 =W010

W(4)
8 =W011

W(5)
8 =W100

W(6)
8 =W101

W(7)
8 =W110

W(8)
8 =W111

· · ·

· · ·

· · ·

· · ·

Fig. 3.1 The tree process for the recursive channel construction.

We define a random tree process, denoted{Kn;n≥ 0}, in connection with Fig. 6.
The process begins at the root of the tree withK0 = W. For anyn≥ 0, given that
Kn =Wb1···bn, Kn+1 equalsWb1···bn0 or Wb1···bn1 with probability 1/2 each. Thus, the
path taken by{Kn} through the channel tree may be thought of as being driven by
a sequence of i.i.d. Bernoulli RVs{Bn;n = 1,2, . . .} whereBn equals 0 or 1 with
equal probability. Given thatB1, . . . ,Bn has taken on a sample valueb1, . . . ,bn, the
random channel process takes the valueKn =Wb1···bn. In order to keep track of the
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rate and reliability parameters of the random sequence of channelsKn, we define the
random processesIn = I(Kn) andZn = Z(Kn).

For a more precise formulation of the problem, we consider the probability space
(Ω ,F ,P) whereΩ is the space of all binary sequences(b1,b2, . . .) ∈ {0,1}∞, F is

the Borel field (BF) generated by thecylinder setsS(b1, . . . ,bn)
∆
= {ω ∈ Ω : ω1 =

b1, . . . ,ωn = bn}, n≥ 1,b1, . . . ,bn ∈ {0,1}, andP is the probability measure defined
on F such thatP(S(b1, . . . ,bn)) = 1/2n. For eachn≥ 1, we defineFn as the BF
generated by the cylinder setsS(b1, . . . ,bi), 1≤ i ≤ n, b1, . . . ,bi ∈ {0,1}. We define
F0 as the trivial BF consisting of the null set andΩ only. Clearly,F0⊂F1⊂ ·· · ⊂
F .

The random processes described above can now be formally defined as follows.
Forω = (ω1,ω2, . . .)∈Ω andn≥ 1, defineBn(ω) =ωn, Kn(ω) =Wω1···ωn, In(ω) =
I(Kn(ω)), andZn(ω) =Z(Kn(ω)). Forn= 0, defineK0 =W, I0 = I(W), Z0 =Z(W).
It is clear that, for any fixedn≥ 0, the RVsBn, Kn, In, andZn are measurable with
respect to the BFFn.

3.3 Proof of Theorem 1

We will prove Theorem 1 by considering the stochastic convergence properties of
the random sequences{In} and{Zn}.
Proposition 8 The sequence of random variables and Borel fields{In,Fn;n≥ 0}
is a martingale, i.e.,

Fn ⊂Fn+1 and In is Fn-measurable, (3.3)

E[|In|]< ∞, (3.4)

In = E[In+1|Fn]. (3.5)

Furthermore, the sequence{In;n≥ 0} converges a.e. to a random variable I∞ such
that E[I∞] = I0.

Proof. Condition (3.3) is true by construction and (3.4) by the factthat 0≤ In ≤ 1.
To prove (3.5), consider a cylinder setS(b1, . . . ,bn) ∈Fn and use Prop. 7 to write

E[In+1|S(b1, · · · ,bn)] =
1
2

I(Wb1···bn0)+
1
2

I(Wb1···bn1)

= I(Wb1···bn).

SinceI(Wb1···bn) is the value ofIn on S(b1, . . . ,bn), (3.5) follows. This completes
the proof that{In,Fn} is a martingale. Since{In,Fn} is a uniformly integrable
martingale, by general convergence results about such martingales (see, e.g., [3,
Theorem 9.4.6]), the claim aboutI∞ follows.

It should not be surprising that the limit RVI∞ takes values a.e. in{0,1}, which

is the set of fixed points ofI(W) under the transformation(W,W) 7→ (W(1)
2 ,W(2)

2 ),
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as determined by the condition for equality in (2.9). For a rigorous proof of this
statement, we take an indirect approach and bring the process{Zn;n≥ 0} also into
the picture.

Proposition 9 The sequence of random variables and Borel fields{Zn,Fn;n≥ 0}
is a supermartingale, i.e.,

Fn⊂Fn+1 and Zn is Fn-measurable, (3.6)

E[|Zn|]< ∞, (3.7)

Zn≥ E[Zn+1|Fn]. (3.8)

Furthermore, the sequence{Zn;n ≥ 0} converges a.e. to a random variable Z∞
which takes values a.e. in{0,1}.
Proof. Conditions (3.6) and (3.7) are clearly satisfied. To verify (3.8), consider a
cylinder setS(b1, . . . ,bn) ∈Fn and use Prop. 7 to write

E[Zn+1|S(b1, . . . ,bn)] =
1
2

Z(Wb1···bn0)+
1
2

Z(Wb1···bn1)

≤ Z(Wb1···bn).

SinceZ(Wb1···bn) is the value ofZn on S(b1, . . . ,bn), (3.8) follows. This completes
the proof that{Zn,Fn} is a supermartingale. For the second claim, observe that the
supermartingale{Zn,Fn} is uniformly integrable; hence, it converges a.e. and in
L 1 to a RVZ∞ such thatE[|Zn−Z∞|]→ 0 (see, e.g., [3, Theorem 9.4.5]). It follows
that E[|Zn+1− Zn|]→ 0. But, by Prop. 7,Zn+1 = Z2

n with probability 1/2; hence,
E[|Zn+1−Zn|] ≥ (1/2)E[Zn(1−Zn)] ≥ 0. Thus,E[Zn(1−Zn)]→ 0, which implies
E[Z∞(1−Z∞)] = 0. This, in turn, means thatZ∞ equals 0 or 1 a.e.

Proposition 10 The limit RV I∞ takes values a.e. in the set{0,1}: P(I∞ = 1) = I0
and P(I∞ = 0) = 1− I0.

Proof. The fact thatZ∞ equals 0 or 1 a.e., combined with Prop. 1, implies that
I∞ = 1−Z∞ a.e. SinceE[I∞] = I0, the rest of the claim follows.

As a corollary to Prop. 10, we can conclude that, asN tends to infinity, the sym-

metric capacity terms{I(W(i)
N : 1 ≤ i ≤ N} cluster around 0 and 1, except for a

vanishing fraction. This completes the proof of Theorem 1.

3.4 Proof of the converse part of Theorem 2

We first prove the converse part of Theorem 2 which we restate as follows.

Proposition 11 For anyβ > 1/2 and with P(Z0 > 0)> 0,

lim
n→∞

P
(

Zn < 2−2nβ )
= 0. (3.9)
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Proof. Observe that the random processZn is lower-bounded by the process
{

Ln :
n∈ N

}

defined byL0 := Z0 and forn≥ 1

Ln = L2
n−1 whenBn = 1,

Ln = Ln−1 whenBn = 0.

Thus,Ln = L2Sn

0 whereSn := ∑n
i=1Bi . So, we have

P
(

Zn≤ 2−2βn)≤ P
(

Ln ≤ 2−2βn)

= P

(

Sn≥ nβ − log2(− log2(Z0))

)

.

For β > 1
2, this last probability goes to zero asn increases by the law of large

numbers.

3.5 Proof of Theorem 2: The direct part

In this part, we will establish the direct part of Theorem 2 which may be stated as
follows.

Proposition 12 For any givenβ < 1
2 andε > 0, there exists n such that

P
(

Zn < 2−2nβ )≥ I0− ε. (3.10)

The proof of this result is quite lengthy and will be split into several parts. It
will be convenient to introduce some notation and state an elementary fact before
beginning the proof.

Forn> m≥ 0 and 0≤ β ≤ 1, defineSm,n = ∑n
i=m+1Bi and

Sm,n(β ) = {ω ∈Ω : Sm,n(ω)> (n−m)β}.

By Chernoff’s bound (see, e.g., [6, p. 531]), for 0≤ β ≤ 1
2, the probability of this

set is bounded as

P[Sm,n(β )]≥ 1−2−(n−m)[1−H (β )] (3.11)

whereH (β ) = −β log2(β )− (1−β ) log2(1− β ) is the binary entropy function.
Clearly, for 0≤ β < 1/2, the probability ofSm,n goes to 1 as(n−m) increases.
Define n0(β ,ε) as the smallest value of(n−m) such that the RHS of (3.11) is
greater than or equal to 1− ε.
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3.5.1 A bootstrapping method

We first give a bound to majorize the process{Zn} on a sample function basis. For
this it is more convenient to consider the logarithmic processVn := log2(Zn). This
process evolves as

Vi+1 = 2Vi whenBi+1 = 1,

Vi+1≤Vi +1 whenBi+1 = 0.

Thus, at each step either the value is doubled or incrementedby an amount not
exceeding one. In terms of this process, we wish to show that with probability close
to I0 we haveVn≈−2

n
2 .

