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Multi-Port Network Approach for the Analysis of
Dual Band Fractal Microstrip Antennas

Subhrakanta Behera and K. J. Vinoy, Senior Member, IEEE

Abstract—The multiport network approach is extended to ana-
lyze the behavior of microstrip fractal antennas. The capacitively
fed microstrip square ring antenna has the side opposite to the feed
arm replaced with a fractal Minkowski geometry. Dual frequency
operation is achieved by suitably choosing the indentation of this
fractal geometry. The width of the two sides adjacent to this is in-
creased to further control the resonant characteristics and the ratio
of the two resonance frequencies of this antenna. The impedance
matrix for the multiport network model of this antenna is simpli-
fied exploiting self-similarity of the geometry with greater accuracy
and reduced analysis time. Experimentally validated results con-
firm utility of the approach in analyzing the input characteristics
of similar multi-frequency fractal microstrip antennas with other
fractal geometries.

Index Terms—Fractal shaped antenna, microstrip ring antenna,
multi-port network model.

I. INTRODUCTION

EVERAL fractal geometries have been proposed for

designing dual frequency, multi-frequency, and wideband
antennas in recent years [1]-[6]. Yet the true advantages of
using fractals in antennas are widely debated. It remains a
fact that the ordered nature of fractals can be exploited in the
design and modeling of many such antennas. However, most
theoretical analyses so far have been limited to wire or printed
fractal antennas such as monopoles or dipoles [1], [6]-[8].
These approaches cannot be easily translated for the analysis
of microstrip antennas as the space filling characteristics of
underlying fractal geometries are not directly related to the
characteristic features of many of these antennas.

A simple approach to analyze irregular shaped microstrip an-
tennas was developed by Professor K.C. Gupta in the 1980s
[9T-[13]. This approach starts by decomposing the antenna into
regular shaped segments for which the Green’s functions can be
derived or are readily available. Based on these, network models
are developed for each segment. Later these are synthesized to
reconstruct the behavior of the original antenna structure [13].
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This segmentation approach for the analysis of microstrip an-
tennas was first introduced in [14] for determining the input
impedance characteristics of a composite shaped microstrip an-
tennas. The versatility of this approach has been further demon-
strated in [15]-[17]. During the last decade this approach has
been extended for analyzing microstrip geometries with slots in
ground plane [18] and substrate integrated waveguides for mil-
limeter wave applications [19].

In general ring geometries form a class of resonant microstrip
antennas in which the mean electrical perimeter determines the
resonance frequencies [20]. However due to their high quality
factor these geometries especially at their primary resonant
modes are seldom used as practical antennas. In addition,
the input impedance of these geometries is high when fed
directly at a point of symmetry [21]-[25]. However if the
energy is electromagnetically coupled into these resonators,
their input impedance can be lowered and these are used in
practical antenna designs [26]. This group has extended this
feed arrangement for multi-frequency antennas by simultane-
ously exciting multiple rings and dual-frequency antennas with
fractal geometries and showed that antennas with reasonable
bandwidth can be achieved with this approach [27]-[29].

The proposed antenna has a two layer structure (Fig. 1), in
which a ring radiator is placed on the top layer, whereas the
feed microstrip transmission line is in a layer beneath this. Al-
though in previous attempts we used an air gap between these
dielectric layers, it has been removed here to improve the ease
of fabrication [9], [11]. Dielectric substrate (Arlon) with relative
dielectric constant of 2.5, loss tangent of 0.0023, and thickness
of 1.56 mm is used in this design.

It has been shown that fractal modification to sides of a ring
antenna of this type results in dual-frequency antennas. How-
ever it is difficult, if not impossible, to replace the wide sides of
the ring with fractal geometry. Therefore, in the present study
we propose an antenna in which only one side of the square ring
is replaced by a fractal geometry (e.g., Minkowski curve of first
or second iteration).

