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Introduction

A Quantum bit or qubit is the quantum analog of a classical bit.

Striking difference is it allows for the principle of superposition.

Information is physical.

Physics allows us to manipulate information in a whole new setting.

Encryption possible by making use of the postulates of quantum
mechanics.
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Postulates of quantum mechanics

State space Associated to any isolated physical system is a Hilbert
space known as the state space of the system. The system is
described by its state vector, which is a unit vector in the systems
state space.

|ψ〉 = a |0〉+ b |1〉 , where |0〉 =

(
1

0

)
and |1〉 =

(
0

1

)

Evolution The evolution of a closed quantum system is described by a
unitary transformation. That is,the state |ψ〉 of the system at time t1
is related to the state |ψ′〉 of the system at time t2 by a unitary
operator U which depends only on the times t1 and t2 ,

|ψ′〉 = U |ψ〉 .

Measurement The act of measurement changes the state. This is
unlike the classical world where the act of measuring the resistance of
a resistor does not change the resistance.
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Summary of introduction

A qubit is characterized by its state.

We will treat qubits as mathematical objects.

Superposition principle

|ψ〉 = a |0〉+ b |1〉 where |0〉 =

(
1

0

)
; |1〉 =

(
0

1

)
〈ψ| =

(
ā b̄

)
For states |ψ〉 and |φ〉, |ψ〉〈φ| is a matrix while 〈ψ|φ〉 is a scalar.
Qubit whose state is represented by |ψ〉 is in the superposition of |0〉
and |1〉.

Measurement postulate

When measurement is performed the qubit collapses to state |0〉 with
probability |a|2 and into state |1〉 with probability |b|2
Here we say that we have performed measurement in the {|0〉 , |1〉}
basis
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ā b̄

)
For states |ψ〉 and |φ〉, |ψ〉〈φ| is a matrix while 〈ψ|φ〉 is a scalar.
Qubit whose state is represented by |ψ〉 is in the superposition of |0〉
and |1〉.

Measurement postulate

When measurement is performed the qubit collapses to state |0〉 with
probability |a|2 and into state |1〉 with probability |b|2
Here we say that we have performed measurement in the {|0〉 , |1〉}
basis

Students’ seminar (ECE, IISc) Recovery from node failure October 3, 2018 6 / 22



Summary of introduction

A qubit is characterized by its state.

We will treat qubits as mathematical objects.

Superposition principle

|ψ〉 = a |0〉+ b |1〉 where |0〉 =

(
1

0

)
; |1〉 =

(
0

1

)
〈ψ| =

(
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ā b̄

)
For states |ψ〉 and |φ〉, |ψ〉〈φ| is a matrix while 〈ψ|φ〉 is a scalar.
Qubit whose state is represented by |ψ〉 is in the superposition of |0〉
and |1〉.

Measurement postulate

When measurement is performed the qubit collapses to state |0〉 with
probability |a|2 and into state |1〉 with probability |b|2
Here we say that we have performed measurement in the {|0〉 , |1〉}
basis

Students’ seminar (ECE, IISc) Recovery from node failure October 3, 2018 6 / 22



Introduction and background material

States can also be referred to by density matrices denoted by
ρ(= |ψ〉〈ψ|).

Density matrices capture reality of quantum states better

ρ =
∑
k

pk |ψk〉〈ψk |

Density matrices are positive semi-definite matrices with unit trace

Eigen values are real and non-negative.

Von Neuman entropy is the Shannon entropy of the pmf of eigen
values.

The state for multiple qubits resides in the space obtained by tensor
product of the individual spaces:

H = H1 ⊗H2 ⊗ · · ·Hn

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · |ψn〉
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No theorems

No cloning theorem

No broadcast theorem

No deletion theorem

No communication theorem
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Bell pair

A very special state for two systems

|ψ〉AB =
|0〉A ⊗ |0〉B + |1〉A |1〉B√

2
=
|0〉A |0〉B + |1〉A |1〉B√

2

Let A performs measurement in {|0〉 , |1〉} basis

Suppose A’s qubit collapses to |0〉 then B’s qubit collapses to |0〉 !

Some sort of super luminal communication seems to be happening
violating the special theory of relativity

Einstein called this spooky action at a distance

This phenomenon is called as entanglement
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Superdense coding

σ1 =

(
0 1

1 0

)
;σ2 =

(
0 −i

i 0

)
;σ3 =

(
1 0

0 −1

)
;

A preshared Bell pair lets A communicate two classical bits.
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Quantum teleportation

Nodes A and B share an entangled pair of qubits:

|Φ+〉AB =
|00〉+ |11〉√

2
.