The following lemma is key to analyzing the behavior of the process{Vn}.

Lemma 4 Let A : R → R, A(x) = x+ 1 denote adding one, and D: R → R,
D(x) = 2x denote doubling. Suppose a sequence of numbers a0,a1, . . . ,an is defined
by specifying a0 and the recursion

ai+1 = fi(ai)

with fi ∈ {A,D}. Suppose
∣

∣{0≤ i ≤ n−1 : fi = D}
∣

∣= k and
∣

∣{0≤ i ≤ n−1 : fi =
A}

∣

∣= n−k, i.e., during the first n iterations of the recursion we encounter doubling
k times and adding-one n− k times. Then

an≤ D(k)(A(n−k)(a0)
)

= 2k(a0+n− k).

Proof. Observe that the upper bound onan corresponds to choosing

f0 = · · · fn−k−1 = A and fn−k = · · ·= fn−1 = D.

We will show that any other choice of{ fi} can be modified to yield a higher value of
an. To that end suppose{ fi} is not chosen as above. Then there existsj ∈ {1, . . . ,n−
1} for which f j−1 = D and f j = A. Define{ f ′i } by swappingf j and f j−1, i.e.,

f ′i =











A i = j−1

D i = j

fi else

and let{a′i} denote the sequence that results from{ f ′i }. Then

a′i = ai for i < j

a′j = a j−1+1

a′j+1 = 2a′j = 2a j−1+2

> 2a j−1+1= a j+1.



3.5 Proof of Theorem 2: The direct part 37

Since the recursion fromj +1 onwards is identical for the{ fi} and{ f ′i } sequences,
and since bothA andD are order preserving,a′j+1 > a j+1 implies thata′n > an.

By Lemma 4, we can write for anyn> m

Vn≤
[

Vm+(n−m)−Sm,n
]

2Sm,n

≤
[

Vm+(n−m)
]

2Sm,n

The process{Vn} takes values in(−∞,0] and the above bound is effective only when
Vm+(n−m) is less than 0. This means that for fixedm, there is a limit to how large
n can be taken before rendering the bound useless. On the otherhand, in order to
obtain the desired rate of exponential convergence one wishes to taken much larger
thanmso that the exponent can be approximated with high probability as

Sm,n≈ n/2.

Fortunately, by applying the same bound repeatedly these two conflicting constraints
on the choice ofn can be alleviated. For example, applying the bound first over[m,k]
and then over[k,n] we obtain

Vn≤
[(

Vm+(k−m)
)

2Sm,k +(n− k)
]

2Sn,k (3.12)

Now, a value ofk modestly larger thanm can ensure thatVk takes on a sufficiently
large negative value to ensure that we can choosen≫ k. This will be shown below.
However, still one needs to be able to begin with a large enough negative value for
Vm to initiate the bootstrapping operation. The following result states that this can
be done.

Proposition 13 For any givenε > 0 and there exists m0(ε) such that for all m≥
m0(ε)

P
(

Vm≤−2m
)

≥ I0− ε (3.13)

Accepting the validity of Proposition 13 momentarily, we will show how to com-
plete the proof of Proposition 12. We will prove Proposition13 in the following two
subsections.

Let m≥m0(ε/3) be arbitrary. Setk= 2m andn= m2. Then, with probability at
leastI0− ε/3, we have by (3.12) that

Vm2 ≤
(

−m2Sm,2m+(m2−2m)
)

2S2m,m2

For any givenβ < 1/2, we can chooseβ ′ ∈ (β ,1/2) such that form sufficiently
large we have

P
(

Sm,2m > β ′m
)

≥ 1− ε/3

and
P
(

S2m,m2 > β ′(m2−m)
)

≥ 1− ε/3



38 3 Channel Polarization

So, for suchmwe have with probability at leastI0− ε

Vm2 ≤
[

−m2mβ ′+(m2−2m)
]

2(m
2−2m)β ′ .

For a non-trivial bound we need to ensure that the term in square brackets is bounded
away from zero on the negative side. So, we impose the following additional con-
straint onm:

[

−m2mβ ′+(m2−2m)
]

<−1

which clearly can be met by choosingm large enough. Then, for allmsatisfying all
the constraints above we have

Vm2 ≤−2(m
2−2m)β ′

with probability at leastI0− ε. This, written in terms ofn= m2 reads as

Vn≤−2(n−o(n))β ′ ≤−2nβ

where the second inequality holds forn large enough sinceβ ′ > β .

3.5.2 Sealing the process in[0,ζ ]

The proof of Proposition 13 also contains a bootstrapping argument, but of a differ-
ent type. We first establish a result that “seals” as much of the sample paths of{Zn}
as possible in a small interval around zero. Forζ ≥ 0 andℓ≥ 0, define

Tℓ(ζ )
∆
= {ω ∈Ω : Zi(ω)≤ ζ for all i ≥ ℓ}.

Lemma 5 For anyζ > 0 andε > 0, there existsℓ0(ζ ,ε) such that for allℓ≥ ℓ0

P[Tℓ(ζ )]≥ I0− ε.

Proof. Fix ζ > 0. Let Ω0
∆
= {ω ∈ Ω : limn→∞ Zn(ω) = 0}. By Prop. 10,P(Ω0) =

I0. Fix ω ∈ Ω0. Zn(ω) → 0 implies that there existsn0(ω ,ζ ) such thatn ≥
n0(ω ,ζ ) ⇒ Zn(ω) ≤ ζ . Thus, ω ∈ Tℓ(ζ ) for somem. So, Ω0 ⊂

⋃∞
ℓ=1Tℓ(ζ ).

Therefore,P(
⋃∞

ℓ=1Tℓ(ζ )) ≥ P(Ω0). Since Tℓ(ζ ) ↑
⋃∞

ℓ=1Tℓ(ζ ), by the mono-
tone convergence property of a measure, limℓ→∞ P[Tℓ(ζ )] = P[

⋃∞
ℓ=1Tℓ(ζ )]. So,

limℓ→∞ P[Tℓ(ζ )] ≥ I0. It follows that, for anyζ > 0, ε > 0, there exists a finite
ℓ0 = ℓ0(ζ ,ε) such that, for allℓ≥ ℓ0, P[Tℓ(ζ )] ≥ I0− ε. This completes the proof.
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3.5.3 Proof of Proposition 13

For ω ∈ Tℓ(ζ ) andi ≥ ℓ, we have

Zi+1(ω)

Zi(ω)
≤
{

2, if Bi+1(ω) = 0

ζ , if Bi+1(ω) = 1

which implies

Zm(ω)≤ Zℓ(ω)2m−ℓ−Sℓ,m(ω) ζ Sℓ,m(ω), ω ∈ Tℓ(ζ ), m> ℓ.

This gives

Zm(ω)≤ Zℓ(ω)
(

21−β ζ β )m−ℓ
, ω ∈ Tℓ(ζ )∩Sℓ,m(β ).

Now, we setζ = ζ0 := 2−9, β = β0 := 9/20,m= (7ℓ/3), and note thatZℓ ≤ 1, to
obtain

Zm(ω)≤ 2−2m, ω ∈ T(3m/7)(ζ0)∩S(3m/7),m(β0). (3.14)

The bound (3.11) and Lemma 5 ensure that there existsm0(ε) such that, for all
m≥m0(ε), (3.14) holds with probability greater thanI0− ε. Specifically, it suffices
to takemgreater than both(7/4)n0(β0,ε/2) and(7/3)ℓ0(ζ0,ε/2).

3.5.4 Complementary remarks

Theorem 2 was first proved in [2] and the proof of the theorem proved above fol-
lowed that paper closely. The channel polarization result as expressed by Theorem 2
does not show an explicit dependence on the rate parameterR except for the condi-
tion thatR< I0. Rate-dependent refinements of this theorem have appeared in [18],
[8], [17] soon after the publication of [2]. For a more recentwork on the same sub-
ject, see [7]. To state this refined polarization theorem, let Q : R→ [0,1] denote the
complementary cumulative distribution function for the standard normal distribu-
tion:

Q(t) =
1√
2π

∫ ∞

t
e−u2/2du.

Let Q−1 denote the inverse ofQ. Then, the refined result can be stated in the present
notation as follows.

Theorem 6 For any0≤R< I(W), the Bhattacharyya random process in polariza-
tion has asymptotic probabilities given by

P
(

Zn≤ 2−2[n+Q−1(R/I0)
√

n]/2+o(
√

n))→R.
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3.6 A side result

It is interesting that Propositon 9 gives a new interpretation to the symmetric capac-
ity I(W) as the probability that the random process{Zn;n≥ 0} converges to zero.
Here, we use this to strengthen the lower bound in (0.1).

Proposition 14 For any B-DMC W, we have I(W)+Z(W)≥ 1 with equality iff W
is a BEC.