For the iterative construction of a fractal Minkowski curve,
one starts with the straight line of length /, called the initiator.
This is divided into three equal parts of length (//3) and middle
segment is replaced by two horizontal and a vertical segment of
equal length (Fig. 1(b)). This procedure may be iterated recur-
sively to result in a self similar fractal geometry. In the present
study, an antenna design flexibility is introduced by making the
length of this vertical segment in Fig. 1(b) vary relative to that
of the horizontal segments. Based on this modification, the as-
pect ratio for the generator is defined as

indentation depth

aspect ratio k = .
b length of segment
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Fig. 1. Geometry of the basic antenna. (a) Cross section view. (b) Minkowski
curve generator. (¢) Antenna with 1st iteration fractal. (d) Antenna with 2nd
iteration fractal.

This aspect ratio is maintained at higher iterations during the
generation of the geometry. Similar variation is typically ex-
ploited in the context of fractal geometries, the resulting con-
figurations are considered fractals and approaches are available
for calculating their fractal properties [1]-[4]. Furthermore, al-
though the most of the theoretical analyses consider the geom-
etry as line segments having zero width, for the sake of realizing
antennas, we used geometries with a width of 1.0 mm. This has
effectively limited the maximum iteration possible. Top view of
the resulting antenna geometries with first and second iteration
Minkowski Curve geometries are shown in Fig. 1(c, d).

In this paper we demonstrate the use of multi-port network
model based on coplanar Green’s functions to analyze the
dual frequency behavior of these microstrip ring antennas with
fractal segments. Impedance matrices are developed using
multi-port network models in Section II for antenna geometries
having first and second iteration fractal Minkowski curves. The
symmetry of the geometry and the self-similarity properties
of fractals have been exploited to reduce the computations
involved. The input characteristics obtained by this approach
are compared with full wave simulations and experimental
results in Section III. Concluding remarks from this study are
presented in the last Section.

II. MULTI-PORT NETWORK ANALYSIS

The antenna under study has a number of small sections
which makes the overall geometry quite irregular. It can be ex-
pected that the input impedance of the antenna will be affected
by the number and locations of corner discontinuities present.
Analytical approaches such as cavity model for regular patch
geometries are also not suitable in these cases. Hence we pro-
pose to use the coplanar multiport network model (MNM) with
segmentation approach for the analysis of such fractal antennas.
This is a generalization of cavity model, which is suitable for
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Fig. 2. Segmentation of Square ring microstrip antenna with one side replaced
by fractal geometry at first iteration.

irregular geometries [13]. It may be recalled that the models
presented in [3], [7] and [8] are for printed or wire-type dipole
and monopole antennas which do not have a ground plane
parallel to the geometry. The proposed approach is therefore
the first attempt to analyze a fractal microstrip antenna with the
geometry parallel to a metallic ground conductor.

In multi-port network approach, the antenna is first decom-
posed into regular elemental segments that are interconnected
using multiple ports. These elemental units are chosen such that
Green’s functions can be easily computed to evaluate the self
and mutual impedance between their ports. Network models of
each of these segments are developed using these Greens func-
tions and ports are combined by network synthesis to analyze
the behavior of the complete fractal antenna structure [6]. Such
segmentation approach was introduced decades ago [14] but
several improvisations are required for accurate analysis of ir-
regular antennas with small constitutive segments:

A. Model for Antenna With First Iteration Fractal

In Fig. 1(c) the antenna geometry with the first iteration
fractal Minkowski curve is shown. This may be divided into 8
rectangular segments (numbered 0—7) which are interconnected
through ports whose locations are marked by two parallel lines
in Fig. 2. The Oth segment has an additional incident port.
Therefore there are 17 ports in the fragmented geometry. The
impedance is evaluated using the voltages, currents at ports of
segments. In the following, the voltage, current and impedance
of port p of segment s can be written as V, , I, and Z,,
respectively.

The self and mutual impedances for these segments are com-
puted using Green’s function G (2, yi |2, y; ) [13], [14]. The
general formula for the impedance is [12], [30], [31]

1

ng; —
wiw;

/ Gz, yi |z, yj ) dridr; (1)

where the points (x;, ;) and (z;, y;) denote the coordinate lo-
cations of ports # and j. The integrant dr; and dr; are incre-
mental distances over the port width, with the constraint that
w;,; < A where A is the wavelength. Hence multiple ports are
required to model wide interconnects.

