Recovery of distributed quantum information from a quantum erasure

Ankur Raina
Advisor: Prof. Shayan G. Srinivasa
Department of Electronic Systems Engineering
Indian Institute of Science, Bengaluru

Physical Nano-Memories Signal and Information Processing Lab

October 3, 2018

Outline

- Double slit experiment
- Superdense coding
- Teleportation
- A curious example of measurement
- The problem of node failure from a network and recovery mechanism

Double slit experiment

Introduction

Introduction

- A Quantum bit or qubit is the quantum analog of a classical bit.

Introduction

- A Quantum bit or qubit is the quantum analog of a classical bit.
- Striking difference is it allows for the principle of superposition.

Introduction

- A Quantum bit or qubit is the quantum analog of a classical bit.
- Striking difference is it allows for the principle of superposition.
- Information is physical.

Introduction

- A Quantum bit or qubit is the quantum analog of a classical bit.
- Striking difference is it allows for the principle of superposition.
- Information is physical.
- Physics allows us to manipulate information in a whole new setting.

Introduction

- A Quantum bit or qubit is the quantum analog of a classical bit.
- Striking difference is it allows for the principle of superposition.
- Information is physical.
- Physics allows us to manipulate information in a whole new setting.
- Encryption possible by making use of the postulates of quantum mechanics.

Postulates of quantum mechanics

Postulates of quantum mechanics

- State space Associated to any isolated physical system is a Hilbert space known as the state space of the system. The system is described by its state vector, which is a unit vector in the systems state space.

Postulates of quantum mechanics

- State space Associated to any isolated physical system is a Hilbert space known as the state space of the system. The system is described by its state vector, which is a unit vector in the systems state space.

$$
|\psi\rangle=a|0\rangle+b|1\rangle, \text { where }|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1}
$$

Postulates of quantum mechanics

- State space Associated to any isolated physical system is a Hilbert space known as the state space of the system. The system is described by its state vector, which is a unit vector in the systems state space.

$$
|\psi\rangle=a|0\rangle+b|1\rangle, \text { where }|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1}
$$

- Evolution The evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t_{2} by a unitary operator U which depends only on the times t_{1} and t_{2},

Postulates of quantum mechanics

- State space Associated to any isolated physical system is a Hilbert space known as the state space of the system. The system is described by its state vector, which is a unit vector in the systems state space.

$$
|\psi\rangle=a|0\rangle+b|1\rangle, \text { where }|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1}
$$

- Evolution The evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t_{2} by a unitary operator U which depends only on the times t_{1} and t_{2},

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle .
$$

Postulates of quantum mechanics

- State space Associated to any isolated physical system is a Hilbert space known as the state space of the system. The system is described by its state vector, which is a unit vector in the systems state space.

$$
|\psi\rangle=a|0\rangle+b|1\rangle, \text { where }|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1}
$$

- Evolution The evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t_{2} by a unitary operator U which depends only on the times t_{1} and t_{2},

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle .
$$

- Measurement The act of measurement changes the state. This is unlike the classical world where the act of measuring the resistance of a resistor does not change the resistance.

Summary of introduction

Summary of introduction

- A qubit is characterized by its state.

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle

$$
\text { - }|\psi\rangle=a|0\rangle+b|1\rangle \text { where }|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}
$$

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle

$$
\text { - }|\psi\rangle=a|0\rangle+b|1\rangle \text { where }|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}
$$

- $\langle\psi|=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle
- $|\psi\rangle=a|0\rangle+b|1\rangle$ where $|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}$
- $\langle\psi|=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$
- For states $|\psi\rangle$ and $|\phi\rangle,|\psi\rangle\langle\phi|$ is a matrix while $\langle\psi \mid \phi\rangle$ is a scalar.

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle
- $|\psi\rangle=a|0\rangle+b|1\rangle$ where $|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}$
- $\langle\psi|=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$
- For states $|\psi\rangle$ and $|\phi\rangle,|\psi\rangle\langle\phi|$ is a matrix while $\langle\psi \mid \phi\rangle$ is a scalar.
- Qubit whose state is represented by $|\psi\rangle$ is in the superposition of $|0\rangle$ and $|1\rangle$.