Let |χ〉C = a |0〉+ b |1〉 be the qubit to be teleported.
Joint state is |χ〉C ⊗ |Φ+〉AB .

|χ〉C ⊗ |Φ
+〉AB = |Φ+〉CA (a |0〉+ b |1〉) + |Φ−〉CA (a |0〉 − b |1〉)

+ |Ψ+〉CA (b |0〉+ b |1〉) + |Ψ−〉CA (b |0〉 − a |1〉),

A performs joint measurement on qubits C and A in the Bell basis.
There are four possible outcomes of this joint measurement:

|Φ±〉 =
|00〉 ± |11〉√

2
|Ψ±〉 =

|01〉 ± |10〉√
2

.

A informs B of the measurment outcome over a classical channel.
B performs appropriate unitary operations on its qubit to attain the
state of C.
The qubit C loses its original state concuring the no cloning theorem.
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A curious case of measurement

Consider three qubits shared between nodes A, B, C in the following
state:

|ψ〉 =
1√
2

(
|000〉ABC + |111〉ABC

)

If A measures its qubit in the {|0〉 , |1〉} basis, then B and C end up in
either |00〉 or |11〉 state.
Let us represent this state in a different basis for A’s system:

|+〉 =
|0〉+ |1〉√

2
; |−〉 =

|0〉 − |1〉√
2

|ψ〉 =
1√
2

(
|+〉A + |−〉A√

2
|00〉BC +

|+〉 − |−〉√
2

|11〉BC

=
1

2

(
|+〉A

1√
2

(
|00〉BC +|11〉BC

))
+

1

2

(
|−〉A

1√
2

(
|00〉BC−|11〉BC

))

If A measures its qubit in the {|+〉 , |〉} basis, then B and C end up in

either |00〉+|11〉√
2

or |00〉−|11〉√
2
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|+〉 =
|0〉+ |1〉√

2
; |−〉 =

|0〉 − |1〉√
2

|ψ〉 =
1√
2

(
|+〉A + |−〉A√

2
|00〉BC +

|+〉 − |−〉√
2

|11〉BC

=
1

2

(
|+〉A

1√
2

(
|00〉BC +|11〉BC

))
+

1

2

(
|−〉A

1√
2

(
|00〉BC−|11〉BC

))
If A measures its qubit in the {|+〉 , |〉} basis, then B and C end up in

either |00〉+|11〉√
2

or |00〉−|11〉√
2
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The problem of node failure and recovery mechanism

The notion of graph states naturally fits into the description of
multipartite quantum states.

Graphs described mathematically using G = (V ,E ) depict the
connections between the set of nodes V and the set of edges E .

We use the following setting for describing quantum networks via
graphs.

Nodes represented by vertices from the set V account for qubits, one
at every node, while edges represent the quantum mechanical
interaction that enables entangling of qubits.
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The set up
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Node failure

Suppose that one of the nodes undergoes a failure.

This disconnects the failed node from the rest of the nodes and the
edges connecting it to the rest of nodes also get deleted resulting in a
new graph state G ′ = (V ′,E ′).

This quantum erasure is mathematically equivalent to tracing out the
qubit at the failed node from the initial state.

If a node failure happens, we end up with a mixed state residing in
the smaller dimensional Hilbert space H⊗N−1. Whenever such a node
failure occurs, we assume that the location of the failed node is
known to us.
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Schmidt decomposition

Having obtained a mixed state post node failure, we need to purify it
and give it a mathematical description using the usual notion of error
operators.

We explain our procedure for purification stemming from the Schmidt
decomposition:

Theorem

Suppose |ψ〉 is a pure state of a composite system AB with Hilbert space
HA ⊗HB . Then there exist orthonormal states |i〉A for system A and
orthonormal states |i〉B for system B such that

|ψ〉 =
∑
i

λi |iA〉 |iB〉

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1 known as

Schmidt co-efficients.
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Purification procedure

Suppose the purification procedure uses the basis states
|θ0〉 , |θ1〉 ∈ H to combine the new qubit and the mixed state ρ′, then
we get the following purified state in H⊗N :

|ψ′〉 = λ0 |θ0〉 |η0〉+ λ1 |θ1〉 |η1〉 , (1)

or

|ψ′〉 = λ0 |θ1〉 |η0〉+ λ1 |θ0〉 |η1〉 . (2)
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Conclusion and future work

We studied the basics of quantum information theory and the
language that is used to describe quantum objects.

We looked at superdense coding and teleportation protocols.

We looked at the problem of a node failure leading to the loss of a
qubit from a codeword.

We found a procedure via the purification to recover the codeword
back.

We are investing ways of detecting and identifying the node that goes
through a failure.
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Questions and suggestions

Thanks for your time ,
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