Accurate model for each segment is developed by replacing
the fringing fields at the peripheries of the segment geometry by
equivalent outward extensions to represent magnetic walls. This
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extension A depends on shape and planar dimensions of the seg-
ment and dielectric constant and thickness of the substrate. The
electrical size of the segment is extended marginally to account
for fringing. These modified dimensions are used in the evalu-
ation of the above Green’s functions. Efficient expressions are
available for mutual impedance of rectangular geometries [30],
[31]

2ab®
2

wiw;

Zn,, = Jjwh [

bw;w; | k sin ka T

" i (sinrf; — sinrfs) (sin rf3 — sin réy)

DsinhDrn ] - @

r=1
The self-impedances of all ports are given by [31]

, cos ak + cosk (a — 2x;)
Z'n.;- = % - T
w = JUH l{ 2bk sin ak

Zwbh 2Z\/r?2 — B2 + cosh G 2%)7\/72 B2 }
w 7r3 2y/r? — B? sinh %% /r2 — B2 .

G3)

Where « is the length and b is the width of the segments, k is
the wave number, B = bk/w, D? = (n? — B*)a?/b?, 6, =
(x/0)(y: — w,/2), b = (x/0)(yi + wi/2), b5 = (x/b)(y; —
w;/2), 01 = (7/b)(yi + w;/2).

Using the impedance values, the voltage and current at the
ports of each segment (n = 1 to 7) of the geometry in Fig. 2 can
be written in general form

an = ZnnInl + an-[nu (4)
Voo = Zngy Iy + Znyy Iny %)

21

Alternately (4) and (5) may be rewritten as

()= Z2) () o vom et @
where Z,, is the impedance matrix for the »*" segment. There
are 3 ports attached to the input segment (n = 0) and hence
the impedance matrix Zg is a 3 X 3 matrix. Therefore, when we
include the excitation port (marked as port 3 in Segment 0), there
are a total of 17 ports in this geometry and we have 17 voltages
and currents to be solved.

However the boundary/continuity conditions can be imposed
to reduce the number of unknowns. For example, the voltages
and currents at the point marked “A” between segments 1 and 2
of the Fig. 2 are related as

Vlz = V217 Il? = 7-[21' (7)

Hence these could be generalized for segments number 1 to 6 as

Voo = Vina),» Lne = Ly, - (8)
For the segment with the excitation port (n = 0), the voltages
and currents at the interconnection ports are related by

Vo, = Vi, Vo, = Vo, Lo, =

_Ill and - 102 == 172.
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Furthermore, we can make use of the additional information that
the port 3 is located at the middle of the segment, so that the en-
tire geometry is symmetric about the excitation port. Therefore

Vbl = V02, IUl = 71()2' )

This may be extended to other interconnecting ports as well. i.e.,

1/77,1 = Vv(an)zz 1 1= _I(an)z' (10)
Connections between segments are appropriately used to com-
bine these matrices to yield an overall Z-matrix for the given
geometry. The seventeen equations can be written in the matrix

form as

Vo,
Vi,

Vig

Vi,

Vi,

Vo, | =

Vo,

Ve,
L vz,

Zoyy Zoyy Zogs O 0 0 0 00 0 0 7 [Io]
Zoyy Zogy Zoss O 0 0 0 00 0 0 Io,
Zogy, Zogy, Zogz O 0 0 0 00 0 0 Io,

0 0 0 Zy, Z,, 0 0 00 0 0 Iy,

0 0 0 Zi,y Zi,, 0 0 00 0 0 I,

0 0 0 0 0 Zy, Z2, 00 0 0 I,

0 0 0 0 0 Zsy Zz,, 00 0 0 I,

0 o 0o 0 0 0 0 Zry, Zry, Iny
Lo o 0 0 0 0 0 00 Zuy Zn,d LIyl

(11)

This may be solved to obtain the driving point impedance at port
3 of segment 0 as [13]

D _ Z
I(h = 20, — [Z()31 ZUBQ] [Mu’*] ! |:Z013] - (12)
03 023

Zin —
Where the impedance matrix M3 can be obtained in terms of
M3, M, and eventually M; which will be related to various
port impedances as

M, = [ Zy,, + 21, Zy,,
VAR _Z(]u + Zh_l |
A
M, = _Zhl gZZM 7, 3Z9u
HEAE N FO (A
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A = [Zon + Zsa, 0 [ Zs, 0
t= 0 . + Zs3,, 0 Zs,
1
R |:Z322 + Z411 Z412 :| |:Z312 0 :|
Z412 Z322 + Z411 0 Z312 .