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle
- $|\psi\rangle=a|0\rangle+b|1\rangle$ where $|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}$
- $\langle\psi|=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$
- For states $|\psi\rangle$ and $|\phi\rangle,|\psi\rangle\langle\phi|$ is a matrix while $\langle\psi \mid \phi\rangle$ is a scalar.
- Qubit whose state is represented by $|\psi\rangle$ is in the superposition of $|0\rangle$ and $|1\rangle$.
- Measurement postulate

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle
- $|\psi\rangle=a|0\rangle+b|1\rangle$ where $|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}$
- $\langle\psi|=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$
- For states $|\psi\rangle$ and $|\phi\rangle,|\psi\rangle\langle\phi|$ is a matrix while $\langle\psi \mid \phi\rangle$ is a scalar.
- Qubit whose state is represented by $|\psi\rangle$ is in the superposition of $|0\rangle$ and $|1\rangle$.
- Measurement postulate
- When measurement is performed the qubit collapses to state $|0\rangle$ with probability $|a|^{2}$ and into state $|1\rangle$ with probability $|b|^{2}$

Summary of introduction

- A qubit is characterized by its state.
- We will treat qubits as mathematical objects.
- Superposition principle
- $|\psi\rangle=a|0\rangle+b|1\rangle$ where $|0\rangle=\binom{1}{0} ;|1\rangle=\binom{0}{1}$
- $\langle\psi|=\left(\begin{array}{ll}\bar{a} & \bar{b}\end{array}\right)$
- For states $|\psi\rangle$ and $|\phi\rangle,|\psi\rangle\langle\phi|$ is a matrix while $\langle\psi \mid \phi\rangle$ is a scalar.
- Qubit whose state is represented by $|\psi\rangle$ is in the superposition of $|0\rangle$ and $|1\rangle$.
- Measurement postulate
- When measurement is performed the qubit collapses to state $|0\rangle$ with probability $|a|^{2}$ and into state $|1\rangle$ with probability $|b|^{2}$
- Here we say that we have performed measurement in the $\{|0\rangle,|1\rangle\}$ basis

Introduction and background material

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.
- Density matrices capture reality of quantum states better

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.
- Density matrices capture reality of quantum states better
- $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.
- Density matrices capture reality of quantum states better
- $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$
- Density matrices are positive semi-definite matrices with unit trace

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.
- Density matrices capture reality of quantum states better
- $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$
- Density matrices are positive semi-definite matrices with unit trace
- Eigen values are real and non-negative.

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.
- Density matrices capture reality of quantum states better
- $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$
- Density matrices are positive semi-definite matrices with unit trace
- Eigen values are real and non-negative.
- Von Neuman entropy is the Shannon entropy of the pmf of eigen values.

Introduction and background material

- States can also be referred to by density matrices denoted by $\rho(=|\psi\rangle\langle\psi|)$.
- Density matrices capture reality of quantum states better
- $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$
- Density matrices are positive semi-definite matrices with unit trace
- Eigen values are real and non-negative.
- Von Neuman entropy is the Shannon entropy of the pmf of eigen values.
- The state for multiple qubits resides in the space obtained by tensor product of the individual spaces:

$$
\begin{aligned}
\mathcal{H} & =\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \mathcal{H}_{n} \\
|\psi\rangle & =\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots\left|\psi_{n}\right\rangle
\end{aligned}
$$

No theorems

No theorems

- No cloning theorem

No theorems

- No cloning theorem
- No broadcast theorem

No theorems

- No cloning theorem
- No broadcast theorem
- No deletion theorem

No theorems

- No cloning theorem
- No broadcast theorem
- No deletion theorem
- No communication theorem

Bell pair

Bell pair

- A very special state for two systems

$$
|\psi\rangle_{A B}=\frac{|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

Bell pair

- A very special state for two systems

$$
|\psi\rangle_{A B}=\frac{|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

- Let A performs measurement in $\{|0\rangle,|1\rangle\}$ basis

Bell pair

- A very special state for two systems

$$
|\psi\rangle_{A B}=\frac{|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

- Let A performs measurement in $\{|0\rangle,|1\rangle\}$ basis
- Suppose A's qubit collapses to $|0\rangle$ then B's qubit collapses to $|0\rangle$!

