Distributed Control and Quality-of-Service in Multihop Networks

Ashok Krishnan K.S.

(joint work with Prof. Vinod Sharma) Performance Analysis Lab, Department of ECE, IISc

- Multihop Wireless Networks
- Distributed Control
- Quality of Service (QoS) Guarantees
- Complexity and Performance

A Multihop Wireless Network

Control of the Network

- Various parameters
- Optimization
- Feasibility
- Distributed?

Quality of Service (QoS)

- Mean Delay
- Hard Deadline
- Rate

System Model

A Wireless Network

- Slotted System, $t \in \{0, 1, 2, ...\}$
- Arrival Process $A_i^c(t)$ with mean λ_i^c
- QoS for flows
 - End to End Mean Delay Guarantee
 - End to End Hard Deadline Guarantee

Power vector
$$p(t) = [p_{ij}(t)]_{1 \le i,j \le N} \in \mathcal{P}$$
Channel Rate $r_{ij}(t) = f(p(t), \gamma(t))$
 $r_{ij}(t) = \log_2 \left(1 + \frac{p_{ij}(t)\gamma_{ij}(t)}{\mathcal{N}_j(t) + \sum_{k \ne i} \sum_{l \in V} p_{kl}(t)\gamma_{kl}(t)} \right)$
 $q_i^c(t+1) = q_i^c(t) - \mu_{OUT,i}^c(t) + \mu_{IN,i}^c(t) + A_i^c(t)$

• A Control Policy $\{\pi(t)\}_{t=0,1,2,\dots}$

•
$$\pi = g(\gamma, Q)$$

• π optimizes some cost function

Related Work

- Throughput Optimal Policies
 - Tassiulas and Ephremides (1992)
 - Neely, Modiano and Rohrs (2005)
- Non SINR models
 - Bui, Eryilmaz, Srikant, and Wu (2006)
 - Xue and Ekici (2013)
- Distributed Scheduling and Routing Policies
 - Tassiulas (1998)
 - Lee, Modiano, and Le (2009)
- Delay based Control
 - Cui, Lau, Wang, Huang, and Zhang (2012)
 - Singh and Kumar (2016)

Control

Action Space Π

Control

$$\pi^*(1) \rightarrow \pi^*(2) \rightarrow \pi^*(3) \rightarrow \ldots$$

Capacity Region A: Set of arrival rates for which a stabilizing policy exists.

$\begin{array}{l} \text{Stability} \\ \lim_{T \to \infty} \sup \frac{1}{T} \sum_{\tau=0}^{T-1} \mathbb{E}[q_i^c(\tau)] < \infty \end{array}$

MaxWeight Policy

$$p^*(t) = \arg_{p \in \mathcal{P}} \max \sum_{ij} \Delta_{ij} r_{ij}(p)$$

•
$$\Delta_{ij} = \max_c (q_i^c - q_j^c)^+$$

• Stabilizes all $\lambda \in \Lambda$

Control

 $\pi(1) \rightarrow \pi(2) \rightarrow \pi(3) \rightarrow \ldots$

Capacity Region Λ

$\epsilon\text{-Optimal Control}$

Action Space Π

Improvement over time

 $f(\pi(1)) \leq f(\pi(2)) \leq f(\pi(3))...$

- Priority based
- QoS vs Stability

Aim

- Distributed Algorithm
- Provide QoS
 - End to End Mean Delay Guarantee
 - End to End Hard Deadline Guarantee

End to End Delay

Multiple Paths between Source and Destination

Dynamic Priority at a Node

 $\mathsf{Higher}\ \mathsf{Queue}\ \mathsf{Length}\ \Longrightarrow\ \mathsf{Higher}\ \mathsf{Priority}$

Dynamic Priority at a Node

QoS not satisfied \implies Higher Priority

_				_
Г	П	п	Т	
	ш	11	н	
	ш	11	н	
-				-

Dynamic Priority across Nodes

• Virtual queue length $q_i = \sum_{c \in F} h^c(q_i^c)$

$$h^{c}(x) = \begin{cases} \theta x^{2}, & \text{if QoS of flow c not satisfied} \\ x, & \text{otherwise} \end{cases}$$

