
Efficient Recovery from Multiple Erasures by
Accessing Small Number of Disks in
Distributed Data Storage

Ganesh R. Kini and Balaji S.B.
Codes and Signal Design Lab
Advisor: Prof Vijay Kumar

17 May 2017

Students’ Seminar Series
Department of ECE
Indian Institute of Science

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

1

Codes with Sequential Local
Recovery

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

2

Distributed Storage

• Data is stored by distributing across
disks (nodes).

• Requirements:
• High reliability i.e. protection from data

loss due to disk failures
want to correct large number of
erasures

• Low storage overhead
i.e. want high-rate codes

• Efficient repair of a disk when it fails
want to contact very few surviving
nodes

3

Distributed Storage

• Data is stored by distributing across
disks (nodes).

• Requirements:
• High reliability i.e. protection from data

loss due to disk failures
want to correct large number of
erasures

• Low storage overhead
i.e. want high-rate codes

• Efficient repair of a disk when it fails
want to contact very few surviving
nodes

3

Distributed Storage

• Data is stored by distributing across
disks (nodes).

• Requirements:
• High reliability i.e. protection from data

loss due to disk failures
want to correct large number of
erasures

• Low storage overhead
i.e. want high-rate codes

• Efficient repair of a disk when it fails
want to contact very few surviving
nodes

3

Sequential Recovery

A length 7 code with
code-symbols c1, c2, c3, ..., c7.

Suppose c1, c2 and c3 (in general
some t) are lost.
Suppose can access at most 2 (in
general r) other symbols to
recover each lost symbol.
Property:
c1 = f1(c4, c5), c2 = f2(c1, c4),
c3 = f3(c1, c2)

So that, can recover the lost
symbols in the sequence
c1 −−c2 −−c3.

c1 c2 c3 c4 c5 c6 c7

Questions: What is the highest “rate” achievable by such codes? How
to design such rate-optimal codes with low blocklength, low field-size?

4

Sequential Recovery

A length 7 code with
code-symbols c1, c2, c3, ..., c7.
Suppose c1, c2 and c3 (in general
some t) are lost.

Suppose can access at most 2 (in
general r) other symbols to
recover each lost symbol.
Property:
c1 = f1(c4, c5), c2 = f2(c1, c4),
c3 = f3(c1, c2)

So that, can recover the lost
symbols in the sequence
c1 −−c2 −−c3.

c1 c2 c3 c4 c5 c6 c7

Questions: What is the highest “rate” achievable by such codes? How
to design such rate-optimal codes with low blocklength, low field-size?

4

Sequential Recovery

A length 7 code with
code-symbols c1, c2, c3, ..., c7.
Suppose c1, c2 and c3 (in general
some t) are lost.
Suppose can access at most 2 (in
general r) other symbols to
recover each lost symbol.

Property:
c1 = f1(c4, c5), c2 = f2(c1, c4),
c3 = f3(c1, c2)

So that, can recover the lost
symbols in the sequence
c1 −−c2 −−c3.

c1 c2 c3 c4 c5 c6 c7

Questions: What is the highest “rate” achievable by such codes? How
to design such rate-optimal codes with low blocklength, low field-size?

4

Sequential Recovery

A length 7 code with
code-symbols c1, c2, c3, ..., c7.
Suppose c1, c2 and c3 (in general
some t) are lost.
Suppose can access at most 2 (in
general r) other symbols to
recover each lost symbol.
Property:
c1 = f1(c4, c5), c2 = f2(c1, c4),
c3 = f3(c1, c2)

So that, can recover the lost
symbols in the sequence
c1 −−c2 −−c3.

c1 c2 c3 c4 c5 c6 c7

Questions: What is the highest “rate” achievable by such codes? How
to design such rate-optimal codes with low blocklength, low field-size?

4

Sequential Recovery

A length 7 code with
code-symbols c1, c2, c3, ..., c7.
Suppose c1, c2 and c3 (in general
some t) are lost.
Suppose can access at most 2 (in
general r) other symbols to
recover each lost symbol.
Property:
c1 = f1(c4, c5), c2 = f2(c1, c4),
c3 = f3(c1, c2)

So that, can recover the lost
symbols in the sequence
c1 −−c2 −−c3.

c1 c2 c3 c4 c5 c6 c7

Questions: What is the highest “rate” achievable by such codes? How
to design such rate-optimal codes with low blocklength, low field-size?

4

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

5

A Simple Code with Sequential Recovery: 2D Product Code

• (n = 16, k = 9, r = 3, t = 3)seq

code

• Rate of the code for general r is
k
n = r2

(r+1)2

• Every row is a codeword of SPC
code, every column is a
codeword of SPC code

• Parity is the sum of r symbols

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can correct this erasure-pattern in
any sequence

Can it correct all
3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can correct this erasure-pattern in
any sequence

Can it correct all
3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can correct this erasure-pattern in
any sequence

Can it correct all
3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

6

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns?
In any sequence?

Not in any arbitrary sequence; but can
correct any 3-erasures

• Hence can correct any
3-erasure-pattern

• But some 4-erasure-patterns are
uncorrectable

6

Definition of Code with Sequential Local Recovery(Sequential
LRC)

Definition
Code with Sequential Local Recovery
An [n, k] code is said to be a locally recoverable code with sequential
recovery from t erasures, if for any set of s ≤ t erasures, there is an
s-step sequential recovery process, in which at each step, a single
erased symbol is recovered by accessing at most r other code
symbols.

This is equivalent to the requirement that for any set of s ≤ t
erasures, the dual code contain a codeword whose support contains
the coordinate of precisely one of the s erased symbols.

We will formally refer to this class of codes as (n, k , r , t)seq codes.