This result can be interpreted as saying that, among all B-DMCsW, the BEC
presents the most favorable rate-reliability trade-off: it minimizesZ(W) (maximizes
reliability) among all channels with a given symmetric capacity I(W); equivalently,
it minimizesI(W) required to achieve a given level of reliabilityZ(W).

Proof. Consider two channelsW andW′ with Z(W) = Z(W′)
∆
= z0. Suppose that

W′ is a BEC. Then,W′ has erasure probabilityz0 andI(W′) = 1− z0. Consider the
random processes{Zn} and{Z′n}. By the condition for equality in (2.18), the process
{Zn} is stochastically dominated by{Z′n} in the sense thatP(Zn ≤ z) ≥ P(Z′n ≤ z)
for all n≥ 1, 0≤ z≤ 1. Thus, the probability of{Zn} converging to zero is lower-
bounded by the probability that{Z′n} converges to zero, i.e.,I(W) ≥ I(W′). This
impliesI(W)+Z(W)≥ 1.



Chapter 4
Polar Coding

Abstract We show in this section that polar coding can achieve the symmetric ca-
pacityI(W) of any B-DMCW.

4.1 Plan of chapter

The main technical task in this chapter will be to prove Prop.2. We will carry out the
analysis over the class ofGN-coset codes before specializing the discussion to polar
codes. Recall that individualGN-coset codes are identified by a parameter vector
(N,K,A ,uA c). In the analysis, we will fix the parameters(N,K,A ) while keeping
uA c free to take any value overX N−K . In other words, the analysis will be over
the ensemble of 2N−K GN-coset codes with a fixed(N,K,A ). The decoder in the
system will be the SC decoder described in Sect. 1.2.2.

4.2 A probabilistic setting for the analysis

Let (X N×Y N,P) be a probability space with the probability assignment

P({(uN
1 ,y

N
1 )})

∆
= 2−NWN(y

N
1 |uN

1 ) (4.1)

for all (uN
1 ,y

N
1 ) ∈ X N ×Y N. On this probability space, we define an ensemble

of random vectors(UN
1 ,XN

1 ,YN
1 ,ÛN

1 ) that represent, respectively, the input to the
synthetic channelWN, the input to the product-form channelWN, the output ofWN

(and also ofWN), and the decisions by the decoder. For each sample point(uN
1 ,y

N
1 )∈

X N×Y N, the first three vectors take on the valuesUN
1 (uN

1 ,y
N
1 ) = uN

1 , XN
1 (uN

1 ,y
N
1 ) =

uN
1 GN, andYN

1 (uN
1 ,y

N
1 )= yN

1 , while the decoder output takes on the valueÛN
1 (uN

1 ,y
N
1 )

whose coordinates are defined recursively as

41
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Ûi(u
N
1 ,y

N
1 ) =

{

ui , i ∈A c

hi(yN
1 ,Û

i−1
1 (uN

1 ,y
N
1 )), i ∈A

(4.2)

for i = 1, . . . ,N.
A realizationuN

1 ∈ X N for the input random vectorUN
1 corresponds to send-

ing the data vectoruA together with the frozen vectoruA c. As random vectors, the
data partUA and the frozen partUA c are uniformly distributed over their respec-
tive ranges and statistically independent. By treatingUA c as a random vector over
X N−K , we obtain a convenient method for analyzing code performance averaged
over all codes in the ensemble(N,K,A ).

The main event of interest in the following analysis is the block error event under
SC decoding, defined as

E
∆
= {(uN

1 ,y
N
1 ) ∈X N×Y N : ÛA (uN

1 ,y
N
1 ) 6= uA }. (4.3)

Since the decoder never makes an error on the frozen part ofUN
1 , i.e.,ÛA c equals

UA c with probability one, that part has been excluded from the definition of the
block error event.

The probability of error termsPe(N,K,A ) andPe(N,K,A ,uA c) that were de-
fined in Sect. 1.2.3 can be expressed in this probability space as

Pe(N,K,A ) = P(E ),

Pe(N,K,A ,uA c) = P(E | {UA c = uA c}), (4.4)

where{UA c = uA c} denotes the event{(ũN
1 ,y

N
1 ) ∈X N×Y N : ũA c = uA c}.

4.3 Proof of Proposition 2

We may express the block error event asE = ∪i∈A Bi where

Bi
∆
= {(uN

1 ,y
N
1 ) ∈X N×Y N : ui−1

1 = Û i−1
1 (uN

1 ,y
N
1 ), ui 6= Ûi(u

N
1 ,y

N
1 )} (4.5)

is the event that the first decision error in SC decoding occurs at stagei. We notice
that

Bi = {(uN
1 ,y

N
1 ) ∈X N×Y N : ui−1

1 = Û i−1
1 (uN

1 ,y
N
1 ),ui 6= hi(y

N
1 ,Û

i−1
1 (uN

1 ,y
N
1 )}

= {(uN
1 ,y

N
1 ) ∈X N×Y N : ui−1

1 = Û i−1
1 (uN

1 ,y
N
1 ),ui 6= hi(y

N
1 ,u

i−1
1 )}

⊂ {(uN
1 ,y

N
1 ) ∈X N×Y N : ui 6= hi(y

N
1 ,u

i−1
1 )}

⊂ Ei

where
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Ei
∆
= {(uN

1 ,y
N
1 ) ∈X N×Y N : W(i−1)

N (yN
1 ,u

i−1
1 | ui)≤W(i−1)

N (yN
1 ,u

i−1
1 | ui⊕1)}.

(4.6)

Thus, we have
E ⊂

⋃

i∈A

Ei , P(E )≤ ∑
i∈A

P(Ei).

For an upper bound onP(Ei), note that

P(Ei) = ∑
uN

1 ,y
N
1

1
2NWN(y

N
1 | uN

1 )1Ei (u
N
1 ,y

N
1 )

≤ ∑
uN

1 ,y
N
1

1
2N WN(y

N
1 | uN

1 )

√

√

√

√

W(i)
N (yN

1 ,u
i−1
1 |ui⊕1)

W(i)
N (yN

1 ,u
i−1
1 |ui)

= Z(W(i)
N ).

(4.7)

We conclude that

P(E )≤ ∑
i∈A

Z(W(i)
N ),

which is equivalent to (1.13). This completes the proof of Prop. 2. The main coding
theorem of the paper now follows readily.

4.4 Proof of Theorem 3

By Theorem 2, for any fixed rateR< I(W) and constantβ < 1
2, there exists a se-

quence of sets{AN} such thatAN ⊂ {1, . . . ,N}, |AN| ≥ NR, and

∑
i∈AN

Z(W(i)
N ) = o(2−Nβ

). (4.8)

In particular, the bound (4.8) holds ifAN is chosen in accordance with the polar
coding rule because by definition this rule minimizes the sumin (4.8). Combining
this fact about the polar coding rule with Prop. 2, Theorem 3 follows.

4.5 Symmetry under channel combining and splitting

Let W : X → Y be a symmetric B-DMC withX = {0,1} andY arbitrary. By
definition, there exists a a permutationπ1 on Y such that (i)π−1

1 = π1 and (ii)
W(y|1) = W(π1(y)|0) for all y ∈ Y . Let π0 be the identity permutation onY .
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Clearly, the permutations(π0,π1) form an abelian group under function compo-
sition. For a compact notation, we will writex·y to denoteπx(y), for x∈X , y∈Y .

Observe thatW(y|x⊕a)=W(a·y|x) for all a,x∈X , y∈Y . This can be verified
by exhaustive study of possible cases or by noting thatW(y|x⊕a) = W((x⊕ a) ·
y|0) =W(x · (a ·y)|0) =W(a ·y|x). Also observe thatW(y|x⊕a) =W(x ·y|a) as⊕
is a commutative operation onX .

ForxN
1 ∈X N, yN

1 ∈ Y N, let

xN
1 ·yN

1
∆
= (x1 ·y1, . . . ,xN ·yN). (4.9)

This associates to each element ofX N a permutation onY N.

Proposition 15 If a B-DMC W is symmetric, thenWN is also symmetric in the sense
that

WN(yN
1 |xN

1 ⊕aN
1 ) =WN(xN

1 ·yN
1 |aN

1 ) (4.10)

for all xN
1 ,a

N
1 ∈X N, yN

1 ∈ Y N.

The proof is immediate and omitted.

Proposition 16 If a B-DMC W is symmetric, then the channels WN and W(i)
N are

also symmetric in the sense that

WN(y
N
1 | uN

1 ) =WN(a
N
1 GN ·yN

1 | uN
1 ⊕aN

1 ), (4.11)

W(i)
N (yN

1 ,u
i−1
1 | ui) =W(i)

N (aN
1 GN ·yN

1 ,u
i−1
1 ⊕ai−1

1 | ui⊕ai) (4.12)

for all uN
1 ,a

N
1 ∈X N, yN

1 ∈ Y N, N = 2n, n≥ 0, 1≤ i ≤ N.