Bell pair

- A very special state for two systems

$$
|\psi\rangle_{A B}=\frac{|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

- Let A performs measurement in $\{|0\rangle,|1\rangle\}$ basis
- Suppose A's qubit collapses to $|0\rangle$ then B's qubit collapses to $|0\rangle$!
- Some sort of super luminal communication seems to be happening violating the special theory of relativity

Bell pair

- A very special state for two systems

$$
|\psi\rangle_{A B}=\frac{|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

- Let A performs measurement in $\{|0\rangle,|1\rangle\}$ basis
- Suppose A's qubit collapses to $|0\rangle$ then B's qubit collapses to $|0\rangle$!
- Some sort of super luminal communication seems to be happening violating the special theory of relativity
- Einstein called this spooky action at a distance

Bell pair

- A very special state for two systems

$$
|\psi\rangle_{A B}=\frac{|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

- Let A performs measurement in $\{|0\rangle,|1\rangle\}$ basis
- Suppose A's qubit collapses to $|0\rangle$ then B's qubit collapses to $|0\rangle$!
- Some sort of super luminal communication seems to be happening violating the special theory of relativity
- Einstein called this spooky action at a distance
- This phenomenon is called as entanglement

Superdense coding

Superdense coding

- $\sigma_{1}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) ; \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) ; \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) ;$

Superdense coding

- $\sigma_{1}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) ; \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) ; \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$;
- A preshared Bell pair lets A communicate two classical bits.

Quantum teleportation

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
$$

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

- A performs joint measurement on qubits C and A in the Bell basis.

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

- A performs joint measurement on qubits C and A in the Bell basis.
- There are four possible outcomes of this joint measurement:

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

- A performs joint measurement on qubits C and A in the Bell basis.
- There are four possible outcomes of this joint measurement:

$$
\left|\Phi^{ \pm}\right\rangle=\frac{|00\rangle \pm|11\rangle}{\sqrt{2}} \quad\left|\Psi^{ \pm}\right\rangle=\frac{|01\rangle \pm|10\rangle}{\sqrt{2}} .
$$

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

- A performs joint measurement on qubits C and A in the Bell basis.
- There are four possible outcomes of this joint measurement:

$$
\left|\Phi^{ \pm}\right\rangle=\frac{|00\rangle \pm|11\rangle}{\sqrt{2}} \quad\left|\Psi^{ \pm}\right\rangle=\frac{|01\rangle \pm|10\rangle}{\sqrt{2}} .
$$

- A informs B of the measurment outcome over a classical channel.

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

- A performs joint measurement on qubits C and A in the Bell basis.
- There are four possible outcomes of this joint measurement:

$$
\left|\Phi^{ \pm}\right\rangle=\frac{|00\rangle \pm|11\rangle}{\sqrt{2}} \quad\left|\Psi^{ \pm}\right\rangle=\frac{|01\rangle \pm|10\rangle}{\sqrt{2}} .
$$

- A informs B of the measurment outcome over a classical channel.
- B performs appropriate unitary operations on its qubit to attain the state of C.

Quantum teleportation

- Nodes A and B share an entangled pair of qubits:

$$
\left|\Phi^{+}\right\rangle_{A B}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Let $|\chi\rangle_{C}=a|0\rangle+b|1\rangle$ be the qubit to be teleported.
- Joint state is $|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B}$.

$$
\begin{aligned}
|\chi\rangle_{C} \otimes\left|\Phi^{+}\right\rangle_{A B} & =\left|\Phi^{+}\right\rangle_{C A}(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle_{C A}(a|0\rangle-b|1\rangle) \\
& +\left|\Psi^{+}\right\rangle_{C A}(b|0\rangle+b|1\rangle)+\left|\Psi^{-}\right\rangle_{C A}(b|0\rangle-a|1\rangle),
\end{aligned}
$$

- A performs joint measurement on qubits C and A in the Bell basis.
- There are four possible outcomes of this joint measurement:

$$
\left|\Phi^{ \pm}\right\rangle=\frac{|00\rangle \pm|11\rangle}{\sqrt{2}} \quad\left|\Psi^{ \pm}\right\rangle=\frac{|01\rangle \pm|10\rangle}{\sqrt{2}} .
$$

- A informs B of the measurment outcome over a classical channel.
- B performs appropriate unitary operations on its qubit to attain the state of C.