The losses (primarily by radiation) from the antenna can be in-
corporated into these expressions by modifying % in (2) and (3)

[32]
k= \/uﬂ//,aoaeff (1 - %)

where () is the total quality factor of the resonating antenna.
When we consider more than one resonance for an antenna, the
() may be different at these frequencies.

Another important aspect to notice is that the input impedance
given by (12) is for a port physically connected to the segment
0 at the location of port 3 there. However, the antenna configu-
ration in Fig. 1 consists of an electromagnetic coupling using a
capacitive strip placed symmetrically below the ring resonator.
The input impedance of the antenna appears in series with this
coupling impedance as

(16)

Zam‘, — (pr + Zin,) xXq (17)

where g, is the critical electromagnetic coupling to the antenna
and Z,, is the impedance of the parallel plate capacitor section

h

Zyp = (18)

JjweregAy
where A, is the substrate height and A is the overlap area of
the simple parallel plate capacitor between the feed strip and the
radiating patch.

B. Model for the Second Iteration

The multi-port network model with segmentation approach
described above can be easily extended for antenna geometry
with the second iteration fractal geometry. The primary differ-
ence in this case is that there are 28 segments to be considered.
These are marked 0 to through 27 in Fig. 3. The coupling im-
pedances and self impedances in each case can be evaluated by
following the above approach. The resulting equations can be
solved and reduced to a single resultant equation similar to (12).

The resulting impedance matrix can be further simplified
making use of similarity between various sections of geometry.
Some of these repeated segments as indicated by ovals in Fig. 3.
One can easily verify the following impedance matrices to be
equal

Zy =125 =127 =113, Ly =7y, Ly =71y = Z12. (19)

These simplify the number of terms to be computed for the
final matrix equation relating voltages and currents. Thus this
approach exploits the self-similarity of fractal geometries.

These expressions are used to compute the 317 of the antenna
with the second iteration geometry. It may be noted that compu-
tation of many redundant terms in the impedance matrix may be
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Fig. 3. Segmentation of Square ring microstrip antenna with one side replaced
by the second iteration fractal geometry.

avoided based on the symmetry and self-similarity of the geom-
etry. Another important aspect of this approach is that this may
be extended to many other fractal shaped planar antenna geome-
tries. For example, modified Sierpinski gasket [2] and Sierpinski
carpet [33] geometries used in these antennas may be modeled
by this approach.

III. VALIDATION AND DISCUSSION

It may be noted from the previous discussions that in this ap-
proach the irregular-shaped fractal antenna geometry is divided
into various segments which themselves have simpler shapes
and each segment is considered as a multiport section with a
finite number of ports. The number of ports required at an inter-
section between two segments is determined by the width of the
interconnection. The multiport Z-matrices for individual seg-
ments are evaluated using the corresponding impedance Green’s
functions. The interconnection constraints are applied by the
continuity of the voltage and currents at the boundaries between
segments.

One of the important features of this approach is that the com-
putation of elements in the overall Z-matrix can be simplified
making use of the symmetry if any, of the overall geometry.
Using this simplified Z-matrix, the driving point impedance at
the input port of the antenna can be evaluated.

Models developed in Section II are validated by simulations
and experiments. Dielectric substrate (Arlon) with relative di-
electric constant of 2.5, loss tangent of 0.0023, and thickness of
1.56 mm is used to develop experimental prototypes.

A. Validation by Simulations

These antenna geometries were studied extensively by IE3D
simulations. An increase in the indentation depth causes the
perimeter of the antenna to increase and hence the resonance
frequencies shift downward. The calculated resonance frequen-
cies are compared well with simulations of the given antenna of
varying indentation factor as shown in Tables I and II.