Proof. LetxN
1 =uN

1 GN and observe thatWN(yN
1 | uN

1 )=∏N
i=1W(yi | xi) =∏N

i=1W(xi ·
yi | 0) =WN(xN

1 ·yN
1 | 0N

1 ). Now, letbN
1 = aN

1 GN, and use the same reasoning to see
thatWN(bN

1 ·yN
1 | uN

1 ⊕aN
1 ) =WN((xN

1 ⊕bN
1 ) · (bN

1 ·yN
1 ) | 0N

1 ) =WN(xN
1 ·yN

1 | 0N
1 ). This

proves the first claim. To prove the second claim, we use the first result.

W(i)
N (yN

1 ,u
i−1
1 | ui) = ∑

uN
i+1

1
2N−1WN(y

N
1 | uN

1 )

= ∑
uN

i+1

1
2N−1WN(a

N
1 GN ·yN

1 | uN
1 ⊕aN

1 )

=WN(a
N
1 GN ·yN

1 ,u
i−1
1 ⊕ai−1

1 | ui⊕ai)

where we used the fact that the sum overuN
i+1 ∈X N−i can be replaced with a sum

overuN
i+1⊕aN

i+1 for any fixedaN
1 since{uN

i+1⊕aN
i+1 : uN

i+1 ∈X N−i}= XN−i .
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4.6 Proof of Theorem 4

We return to the analysis in Sect. 4.3 and consider a code ensemble(N,K,A ) under
SC decoding, only this time assuming thatW is a symmetric channel. We first show
that the error events{Ei} defined by (4.6) have a symmetry property.

Proposition 17 For a symmetric B-DMC W, the eventEi has the property that

(uN
1 ,y

N
1 ) ∈ Ei iff (aN

1 ⊕uN
1 ,a

N
1 GN ·yN

1 ) ∈ Ei (4.13)

for each1≤ i ≤ N, (uN
1 ,y

N
1 ) ∈X N×Y N, aN

1 ∈X N.

Proof. This follows directly from the definition ofEi by using the symmetry prop-

erty (4.12) of the channelW(i)
N .

Now, consider the transmission of a particular source vector uA and frozen vector
uA c, jointly forming an input vectoruN

1 for the channelWN. This event is denoted
below as{UN

1 = uN
1 } instead of the more formal{uN

1 }×Y N.

Corollary 1 For a symmetric B-DMC W, for each1≤ i ≤ N and uN1 ∈X N, the
eventsEi and{UN

1 = uN
1 } are independent; hence, P(Ei) = P(Ei | {UN

1 = uN
1 }).

Proof. For (uN
1 ,y

N
1 ) ∈X N×Y N andxN

1 = uN
1 GN, we have

P(Ei | {UN
1 = uN

1 }) = ∑
yN
1

WN(y
N
1 | uN

1 ) 1Ei (u
N
1 ,y

N
1 )

= ∑
yN
1

WN(x
N
1 ·yN

1 | 0N
1 ) 1Ei (0

N
1 ,x

N
1 ·yN

1 ) (4.14)

= P(Ei | {UN
1 = 0N

1 }). (4.15)

Equality follows in (4.14) from (4.11) and (4.13) by takingaN
1 = uN

1 , and in (4.15)
from the fact that{xN

1 · yN
1 : yN

1 ∈ Y N} = Y N for any fixedxN
1 ∈X N. The rest of

the proof is immediate.

Now, by (4.7), we have, for alluN
1 ∈X N,

P(Ei | {UN
1 = uN

1 })≤ Z(W(i)
N ) (4.16)

and, sinceE ⊂ ∪i∈A Ei , we obtain

P(E | {UN
1 = uN

1 })≤ ∑
i∈A

Z(W(i)
N ). (4.17)

This implies that, for every symmetric B-DMCW and every(N,K,A ,uA c) code,
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Pe(N,K,A ,uA c) = ∑
uA ∈X K

1
2K P(E | {UN

1 = uN
1 })

≤ ∑
i∈A

Z(W(i)
N ). (4.18)

This bound onPe(N,K,A ,uA c) is independent of the frozen vectoruA c. Theorem 4
is now obtained by combining Theorem 2 with Prop. 2, as in the proof of Theorem 3.

Note that although we have given a bound onP(E |{UN
1 = uN

1 }) that is indepen-
dent ofuN

1 , we stopped short of claiming that the error eventE is independent of
UN

1 because our decision functions{hi} break ties always in favor of ˆui = 0. If this
bias were removed by randomization, thenE would become independent ofUN

1 .

4.7 Further symmetries of the channelW(i)
N

We may use the degrees of freedom in the choice ofaN
1 in (4.12) to explore the

symmetries inherent in the channelW(i)
N . For a given(yN

1 ,u
i
1), we may selectaN

1
with ai

1 = ui
1 to obtain

W(i)
N (yN

1 ,u
i−1
1 | ui) =W(i)

N (aN
1 GN ·yN

1 ,0
i−1
1 | 0). (4.19)

So, if we were to prepare a look-up table for the transition probabilities{W(i)
N (yN

1 ,u
i−1
1 |

ui) : yN
1 ∈ Y N,ui

1 ∈X i}, it would suffice to store only the subset of probabilities

{W(i)
N (yN

1 ,0
i−1
1 | 0) : yN

1 ∈ Y N}.
The size of the look-up table can be reduced further by using the remaining de-

grees of freedom in the choice ofaN
i+1. LetX N

i+1
∆
= {aN

1 ∈X N : ai
1 = 0i

1}, 1≤ i ≤N.
Then, for any 1≤ i ≤ N, aN

1 ∈X N
i+1, andyN

1 ∈ Y N, we have

W(i)
N (yN

1 ,0
i−1|0) =W(i)

N (aN
1 GN ·yN

1 ,0
i−1
1 |0) (4.20)

which follows from (4.19) by takingui
1 = 0i

1 on the left hand side.

To explore this symmetry further, letX N
i+1 ·yN

1
∆
= {aN

1 GN ·yN
1 : aN

1 ∈X N
i+1}. The

setX N
i+1 · yN

1 is theorbit of yN
1 under theaction groupX N

i+1. The orbitsX N
i+1 · yN

1
over variation ofyN

1 partition the spaceY N into equivalence classes. LetY N
i+1 be

a set formed by taking one representative from each equivalence class. The output

alphabet of the channelW(i)
N can be represented effectively by the setY N

i+1.
For example, supposeW is a BSC withY = {0,1}. Each orbitX N

i+1 · yN
1 has

2N−i elements and there are 2i orbits. In particular, the channelW(1)
N has effectively

two outputs, and being symmetric, it has to be a BSC. This is a great simplification

sinceW(1)
N has an apparent output alphabet size of 2N. Likewise, whileW(i)

N has an
apparent output alphabet size of 2N+i−1, due to symmetry, the size shrinks to 2i.
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Further output alphabet size reductions may be possible by exploiting other prop-

erties specific to certain B-DMCs. For example, ifW is a BEC, the channels{W(i)
N }

are known to be BECs, each with an effective output alphabet size of three.

The symmetry properties of{W(i)
N } help simplify the computation of the channel

parameters.

Proposition 18 For any symmetric B-DMC W, the parameters{Z(W(i)
N )} given by

(1.5)can be calculated by the simplified formula

Z(W(i)
N ) = 2i−1 ∑

yN
1 ∈Y N

i+1

|X N
i+1 ·yN

1 |
√

W(i)
N (yN

1 ,0
i−1
1 |0)W

(i)
N (yN

1 ,0
i−1
1 |1).

We omit the proof of this result.
For the important example of a BSC, this formula becomes

Z(W(i)
N ) = 2N−1 ∑

yN
1 ∈Y N

i+1

√

W(i)
N (yN

1 ,0
i−1
1 |0)W(i)

N (yN
1 ,0

i−1
1 |1).

This sum forZ(W(i)
N ) has 2i terms, as compared to 2N+i−1 terms in (1.5).





Chapter 5
Encoding, Decoding and Construction of Polar
Codes

Abstract This chapter considers the encoding, decoding, and construction problems
for polar coding.

5.1 Encoding

In this section, we will consider the encoding of polar codesand prove the part
of Theorem 5 about encoding complexity. We begin by giving explicit algebraic
expressions forGN, the generator matrix for polar coding, which so far has beende-
fined only in a schematic form by Fig. 3. The algebraic forms ofGN naturally point
at efficient implementations of the encoding operationxN

1 = uN
1 GN. In analyzing the

encoding operationGN, we exploit its relation to fast transform methods in signal
processing; in particular, we use the bit-indexing idea of [4] to interpret the various
permutation operations that are part ofGN.