A curious case of measurement

A curious case of measurement

- Consider three qubits shared between nodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in the following state:

A curious case of measurement

- Consider three qubits shared between nodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

A curious case of measurement

- Consider three qubits shared between nodes A, B, C in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

- If A measures its qubit in the $\{|0\rangle,|1\rangle\}$ basis, then B and C end up in either $|00\rangle$ or $|11\rangle$ state.

A curious case of measurement

- Consider three qubits shared between nodes A, B, C in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

- If A measures its qubit in the $\{|0\rangle,|1\rangle\}$ basis, then B and C end up in either $|00\rangle$ or $|11\rangle$ state.
- Let us represent this state in a different basis for A's system:

A curious case of measurement

- Consider three qubits shared between nodes A, B, C in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

- If A measures its qubit in the $\{|0\rangle,|1\rangle\}$ basis, then B and C end up in either $|00\rangle$ or $|11\rangle$ state.
- Let us represent this state in a different basis for A's system:

A curious case of measurement

- Consider three qubits shared between nodes A, B, C in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

- If A measures its qubit in the $\{|0\rangle,|1\rangle\}$ basis, then B and C end up in either $|00\rangle$ or $|11\rangle$ state.
- Let us represent this state in a different basis for A's system:

A curious case of measurement

- Consider three qubits shared between nodes A, B, C in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

- If A measures its qubit in the $\{|0\rangle,|1\rangle\}$ basis, then B and C end up in either $|00\rangle$ or $|11\rangle$ state.
- Let us represent this state in a different basis for A's system:

A curious case of measurement

- Consider three qubits shared between nodes A, B, C in the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle_{A B C}+|111\rangle_{A B C}\right)
$$

- If A measures its qubit in the $\{|0\rangle,|1\rangle\}$ basis, then B and C end up in either $|00\rangle$ or $|11\rangle$ state.
- Let us represent this state in a different basis for A's system:
- If A measures its qubit in the $\{|+\rangle,| \rangle\}$ basis, then B and C end up in either $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ or $\frac{|00\rangle-|11\rangle}{\sqrt{2}}$

The problem of node failure and recovery mechanism

The problem of node failure and recovery mechanism

- The notion of graph states naturally fits into the description of multipartite quantum states.

The problem of node failure and recovery mechanism

- The notion of graph states naturally fits into the description of multipartite quantum states.
- Graphs described mathematically using $G=(V, E)$ depict the connections between the set of nodes V and the set of edges E.

The problem of node failure and recovery mechanism

- The notion of graph states naturally fits into the description of multipartite quantum states.
- Graphs described mathematically using $G=(V, E)$ depict the connections between the set of nodes V and the set of edges E.
- We use the following setting for describing quantum networks via graphs.

The problem of node failure and recovery mechanism

- The notion of graph states naturally fits into the description of multipartite quantum states.
- Graphs described mathematically using $G=(V, E)$ depict the connections between the set of nodes V and the set of edges E.
- We use the following setting for describing quantum networks via graphs.
- Nodes represented by vertices from the set V account for qubits, one at every node, while edges represent the quantum mechanical interaction that enables entangling of qubits.

Node failure

Node failure

- Suppose that one of the nodes undergoes a failure.

Node failure

- Suppose that one of the nodes undergoes a failure.
- This disconnects the failed node from the rest of the nodes and the edges connecting it to the rest of nodes also get deleted resulting in a new graph state $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.

Node failure

- Suppose that one of the nodes undergoes a failure.
- This disconnects the failed node from the rest of the nodes and the edges connecting it to the rest of nodes also get deleted resulting in a new graph state $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.
- This quantum erasure is mathematically equivalent to tracing out the qubit at the failed node from the initial state.

Node failure

- Suppose that one of the nodes undergoes a failure.
- This disconnects the failed node from the rest of the nodes and the edges connecting it to the rest of nodes also get deleted resulting in a new graph state $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.
- This quantum erasure is mathematically equivalent to tracing out the qubit at the failed node from the initial state.
- If a node failure happens, we end up with a mixed state residing in the smaller dimensional Hilbert space $\mathcal{H}^{\otimes N-1}$. Whenever such a node failure occurs, we assume that the location of the failed node is known to us.