For patches of arbitrary shapes can be analyzed by MNM
model by treating the arbitrary shapes as a combination of the
elementary shapes for which Green’s functions are available.
Since, most of the elements of the fractal shape patch antenna
are similar and repeatable due to the recursive nature of the
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TABLE I
VALIDATION WITH SIMULATED RESULTS FOR THE FRACTAL ANTENNA
SHOWN IN FIG. 1(d) FOR A VARIATION IN THE INDENTATION DEPTH. OTHER
DESIGN PARAMETERS AREW; = 1 mm, W = 3 mm, L, = 25.7 mm,
Loy = 19.7T mm

Indentation First resonance Second resonance
factor (k) %1 (GHz) | f£4(GHz) | f2(GHz) | f.(GHz)
Simulated. Calculated. Simulated. Calculated.
0.8 24 2.402 425 4252
0.9 2.336 2333 4.12 4118
1 2274 2275 3.991 3.988
1.1 2211 22 3.872 3.871
12 2.148 2.152 3.76 3.755
TABLE II

VALIDATION WITH SIMULATED RESULTS FOR THE FRACTAL ANTENNA
SHOWN IN FIG. 1(d) FOR A VARIATION IN THE INDENTATION DEPTH. OTHER

DESIGN PARAMETERS ARE W = 1 mm, Wo = 7Tmm, L; = 29.7 mm,
L, = 15.7 mm
Indentation First resonance Second resonance

factor (k) £:(GHz) | f/(GHz) | f£.(GHz) | f.(GHz)
Simulated. Calculated. Simulated. Calculated.

0.8 2.842 2.839 4.54 4.542

0.9 2.785 2.785 44 4401

1 2.725 2.723 4275 4279

1.1 2.66 2.67 4.16 4.161

12 2.596 2.595 4.05 4.051

fractal, so the computation time will reduce significantly by
using this analysis technique with improved accuracy

It may be noted from Tables I and II that the resonance fre-
quency calculated using multi-port network model compared
well with the simulations. It may be seen that the percentage
error is 0.08 — 1.86% at the first resonance frequency and 0.05
— 1.01% at the second resonance frequency, for the cases con-
sidered in these tables. But the resonance frequency of these
antennas calculated using lossy transmission line (LTL) model
[24], [25] does not compare well with the simulations. For ex-
ample, if LTL is employed the error is 7 — 13% at the first res-
onance frequency and 11 — 18% at the second resonance fre-
quency. This is because the LTL model considers only the phys-
ical straightened length and not the mutual coupling between
parts of the geometry, causing the computed resonance frequen-
cies to be lower than those obtained from simulations. But in
the case of multi-port network model, the self-impedances and
the mutual impedances of adjacent elements are computed and
therefore this approach performs better than LTL model for this
type of geometries.

It may be noted that, for the geometries studied here, the ratios
of resonance frequencies vary between 1.56 and 2.017. These
results indicate that the use of fractal Minkowski geometry in
these antenna configurations can result in useful dual frequency
antenna. Another interesting characteristic of this antenna ge-
ometry is that the bandwidth of non-uniform width antenna is
often higher than a uniform width ring antenna of similar di-
mensions.

B. Validation by Experiments

The fabricated antennas are shown in Fig. 4. This an-
tenna has a non-uniform width ring having w; = 1 mm,
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Fig. 4. Photographs of fabricated antennas.

Ring radiator of 1st Iteration with wl=1mm,
w2=7mm
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Fig. 5. Comparison of return loss characteristics of antenna shown in Fig. 4(a).

we = 7 mmm, the length of the initiator = 15.7 mm and
the indentation factor = 1. The antenna is excited through
electromagnetic coupling from a transmission line buried in a
dielectric layer beneath. An aluminum ground plane of dimen-
sions 20 cm X 20 cm supports this structure. The transmission
line is fed using a probe-type SMA connector. The fabricated
antennas are tested using a vector network analyzer.