5.1.1 Formulas forGN

In the following, assumeN = 2n for somen≥ 0. Let Ik denote thek-dimensional
identity matrix for anyk≥ 1. We begin by translating the recursive definition ofGN

as given by Fig. 3 into an algebraic form:

GN = (IN/2⊗F)RN (I2⊗GN/2), for N≥ 2,

with G1 = I1.
Either by verifying algebraically that(IN/2⊗F)RN = RN(F ⊗ IN/2) or by ob-

serving that channel combining operation in Fig. 3 can be redrawn equivalently as
in Fig. 8, we obtain a second recursive formula

49
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WN

RN

WN/2

WN/2

u1

u2

uN/2

...
...

...
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v1 y1
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v2 y2
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+
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uN
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...

...

u2

vN/2+1

u4

vN/2+2

uN vN

yN/2+1

yN/2+2

yN

Fig. 5.1 An alternative realization of the recursive construction for WN.

GN = RN(F⊗ IN/2)(I2⊗GN/2)

= RN(F⊗GN/2), (5.1)

valid for N ≥ 2. This form appears more suitable to derive a recursive relationship.
We substituteGN/2 = RN/2(F⊗GN/4) back into (5.1) to obtain

GN = RN
(

F⊗
(

RN/2
(

F⊗GN/4
)))

= RN
(

I2⊗RN/2
)(

F⊗2⊗GN/4
)

(5.2)

where (5.2) is obtained by using the identity(AC)⊗ (BD) = (A⊗B)(C⊗D) with
A= I2, B= RN/2, C= F , D = F⊗GN/4. Repeating this, we obtain

GN = BNF⊗n (5.3)
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whereBN
∆
= RN(I2⊗RN/2)(I4⊗RN/4) · · · (IN/2⊗R2). It can seen by simple manip-

ulations that

BN = RN(I2⊗BN/2). (5.4)

We can see thatBN is a permutation matrix by the following induction argument.
Assume thatBN/2 is a permutation matrix for someN ≥ 4; this is true forN = 4
sinceB2 = I2. Then,BN is a permutation matrix because it is the product of two
permutation matrices,RN andI2⊗BN/2.

In the following, we will say more about the nature ofBN as a permutation.

5.1.2 Analysis by bit-indexing

To analyze the encoding operation further, it will be convenient to index vectors and
matrices with bit sequences. Given a vectoraN

1 with lengthN = 2n for somen≥ 0,
we denote itsith element,ai , 1≤ i ≤ N, alternatively asab1···bn whereb1 · · ·bn is
the binary expansion of the integeri−1 in the sense thati = 1+∑n

j=1b j2n− j . Like-
wise, the elementAi j of anN-by-N matrixA is denoted alternatively asAb1···bn,b′1···b′n
whereb1 · · ·bn andb′1 · · ·b′n are the binary representations ofi−1 and j−1, respec-
tively. Using this convention, it can be readily verified that the productC = A⊗B
of a 2n-by-2n matrix A and a 2m-by-2m matrix B has elementsCb1···bn+m,b′1···b′n+m

=
Ab1···bn,b′1···b′nBbn+1···bn+m,b′n+1···b′n+m

.

We now consider the encoding operation under bit-indexing.First, we observe
that the elements ofF in bit-indexed form are given byFb,b′ = 1⊕b′⊕bb′ for all
b,b′ ∈ {0,1}. Thus,F⊗n has elements

F⊗n
b1···bn,b′1···b′n

=
n

∏
i=1

Fbi ,b′i
=

n

∏
i=1

(1⊕b′i⊕bib
′
i). (5.5)

Second, the reverse shuffle operatorRN acts on a row vectoruN
1 to replace the

element in bit-indexed positionb1 · · ·bn with the element in positionb2 · · ·bnb1; that
is, if vN

1 = uN
1 RN, thenvb1···bn = ub2···bnb1 for all b1, . . . ,bn ∈ {0,1}. In other words,

RN cyclically rotates the bit-indexes of the elements of a leftoperanduN
1 to the right

by one place.
Third, the matrixBN in (5.3) can be interpreted as thebit-reversaloperator:

if vN
1 = uN

1 BN, then vb1···bn = ubn···b1 for all b1, . . . ,bn ∈ {0,1}. This statement
can be proved by induction using the recursive formula (5.4). We give the idea
of such a proof by an example. Let us assume thatB4 is a bit-reversal operator
and show that the same is true forB8. Let u8

1 be any vector overGF(2). Using
bit-indexing, it can be written as(u000,u001,u010,u011,u100,u101,u110,u111). Since
u8

1B8 = u8
1R8(I2⊗B4), let us first consider the action ofR8 on u8

1. The reverse
shuffleR8 rearranges the elements ofu8

1 with respect to odd-even parity of their
indices, sou8

1R8 equals(u000,u010,u100,u110,u001,u011,u101,u111). This has two
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halves,c4
1

∆
= (u000,u010,u100,u110) andd4

1
∆
= (u001,u011,u101,u111), corresponding

to odd-even index classes. Notice thatcb1b2 = ub1b20 and db1b2 = ub1b21 for all
b1,b2 ∈ {0,1}. This is to be expected since the reverse shuffle rearranges the indices
in increasing order within each odd-even index class. Next,consider the action of
I2⊗B4 on (c4

1,d
4
1). The result is(c4

1B4,d4
1B4). By assumption,B4 is a bit-reversal

operation, soc4
1B4 = (c00,c10,c01,c11), which in turn equals(u000,u100,u010,u110).

Likewise, the result ofd4
1B4 equals(u001,u101,u011,u111). Hence, the overall opera-

tion B8 is a bit-reversal operation.
Given the bit-reversal interpretation ofBN, it is clear thatBN is a symmetric

matrix, soBT
N =BN. SinceBN is a permutation, it follows from symmetry thatB−1

N =
BN.

It is now easy to see that, for anyN-by-N matrix A, the productC = BT
NABN

has elementsCb1···bn,b′1···b′n = Abn···b1,b′n···b′1. It follows that if A is invariant under bit-
reversal, i.e., ifAb1···bn,b′1···b′n = Abn···b1,b′n···b′1 for everyb1, . . . ,bn,b′1, . . . ,b

′
n ∈ {0,1},

then A = BT
NABN. SinceBT

N = B−1
N , this is equivalent toBNA = ABT . Thus, bit-

reversal-invariant matrices commute with the bit-reversal operator.

Proposition 19 For any N= 2n, n≥ 1, the generator matrix GN is given by GN =
BNF⊗n and GN = F⊗nBN where BN is the bit-reversal permutation. GN is a bit-
reversal invariant matrix with

(GN)b1···bn,b′1···b′n =
n

∏
i=1

(1⊕b′i⊕bn−ib
′
i). (5.6)

Proof. F⊗n commutes withBN because it is invariant under bit-reversal, which
is immediate from (5.5). The statementGN = BNF⊗n was established before; by
proving thatF⊗n commutes withBN, we have established the other statement:
GN = F⊗nBN. The bit-indexed form (5.6) follows by applying bit-reversal to (5.5).

A fact useful for estimation of minimum Hamming distances ofpolar codes is
the following.

Proposition 20 For any N= 2n, n≥ 0, b1, . . . ,bn ∈ {0,1}, the rows of GN and F⊗n

with index b1 · · ·bn have the same Hamming weight given by2wH(b1,...,bn).

Proof. For fixedb1, . . . ,bn, the sum of the terms(GN)b1···bn,b′1···b′n (as integers) over
all b′1, . . . ,b

′
n ∈ {0,1} gives the Hamming weight of the row ofGN with index

b1 · · ·bn. This sum is easily seen to be 2wH(b1,...,bn) where

wH(b1, . . . ,bn)
∆
=

n

∑
i=1

bi (5.7)

is the Hamming weight of(b1, . . . ,bn). The proof forF⊗n is obtained by using the
same argument on (5.5).
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5.1.3 Encoding complexity

For complexity estimation, our computational model will bea single processor ma-
chine with a random access memory. The complexities expressed will be time com-
plexities. The discussion will be given for an arbitraryGN-coset code with parame-
ters(N,K,A ,uA c).

Let χE(N) denote the worst-case encoding complexity over all(N,K,A ,uA c)
codes with a given block-lengthN. If we take the complexity of a scalar mod-2
addition as 1 unit and the complexity of the reverse shuffle operationRN asN units,
we see from Fig. 3 thatχE(N)≤N/2+N+2χE(N/2). Starting with an initial value
χE(2) = 3 (a generous figure), we obtain by induction thatχE(N) ≤ 3

2N logN for
all N = 2n, n≥ 1. Thus, the encoding complexity isO(N logN).

x8

x7

x6

x5

x4

x3

x2

x1

ũ8 = u8

ũ7 = u4

ũ6 = u6

ũ5 = u2

ũ4 = u7

ũ3 = u3

ũ1 = u5

ũ1 = u1

Fig. 5.2 A circuit for implementing the transformationF⊗3. Signals flow from left to right. Each
edge carries a signal 0 or 1. Each node adds (mod-2) the signals on all incoming edges from the
left and sends the result out on all edges to the right. (Edgescarrying the signalsui andxi are not
shown.)