Node becomes transmitter wp u_i/U*; receiver wp 1 − u_i/U*
 u_i = min(q_i, B); U* = ∑u_i; Gossiping

Gossiping

- Node i has Val(i)
- Node *i* picks a neighbour wp $\frac{1}{N}$
- Update $Val(i), Val(j) \leftarrow \min(Val(i), Val(j))$
- ► If $Val(i) \sim \exp(Z_i)$, $\min(Val(i), Val(j)) \sim \exp(Z_i + Z_j)$

- Each transmitter *i* picks power $p_i \sim \mathcal{U}[0, p_{max}]$
- Over link *ij* schedule the flow

$$c_{ij}^* = \begin{cases} \arg_{c \in F} \max(h^c(q_i^c) - h^c(q_j^c))^+, & \text{wp } \sigma \\ \arg_{c \in F} \max(q_i^c - q_j^c)^+, & \text{otherwise} \end{cases}$$

Compare current and previous slot, choose better

Theorem

The Algorithm Q-Dep stabilizes the network for any arrival rate vector $\lambda \in \rho \Lambda$ where $\rho < 1 - (\alpha_1 + (1 - \alpha_1)\alpha_2) - 2\sqrt{\frac{\beta_2}{\beta_1}}$.¹

• $\alpha_1 \in (0, 1)$ • $\alpha_3 \in (0, \frac{1}{2NB})$ • $\beta_3 \in (0, 1)$ • $\beta_1 = (1 - \beta_3) \left(\frac{\epsilon}{2(1 - \alpha_3^2)N^{3.5}B^2}\right)^N$ • $\alpha_2, \beta \in (0, 1)$ • $\beta_2 = \beta + \sigma(1 - \beta)$

¹Ashok Krishnan.K.S, Vinod Sharma, NCC 2017.

- A lower bound
- Stability region may be larger
- QoS vs Stability

f(π(t)) ≥ (1 − ψ₁)f(π*(t)) with positive probability
 f(π(t + 1)) ≥ (1 − ψ₂)f(π(t)) with positive probability

Stability Region for Different Algorithms for a Network of 20 Nodes and 5 Flows

Stability Region for Different Algorithms for a Network of 20 Nodes and 15 Flows

One flow with mean delay requirement (Network 1: 10 nodes, 7 flows Network 2: 15 nodes, 10 flows)

Netw	ork 1	Network 2		
Delay	Delay	Delay	Delay	
Target	Target Achieved		Achieved	
(slots)	(slots)	(slots)	(slots)	
200	202	350	353	
180	181	300	292	
150	152	230	236	
120	121	200	212	
100	100	180	193	
80	83	150	160	
60	61	120	149	

Two flows with mean delay requirement (15 nodes, 7 flows)

Flo	w 1	Flow 2		
Delay	Delay	Delay	Delay	
Target	Achieved	Target	Achieved	
(slots)	(slots)	(slots)	(slots)	
300	308	300	330	
250	248	250	256	
200	210	250	270	
150	169	200	202	
180	182	180	189	
160	185	160	179	

Two mean Delays and one hard deadline (10 nodes, 8 flows) Hard Deadline = 70 slots

Flow 1			Flow 2			Flow 3		
Delay	Delay	Mean	Delay	Delay	Mean	Drop	Drop	Drop
Tar-	Achi-	De-	Tar-	Achi-	De-	ratio	ratio	Ra-
get	eved	lay	get	eved	lay	Tar-	Achi-	tio
(slots)	(slots)	in	(slots)	(slots)	in	get	eved	in
		Lee			Lee			Lee
		(slots)			(slots)			
30	31		40	41		5%	5.1%	
30	31	127	40	41	104	3%	3%	52.7%
30	31		40	40		2%	2%	

Conclusion

- Distributed Algorithm
- Stability
- QoS provisions