Node failure

- Suppose that one of the nodes undergoes a failure.
- This disconnects the failed node from the rest of the nodes and the edges connecting it to the rest of nodes also get deleted resulting in a new graph state $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.
- This quantum erasure is mathematically equivalent to tracing out the qubit at the failed node from the initial state.
- If a node failure happens, we end up with a mixed state residing in the smaller dimensional Hilbert space $\mathcal{H}^{\otimes N-1}$. Whenever such a node failure occurs, we assume that the location of the failed node is known to us.

Schmidt decomposition

Schmidt decomposition

- Having obtained a mixed state post node failure, we need to purify it and give it a mathematical description using the usual notion of error operators.

Schmidt decomposition

- Having obtained a mixed state post node failure, we need to purify it and give it a mathematical description using the usual notion of error operators.
- We explain our procedure for purification stemming from the Schmidt decomposition:

Schmidt decomposition

- Having obtained a mixed state post node failure, we need to purify it and give it a mathematical description using the usual notion of error operators.
- We explain our procedure for purification stemming from the Schmidt decomposition:

Suppose $|\psi\rangle$ is a pure state of a composite system $A B$ with Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Then there exist orthonormal states $|i\rangle_{A}$ for system A and orthonormal states $|i\rangle_{B}$ for system B such that

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle
$$

where λ_{i} are non-negative real numbers satisfying $\sum_{i} \lambda_{i}^{2}=1$ known as Schmidt co-efficients.

Node failure

Purification procedure

Purification procedure

- Suppose the purification procedure uses the basis states $\left|\theta_{0}\right\rangle,\left|\theta_{1}\right\rangle \in \mathcal{H}$ to combine the new qubit and the mixed state ρ^{\prime}, then we get the following purified state in $\mathcal{H}^{\otimes N}$:

Purification procedure

- Suppose the purification procedure uses the basis states $\left|\theta_{0}\right\rangle,\left|\theta_{1}\right\rangle \in \mathcal{H}$ to combine the new qubit and the mixed state ρ^{\prime}, then we get the following purified state in $\mathcal{H}^{\otimes N}$.

$$
\begin{align*}
& \left|\psi^{\prime}\right\rangle=\lambda_{0}\left|\theta_{0}\right\rangle\left|\eta_{0}\right\rangle+\lambda_{1}\left|\theta_{1}\right\rangle\left|\eta_{1}\right\rangle, \tag{1}\\
& \quad \text { or } \\
& \left|\psi^{\prime}\right\rangle=\lambda_{0}\left|\theta_{1}\right\rangle\left|\eta_{0}\right\rangle+\lambda_{1}\left|\theta_{0}\right\rangle\left|\eta_{1}\right\rangle . \tag{2}
\end{align*}
$$

Conclusion and future work

Conclusion and future work

- We studied the basics of quantum information theory and the language that is used to describe quantum objects.

Conclusion and future work

- We studied the basics of quantum information theory and the language that is used to describe quantum objects.
- We looked at superdense coding and teleportation protocols.

Conclusion and future work

- We studied the basics of quantum information theory and the language that is used to describe quantum objects.
- We looked at superdense coding and teleportation protocols.
- We looked at the problem of a node failure leading to the loss of a qubit from a codeword.

Conclusion and future work

- We studied the basics of quantum information theory and the language that is used to describe quantum objects.
- We looked at superdense coding and teleportation protocols.
- We looked at the problem of a node failure leading to the loss of a qubit from a codeword.
- We found a procedure via the purification to recover the codeword back.

Conclusion and future work

- We studied the basics of quantum information theory and the language that is used to describe quantum objects.
- We looked at superdense coding and teleportation protocols.
- We looked at the problem of a node failure leading to the loss of a qubit from a codeword.
- We found a procedure via the purification to recover the codeword back.
- We are investing ways of detecting and identifying the node that goes through a failure.

References

C. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. vol. 69, pp. 2881-2884, 1992.
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, "Teleporting an Unknown Quantum State via Dual Classical and EinsteinPodolskyRosen Channels," Phys. Rev. Lett. vol. 70, pp. 18951899, 1993.
M. A. Nielsen and I. L. Chuang, Quantum computation and Quantum Information, Cambridge University Press, 2010.

Questions and suggestions

Thanks for your time ${ }^{-}$