A specific implementation of the encoder using the formGN = BNF⊗n is shown
in Fig. 9 for N = 8. The input to the circuit is the bit-reversed version ofu8

1, i.e.,
ũ8

1 = u8
1B8. The output is given byx8

1 = ũ8
1F⊗3 = u8

1G8. In general, the complexity
of this implementation isO(N logN) with O(N) for BN andO(N logN) for F⊗n.

An alternative implementation of the encoder would be to apply u8
1 in natural

index order at the input of the circuit in Fig. 9. Then, we would obtainx̃8
1 = u8

1F⊗3



54 5 Encoding, Decoding and Construction of Polar Codes

at the output. Encoding could be completed by a post bit-reversal operation:x8
1 =

x̃8
1B8 = u8

1G8.
The encoding circuit of Fig. 9 suggests many parallel implementation alterna-

tives forF⊗n: for example, withN processors, one may do a “column by column”
implementation, and reduce the total latency to logN. Various other trade-offs are
possible between latency and hardware complexity.

In an actual implementation of polar codes, it may be preferable to useF⊗n in
place ofBNF⊗n as the encoder mapping in order to simplify the implementation. In
that case, the SC decoder should compensate for this by decoding the elements of
the source vectoruN

1 in bit-reversed index order. We have includedBN as part of the
encoder in this paper in order to have a SC decoder that decodes uN

1 in the natural
index order, which simplified the notation.

5.2 Decoding

In this section, we consider the computational complexity of the SC decoding al-
gorithm. As in the previous section, our computational model will be a single
processor machine with a random access memory and the complexities expressed
will be time complexities. LetχD(N) denote the worst-case complexity of SC de-
coding over allGN-coset codes with a given block-lengthN. We will show that
χD(N) = O(N logN).

5.2.1 A first decoding algorithm

Consider SC decoding for an arbitraryGN-coset code with parameter(N,K,A ,uA c).
Recall that the source vectoruN

1 consists of a random partuA and a frozen partuA c.
This vector is transmitted acrossWN and a channel outputyN

1 is obtained with prob-
ability WN(yN

1 |uN
1 ). The SC decoder observes(yN

1 ,uA c) and generates an estimate
ûN

1 of uN
1 . We may visualize the decoder as consisting ofN decision elements (DEs),

one for each source elementui ; the DEs are activated in the order 1 toN. If i ∈A c,
the elementui is known; so, theith DE, when its turn comes, simply sets ˆui = ui and
sends this result to all succeeding DEs. Ifi ∈A , theith DE waits until it has received
the previous decisions ˆui−1

1 , and upon receiving them, computes the likelihood ratio
(LR)

L(i)
N (yN

1 , û
i−1
1 )

∆
=

W(i)
N (yN

1 , û
i−1
1 |0)

W(i)
N (yN

1 , û
i−1
1 |1)

and generates its decision as
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ûi =

{

0, if L(i)
N (yN

1 , û
i−1
1 )≥ 1

1, otherwise

which is then sent to all succeeding DEs. This is a single-pass algorithm, with no
revision of estimates. The complexity of this algorithm is determined essentially by
the complexity of computing the LRs.

A straightforward calculation using the recursive formulas (2.6) and (2.7) gives

L(2i−1)
N (yN

1 , û
2i−2
1 ) =

L(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e ) L(i)

N/2(y
N
N/2+1, û

2i−2
1,e )+1

L(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )+L(i)

N/2(y
N
N/2+1, û

2i−2
1,e )

(5.8)

and

L(2i)
N (yN

1 , û
2i−1
1 ) =

[

L(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )

]1−2û2i−1

·L(i)
N/2(y

N
N/2+1, û

2i−2
1,e ). (5.9)

Thus, the calculation of an LR at lengthN is reduced to the calculation of two LRs at
lengthN/2. This recursion can be continued down to block-length 1, atwhich point

the LRs have the formL(1)
1 (yi) =W(yi |0)/W(yi |1) and can be computed directly.

To estimate the complexity of LR calculations, letχL(k), k∈{N,N/2,N/4, . . . ,1},
denote the worst-case complexity of computingL(i)

k (yk
1,v

i−1
1 ) over i ∈ [1,k] and

(yk
1,v

i−1
1 ) ∈ Y k×X i−1. From the recursive LR formulas, we have the complex-

ity bound

χL(k)≤ 2χL(k/2)+α (5.10)

whereα is the worst-case complexity of assembling two LRs at lengthk/2 into an

LR at lengthk. Takingχ (1)
L (yi) as 1 unit, we obtain the bound

χL(N)≤ (1+α)N = O(N). (5.11)

The overall decoder complexity can now be bounded asχD(N) ≤ KχL(N) ≤
NχL(N) = O(N2). This complexity corresponds to a decoder whose DEs do their
LR calculations privately, without sharing any partial results with each other. It turns
out, if the DEs pool their scratch-pad results, a more efficient decoder implementa-
tion is possible with overall complexityO(N logN), as we will show next.
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5.2.2 Refinement of the decoding algorithm

We now consider a decoder that computes the full set of LRs,{L(i)
N (yN

1 , û
i−1
1 ) : 1≤

i ≤N}. The previous decoder could skip the calculation ofL(i)
N (yN

1 , û
i−1
1 ) for i ∈A c;

but now we do not allow this. The decisions{ûi : 1≤ i ≤N} are made in exactly the
same manner as before; in particular, ifi ∈ A c, the decision ˆui is set to the known

frozen valueui , regardless ofL(i)
N (yN

1 , û
i−1
1 ).

To see where the computational savings will come from, we inspect (5.8) and
(5.9) and note that each LR value in the pair

(L(2i−1)
N (yN

1 , û
2i−2
1 ),L(2i)

N (yN
1 , û

2i−1
1 ))

is assembled from the same pair of LRs:

(L(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e ),L(i)

N/2(y
N
N/2+1, û

2i−2
1,e )).

Thus, the calculation of allN LRs at lengthN requires exactlyN LR calculations at
lengthN/2.1 Let us split theN LRs at lengthN/2 into two classes, namely,

{L(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e ) : 1≤ i ≤ N/2},

{L(i)
N/2(y

N
N/2+1, û

2i−2
1,e ) : 1≤ i ≤ N/2}.

(5.12)

Let us suppose that we carry out the calculations in each class independently, with-
out trying to exploit any further savings that may come from the sharing of LR
values between the two classes. Then, we have two problems ofthe same type as
the original but at half the size. Each class in (5.12) generates a set ofN/2 LR cal-
culation requests at lengthN/4, for a total ofN requests. For example, if we let

v̂N/2
1

∆
= ûN/2

1,o ⊕ ûN/2
1,e , the requests arising from the first class are

{L(i)
N/4(y

N/4
1 , v̂2i−2

1,o ⊕ v̂2i−2
1,e ) : 1≤ i ≤ N/4},

{L(i)
N/4(y

N/2
N/4+1, v̂

2i−2
1,e ) : 1≤ i ≤ N/4}.

Using this reasoning inductively across the set of all lengths {N,N/2, . . . ,1}, we
conclude that the total number of LRs that need to be calculated isN(1+ logN).

So far, we have not paid attention to the exact order in which the LR calculations
at various block-lengths are carried out. Although this gave us an accurate count of
the total number of LR calculations, for a full description of the algorithm, we need
to specify an order. There are many possibilities for such anorder, but to be specific
we will use a depth-first algorithm, which is easily described by a small example.

1 Actually, some LR calculations at lengthN/2 may be avoided if, by chance, some duplications
occur, but we will disregard this.
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We consider a decoder for a code with parameter(N,K,A ,uA c) chosen as
(8,5,{3,5,6,7,8},(0,0,0)}. The computation for the decoder is laid out in a graph
as shown in Fig. 10. There areN(1+ logN) = 32 nodes in the graph, each respon-
sible for computing an LR request that arises during the course of the algorithm.
Starting from the left-side, the first column of nodes correspond to LR requests at
length 8 (decision level), the second column of nodes to requests at length 4, the
third at length 2, and the fourth at length 1 (channel level).

Each node in the graph carries two labels. For example, the third node from the
bottom in the third column has the labels(y6

5, û2⊕ û4) and 26; the first label indicates

that the LR value to be calculated at this node isL(2)
8 (y6

5, û2⊕ û4) while the second
label indicates that this node will be the 26th node to be activated. The numeric
labels, 1 through 32, will be used as quick identifiers in referring to nodes in the
graph.