The measured return loss characteristics of the antenna with
the first iteration geometry are compared with analytical cal-
culations and numerical simulations in Fig. 5. Analytical plots
are obtained using the formulation from Section II whereas the
simulated one is obtained using IE3D method of moment based
simulations. These results clearly validate the approach for
the calculation of antenna impedance. This graph also shows
that the bandwidths at the two resonance frequencies are as
expected. For the calculations the value of () used are 54.8938
and 47.3751 and the coupling coefficient values are 0.0211 and
0.0290 at the two resonance frequencies of the antenna.

Measured radiation patterns (Fig. 6) at these frequencies indi-
cate that these have similar radiation patterns at both bands. The
gain of the antenna in the boresight direction has been measured
to be 5.2 dBi and 4.5 dBi respectively at the corresponding res-
onance frequencies.

Similarly, for the second iteration geometry shown in
Fig. 4(b) is studied through Figs. 7 and 8. In this case, the
coupling coefficients used are 0.0028 and 0.20 and the quality
factors are 66.0112 and 50.573 at its resonance frequencies. The
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Fig. 6. Measured radiation patterns at first and second resonance frequencies
of the antenna shown in Fig. 4(a).
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Fig. 7. Comparison of return loss characteristics of Square ring microstrip an-
tenna shown in Fig. 4(b).
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Fig. 8. Measured radiation patterns at first and second resonance frequencies
of antenna shown in Fig. 4(b).

radiation patterns of this antenna at the resonance frequencies
are similar to those in Fig. 6.

A summary of the performance of these fractal antennas is
presented in Table III. These reiterate that this fractal antenna
has dual frequency characteristics with reasonable gain and
bandwidth at both resonances. The reasons behind the dual
frequency nature of similar antennas have been discussed
previously [28], [29]. When fractal segments replaces the
straight section of the square ring, the overall symmetry of
the antenna is displaced, and the currents distribution changes.
By suitably choosing the indentation factor the gain in the
boresight direction at second resonance can therefore be made
equal to that at the first resonance. When the width of two
segments are increased, the current paths at the inner and outer
edges of these segments are perturbed causing the bandwidth
and radiation efficiency to increase.
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TABLE III
COMPARISON OF THE SIMULATED AND MEASURED PERFORMANCES OF THE
DUAL-FREQUENCY MICROSTRIP RING ANTENNAS. THE DIMENSIONS OF FEED
STRIP (L5, 7W5) HAS BEEN OPTIMIZED FOR A GOOD IMPEDANCE MATCH
FOR THE ANTENNA

Antenna Model 1* iteration Geometry 2™ jteration Geometry
wl=1mm,w2=7mm wl=Imm,w2=7mm
(Fig. 6a) (Fig. 6 b)
I I Jn Jo
Simulated 2.95 471 2.725 4275
Resonance
frequency (GHz)
Measured 2.945 4.75 2.78 4298
Resonance
frequency (GHz)
Simulated 38 70.3 29.19 59.8
Bandwidth (MHz)
Measured 35.05 722 28.5 60.8
Bandwidth (MHz)
Simulated Gain 5.98 4 5.66 53
(dBi)
Measured Gain 52 4.5 445 5.4
(dBi)

IV. CONCLUSIONS

A dual frequency antenna obtained by replacing a segment of
a square ring microstrip antenna with fractal Minkowski curve is
studied here. It has been observed that by increasing the inden-
tation factor in the fractal section of the radiator, the resonance
frequencies of the antenna changes and by suitably choosing this
value one can get an antenna design with improved bandwidth
with good gain at both the resonance frequencies. Increase in
the width of other two sides of the ring significantly enhances its
radiation characteristics. The geometry for this dual-frequency
antenna may be chosen such that the ratio of resonance frequen-
cies may be controlled by these design parameters. Results pre-
sented here also indicate a similar behaviour for the first- and
second-iteration fractal geometries.

A multiport network approach is shown to be very effec-
tive to analyze this antenna. Developed about four decades ago,
this method has been shown to be versatile for analyzing many
planar geometries. This approach exploits the ordered nature of
fractals in simplifying the analysis, and avoids computation re-
dundancy. The behavior of antennas with the first and second
iteration fractal geometries have been accurately modeled with
this approach and are validated against simulations using com-
mercial full wave softwares and experimental results.
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