The decoder is visualized as consisting ofN DEs situated at the left-most side of
the decoder graph. The node with label(y8

1, û
i−1
1 ) is associated with theith DE, 1≤

i ≤ 8. The positioning of the DEs in the left-most column followsthe bit-reversed
index order, as in Fig. 9.
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Fig. 5.3 An implementation of the successive cancellation decoder for polar coding at block-length
N = 8.
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Decoding begins with DE 1 activating node 1 for the calculation of L(1)
8 (y8

1).

Node 1 in turn activates node 2 forL(1)
4 (y4

1). At this point, program control passes
to node 2, and node 1 will wait until node 2 delivers the requested LR. The process
continues. Node 2 activates node 3, which activates node 4. Node 4 is a node at the
channel level; so it computesL(1)

1 (y1) and passes it to nodes 3 and 23, its left-side
neighbors. In general a node will send its computational result to all its left-side
neighbors (although this will not be stated explicitly below). Program control will
be passed back to the left neighbor from which it was received.

Node 3 still needs data from the right side and activates node5, which delivers

L(1)
1 (y2). Node 3 assemblesL(1)

2 (y2
1) from the messages it has received from nodes

4 and 5 and sends it to node 2. Next, node 2 activates node 6, which activates nodes
7 and 8, and returns its result to node 2. Node 2 compiles its responseL(1)

4 (y4
1) and

sends it to node 1. Node 1 activates node 9 which calculatesL(1)
4 (y8

5) in the same

manner as node 2 calculatedL(1)
4 (y4

1), and returns the result to node 1. Node 1 now

assemblesL(1)
8 (y8

1) and sends it to DE 1. Sinceu1 is a frozen node, DE 1 ignores the
received LR, declares ˆu1 = 0, and passes control to DE 2, located next to node 16.

DE 2 activates node 16 forL(2)
8 (y8

1, û1). Node 16 assemblesL(2)
8 (y8

1, û1) from

the already-received LRsL(1)
4 (y4

1) and L(1)
4 (y8

5), and returns its response without
activating any node. DE 2 ignores the returned LR sinceu2 is frozen, announces
û2 = 0, and passes control to DE 3.

DE 3 activates node 17 forL(3)
8 (y8

1, û
2
1). This triggers LR requests at nodes 18

and 19, but no further. The bitu3 is not frozen; so, the decision ˆu3 is made in ac-
cordance withL(3)

8 (y8
1, û

2
1), and control is passed to DE 4. DE 4 activates node 20

for L(4)
8 (y8

1, û
3
1), which is readily assembled and returned. The algorithm continues

in this manner until finally DE 8 receivesL(7)
8 (y8

1, û
7
1) and decides ˆu8.

There are a number of observations that can be made by lookingat this exam-
ple that should provide further insight into the general decoding algorithm. First,

notice that the computation ofL(1)
8 (y8

1) is carried out in a subtree rooted at node 1,
consisting of paths going from left to right, and spanning all nodes at the channel
level. This subtree splits into two disjoint subtrees, namely, the subtree rooted at

node 2 for the calculation ofL(1)
4 (y4

1) and the subtree rooted at node 9 for the calcu-

lation ofL(1)
4 (y8

5). Since the two subtrees are disjoint, the corresponding calculations
can be carried out independently (even in parallel if there are multiple processors).
This splitting of computational subtrees into disjoint subtrees holds for all nodes in
the graph (except those at the channel level), making it possible to implement the
decoder with a high degree of parallelism.

Second, we notice that the decoder graph consists ofbutterflies(2-by-2 complete
bipartite graphs) that tie together adjacent levels of the graph. For example, nodes
9, 19, 10, and 13 form a butterfly. The computational subtreesrooted at nodes 9
and 19 split into a single pair of computational subtrees, one rooted at node 10, the
other at node 13. Also note that among the four nodes of a butterfly, the upper-left
node is always the first node to be activated by the above depth-first algorithm and
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the lower-left node always the last one. The upper-right andlower-right nodes are
activated by the upper-left node and they may be activated inany order or even
in parallel. The algorithm we specified always activated theupper-right node first,
but this choice was arbitrary. When the lower-left node is activated, it finds the
LRs from its right neighbors ready for assembly. The upper-left node assembles
the LRs it receives from the right side as in formula (5.8), the lower-left node as
in (5.9). These formulas show that the butterfly patterns impose a constraint on the
completion time of LR calculations: in any given butterfly, the lower-left node needs
to wait for the result of the upper-left node which in turn needs to wait for the results
of the right-side nodes.

Variants of the decoder are possible in which the nodal computations are sched-
uled differently. In the “left-to-right” implementation given above, nodes waited
to be activated. However, it is possible to have a “right-to-left” implementation in
which each node starts its computation autonomously as soonas its right-side neigh-
bors finish their calculations; this allows exploiting parallelism in computations to
the maximum possible extent.

For example, in such a fully-parallel implementation for the case in Fig. 10, all
eight nodes at the channel-level start calculating their respective LRs in the first
time slot following the availability of the channel output vectory8

1. In the second
time slot, nodes 3, 6, 10, and 13 do their LR calculations in parallel. Note that
this is the maximum degree of parallelism possible in the second time slot. Node

23, for example, cannot calculateL(2)
N (y2

1, û1⊕ û2⊕ û3⊕ û4) in this slot, because
û1⊕ û2⊕ û3⊕ û4 is not yet available; it has to wait until decisions ˆu1, û2, û3, û4 are
announced by the corresponding DEs. In the third time slot, nodes 2 and 9 do their
calculations. In time slot 4, the first decision ˆu1 is made at node 1 and broadcast
to all nodes across the graph (or at least to those that need it). In slot 5, node 16
calculates ˆu2 and broadcasts it. In slot 6, nodes 18 and 19 do their calculations. This
process continues until time slot 15 when node 32 decides ˆu8. It can be shown that,
in general, this fully-parallel decoder implementation has a latency of 2N−1 time
slots for a code of block-lengthN.

5.3 Code construction

The original polar coding paper [1] left the polar coding construction problem un-
solved. Only for the BEC, a solution was given. For the general case, a Monte Carlo
simulation method was suggested. Although the problem looked very formidable,
rapid progress has been made in this area starting with Mori and Tanaka [10] who
proposed a density evolution approach but did not address the numerical problems in
computing the densities with sufficient precision. A major advance was made by Tal
and Vardy [16] who exploited the notions of channel degradation and “upgradation”
to provide not just approximations but also upper and lower bounds on the channel

parameters, such asI(W(i)
N ) andZ(W(i)

N ), that are involved in code construction. This
line of work has been extended in Pedarsaniet al. [12] where specific bounds on the
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approximation error were derived. The presentation below follows largely [12] and
Şaşoğlu [5].

For polar code construction, we seek an algorithm that accepts as input a triple
(W,N,K) whereW is the B-DMC on which the code will be used,N is the code
block-length, andK is the dimensionality of the code and produces as output an

information setA ⊂ {1, . . . ,N} of size K such that∑i∈A Z(W(i)
N ) is as small as

possible. Finding a good frozen vectoruA c should also be included as part of the
desired output of a code construction algorithm in general.However, ifW is a sym-
metric channel then the code performance is not affected by the choice ofuA c and
this second issue disappears. The following discussion is restricted to symmetric
channels and we will exclude finding a good frozen vector fromthe code construc-
tion problem. We use the abbreviation BMS to refer to binary-input memoryless
symmetric channels. The output alphabet for a BMS will be assumed finite but the
methods here applicable to BMS channels with a continuous output alphabet such
as binary-input additive Gaussian noise channels.

In principle, the code construction problem can be solved bycomputing the tran-

sition probabilities of all the channels{W(i)
2n−k : 0≤ k ≤ n,1 ≤ i ≤ 2n−k} created

through the course of the polarization construction, as depicted in Fig. 3.1. Such a
computation would use the recursive relations given in Proposition 3 starting with

W(1)
1 =W. Altogether there are 2N−1 channels in this collection and it may appear

that this calculation should have complexityO(N) whereN = 2n is the code block
length. Unfortunately, this computation is complicated bythe exponentially grow-
ing size of the output spaces of the channels involved. For example, the output of

the channelW(i)
N is the vectoryNui−1 which can take onMN2i−1 possible values if

W is a channel withM outputs.
There is an exceptional case where the above recursive calculation is feasible.

If W is a BEC, each channel in the collection{W(i)
2n−k} is a BEC and the erasure

probabilities can be calculated using the recursive formulas (2.23) with overall com-
plexity O(N). Although the channels created from a BECW also appear to have an
exponentially growing size for their output spaces, after merging equivalent output
letters, only three letters remain: 0,1, and erasure. The BEC example suggests that
merging similar output letters may lead to a low-complexityapproximate code con-
struction algorithm for general channels. This is indeed the key idea of the methods
that will be presented in the rest of this section.

Before we present the specific methods for polar code construction we need to
develop some general results about BMS channels.

5.3.1 A general representation of BMS channels

Definition 1 A channel W: X →Y is said to be the sum of channels{Wi : 1≤ i ≤
M} with weights{pi : 1≤ i ≤M} if the following hold:

• {pi : 1≤ i ≤M} is a probability distribution
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• The channels entering into the sum have the form

Wi : X → Yi

with the output alphabetsYi , 1≤ i ≤M, forming a partition of the output alpha-
betY of the original channel:

Y =
M
⋃

i=1

Yi , Yi ∩Y j = /0, i 6= j.

• The transition probabilities are related by

W(y|x) = piWi(y|x), whenever y∈ Yi , 1≤ i ≤M.

We write W= ∑M
i=1 piWi to denote that W is a sum of channels in this sense.

Proposition 21 Any BMS channelW: {0,1}→Y with a finite output alphabet can
be written as the sum of BSCs:

W =
M

∑
i=1

piBSC(εi),

where the crossover probabilitiesεi are between 0 and 1/2.

Proof. SinceW is symmetric, for each output lettery there exists a conjugate letter
y so thatW(y|0) =W(y|1) andW(y|1) =W(y|0). Thus, each output letter, together
with its conjugatey defines a BSC with input alphabet{0,1} and output alphabet
{y,y}. Some of these BSCs may have identical crossover probabilities; in that case,
we merge the BSCs with identical crossover probabilities into a single BSC. Output
symbolsy for whichW(y|0) =W(y|1) (which are effectively erasures) may be split
into two symbols if necessary to represent them as a BSC with crossover probability
1/2.

Example 1 A binary erasure channel W with erasure probabilityε can be written
as W= (1− ε)BSC(0)+ εBSC(1/2).

It will be convenient to generalize the above definitions to the case where the
channel output alphabet can be continuous. In this more general case, we may rep-
resent any BMS channelW in the form

W =

∫ 1/2

0
f (ε)BSC(ε)dε

where f is a pdf on[0,1/2]. This representation covers the previous one by taking
f (ε) = ∑M

i=1 piδ (ε− εi).
Given the characterization of a BMS channelW as a sum of BSCs, it is easy to

see that the symmetric capacityI(W) and the Bhattacharyya parameterZ(W) can
be calculated as



62 5 Encoding, Decoding and Construction of Polar Codes

I(W) =

∫ 1/2

0
f (ε)[1−H (ε)]dε

and

Z(W) =

∫ 1/2

0
f (ε)

√

4ε(1− ε)dε.

These parameters may alternatively be denoted asI( f ) andZ( f ).

5.3.2 Channel approximation

A given BMS channelW may be approximated for a given purpose by suitably ap-
proximating its characterizing pdff . In polar coding, typically, we wish to replace
a given f with a simpler f ′ while keeping the approximation error, as measured
by |I( f )− I( f ′)| or |Z( f )−Z( f ′)|, small. Since bothI( f ) andZ( f ) are continu-
ous functions off taking values in a closed compact interval (namely,[0,1]), this
approximation problem can be solved without much difficulty. For our purposes it
will be sufficient to use the following simple “quantizer” for approximating BMS
channels.

Proposition 22 Let L≥ 1 be a fixed integer. For i= 0,1, . . . ,L, let δi ∈ [0,1/2] be
(the unique real number) such that a BSC with crossover probability δi has sym-
metric capacity1− (i/L), i.e., H (δi) = i/L. Let W be a symmetric binary-input
memoryless channel characterized by a PDF f . LetW̃ be the channel

W̃ =
L

∑
i=0

p̃iBSC(δi)

where

p̃i =

∫ δi

δi−1

f (δ )dδ , i = 1, . . . ,L.

(The integrals are over[δi−1,δi) except for the last one which is over[δL−1,δL].)
Then, I(W̃)≤ I(W)≤ I(W̃)+1/L.

Proof. SinceH (δ ) is an increasing function ofδ in the interval[0,1/2], we have
0 = δ0 < δ1 < · · · < δL = 1/2. Thus, these points partition[0,1/2] into disjoint
quantization intervals. The first half of the desired inequality is obtained as

I(W) =
∫ 1/2

0
f (δ )[1−H (δ )]dδ

=
L

∑
i=1

∫ δi

δi−1

f (δ )[1−H (δ )]dδ

≥
L

∑
i=1

∫ δi

δi−1

f (δ )[1−H (δi)]dδ
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= I(W̃)

where the inequality uses the monotone increasing propertyof H (δ ) for δ ∈
[0,1/2]. To obtain the second half, we use the monotone property again but in the
reverse direction.

I(W)≤
L

∑
i=1

∫ δi

δi−1

f (δ )[1−H (δi−1)]dδ

=
L

∑
i=1

pi [1− (i−1)/L]

= I(W̃)+1/L.

We will show that the above type of quantization creates a degraded channel in
the following sense.

Definition 2 Let W : X → Y and W′ : X → Y ′ be two channels. We say that W′

is degraded wrt W if there exists a third channel P: Y → Y ′ such that

W′(y′|x) = ∑
y

P(y′|y)W(y|x).

We write W′ �W to indicate that W′ is degraded wrt W.

Proposition 23 Let W be a BMS channel and̃W be its quantized version as above.
Then,W̃�W.

Proof. We may represent the quantizer as a channel (a deterministicone).

Proposition 24 Let W and W′ be two B-DMCs with W�W′. Then, I(W) ≤ I(W′)
and Z(W) ≥ Z(W′). Furthermore, channel degradedness relationship propagates
through the polarization construction in the sense that

W(i)
N � (W′)(i)N , for all N = 2n, 1≤ i ≤ N.

Corollary 2 Let W(1)
2 and W(2)

2 be the channels obtained from W by one-step po-

larization. Similarly letW̃(1)
2 andW̃(2)

2 be obtained from the quantized channelW̃ .
Then,

I(W̃(1)
2 )≤ I(W(1)

2 ) and I(W̃(2)
2 )≤ I(W(2)

2 ).

5.3.3 A code construction algorithm

We have completed intoducing the basic notions that underlythe code construction
algorithm that follows. LetW be a given BMS and let̃W be a downward quantization
of W with resolutionL as defined above. From the identities
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I(W(1)
2 )+ I(W(2)

2 ) = 2I(W)

and
I(W̃(1)

2 )+ I(W̃(2)
2 ) = 2I(W̃)

we obtain

[I(W(1)
2 )− I(W̃(1)

2 )]+ [I(W(2)
2 )− I(W̃(2)

2 )] = 2[I(W)− I(W̃)]

This shows that the average approximation error after one-step polarization is the
same as the error before the polarization step. Since the twodifference terms on the
left are non-negative (channel degradedness) and the difference term on the right is
bounded by 1/L, we have

|I(W(1)
2 )− I(W̃(1)

2 )|+ |I(W(2)
2 )− I(W̃(2)

2 )≤ 2/L.

Thus, the averageabsoluteerror is also bounded by 2/L. The fact that we have a
bound on the absolute error is essential for the final result.,

While the quantized channelW̃ has at most 2(L+1) output letters, the channels

W̃(1)
2 andW̃(2)

2 have many more output letters. The idea of low-complexity polar

code construction is to quantize the channelsW̃(i)
2 again before continuing with the

next step of polarization. The method can be described more precisely by referring
to Fig. 3.1 again. The quantization procedure replaces the root node byW̃ before
applying the first polarization step. The two channels created at level 1 are now

W̃(1)
2 andW̃(2)

2 . Before continuing further, these channels are quantized to resolution
L and polarization is applied to obtain the four channels at level 2. We shall abuse the

notation to denote by{W̃(i)
2n−k : 0≤ k≤ n,1≤ i ≤ 2n−k} the channels obtained in the

course of this quantize-polarize procedure. Each branching point in Fig. 3.1 causes
an incremental quantization error. The average quantization error at each node is
bounded by 1/L. An inductive argument shows that the overall average absolute
quantization error at levelk of this procedure is bounded as

1
2n−k

2n−k

∑
i=1
|I(W(i)

2n−k− I(W̃(i)
2n−k)| ≤ k/L, k= 1, . . . ,n. (5.13)

In particular, the average absolute quantization error at the last level is bounded by
n/L. We conclude by Markov’s inequality that at least a fraction1−

√

n/L of the

quantities{I(W(i)
N ) : 1≤ i ≤ N} are computed with an error not exceeding

√

n/L.
(It is here that having a bound on average absolute error is crucial.) By takingL =
n2, one can ensure that, with the exception of at most a fraction1/

√
n, the terms

{I(W(i)
N )} are computed with an error not exceeding 1/

√
n. This means that with a

negligible loss in rate we can identify the good coordinates. The overall complexity
of this calculation is roughlyO(L2N) or O(Nn2) if L is chosen asn2.
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