7

Definition of Code with Sequential Local Recovery(Sequential
LRC)

Definition
Code with Sequential Local Recovery
An [n, k] code is said to be a locally recoverable code with sequential
recovery from t erasures, if for any set of s ≤ t erasures, there is an
s-step sequential recovery process, in which at each step, a single
erased symbol is recovered by accessing at most r other code
symbols.

This is equivalent to the requirement that for any set of s ≤ t
erasures, the dual code contain a codeword whose support contains
the coordinate of precisely one of the s erased symbols.

We will formally refer to this class of codes as (n, k , r , t)seq codes.

7

Definition of Code with Sequential Local Recovery(Sequential
LRC)

Definition
Code with Sequential Local Recovery
An [n, k] code is said to be a locally recoverable code with sequential
recovery from t erasures, if for any set of s ≤ t erasures, there is an
s-step sequential recovery process, in which at each step, a single
erased symbol is recovered by accessing at most r other code
symbols.

This is equivalent to the requirement that for any set of s ≤ t
erasures, the dual code contain a codeword whose support contains
the coordinate of precisely one of the s erased symbols.

We will formally refer to this class of codes as (n, k , r , t)seq codes.

7

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

8

Question of Code-Rate

Given locality parameter r and erasure correctability parameter t ,
what is the maximum achievable code-rate?

Theorem
Rate Bound: Let C be an (n, k , r , t)seq code over a field Fq . Let r ≥ 3.
Then

k
n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

for even t, (1)

k
n
≤ r s

r s + 2
∑s−1

i=1 r i + 1
for odd t, (2)

where s = t+1
2 .

Proof.
We investigate the structure of the parity check matrix

9

Question of Code-Rate

Given locality parameter r and erasure correctability parameter t ,
what is the maximum achievable code-rate?

Theorem

Rate Bound1: Let C be an (n, k , r , t)seq code over a field Fq . Let
r ≥ 3. Then

k
n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

for even t, (1)

k
n
≤ r s

r s + 2
∑s−1

i=1 r i + 1
for odd t, (2)

where s = t+1
2 .

Proof.
We investigate the structure of the parity check matrix

1S. B. Balaji, G. R. Kini, and P. V. Kumar, “A tight rate bound and a matching construction for
locally recoverable codes with sequential recovery from any number of multiple erasures, 2017.
[Online]. Available: http://arxiv.org/abs/1611.08561 9

Question of Code-Rate

Given locality parameter r and erasure correctability parameter t ,
what is the maximum achievable code-rate?

Theorem
Rate Bound: Let C be an (n, k , r , t)seq code over a field Fq . Let r ≥ 3.
Then

k
n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

for even t, (1)

k
n
≤ r s

r s + 2
∑s−1

i=1 r i + 1
for odd t, (2)

where s = t+1
2 .

Proof.
We investigate the structure of the parity check matrix

9

Parity-Check Matrix

• Let S = span(c ∈ C⊥ : wH(c) ≤ r + 1), where c is a row-vector

• Let m be dimension of S, and c1, ..., cm be a basis of S s.t.
wH(ci) ≤ r + 1

• Let H1 =

c1

c2
...

cm

• H1 is a parity-check matrix of an (n,n −m, r , t)seq code

10

Parity-Check Matrix

• Let S = span(c ∈ C⊥ : wH(c) ≤ r + 1), where c is a row-vector

• Let m be dimension of S, and c1, ..., cm be a basis of S s.t.
wH(ci) ≤ r + 1

• Let H1 =

c1

c2
...

cm

• H1 is a parity-check matrix of an (n,n −m, r , t)seq code

10

Parity-Check Matrix

• Let S = span(c ∈ C⊥ : wH(c) ≤ r + 1), where c is a row-vector

• Let m be dimension of S, and c1, ..., cm be a basis of S s.t.
wH(ci) ≤ r + 1

• Let H1 =

c1

c2
...

cm

• H1 is a parity-check matrix of an (n,n −m, r , t)seq code

10

Parity-Check Matrix

• Let S = span(c ∈ C⊥ : wH(c) ≤ r + 1), where c is a row-vector

• Let m be dimension of S, and c1, ..., cm be a basis of S s.t.
wH(ci) ≤ r + 1

• Let H1 =

c1

c2
...

cm

• H1 is a parity-check matrix of an (n,n −m, r , t)seq code

10

Parity Check Matrix of a Linear Code

Suppose an n-length code has code-symbols c1, ..., cn.
The rows of a parity check matrix of the code are nothing but the
linear equations that the code-symbols satisfy.

Suppose [a1, ...,an] is one row, then
∑n

i=1 aici = 0

If the dimension of the code is k , then the parity check matrices have
rank n − k .

11

P-C Matrix for Sequentially Correcting t Erasures Locally

We’ll now see the case of even t

12

P-C Matrix for Sequentially Correcting t Erasures Locally

Start with any (n, k , r , t) code, consider the matrix H1 for it, with row
and column permutations it looks like this:

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

13

P-C Matrix: Row and Column Permutation

Take H1 matrix of any (n, k , r , t)seq code. Permute rows and columns
to get the staircase form:

D0

A1

D1

E

C

14

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s

• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1
• Di : rows have weight at least 1 and columns have weight at most

1
• C: columns have weight exactly 2
• E : columns have weight at least 3

15

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s
• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1
• Di : rows have weight at least 1 and columns have weight at most

1
• C: columns have weight exactly 2
• E : columns have weight at least 3

15

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s
• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1
• Di : rows have weight at least 1 and columns have weight at most

1
• C: columns have weight exactly 2
• E : columns have weight at least 3

15

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s
• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1

• Di : rows have weight at least 1 and columns have weight at most
1

• C: columns have weight exactly 2
• E : columns have weight at least 3

15

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s
• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1
• Di : rows have weight at least 1 and columns have weight at most

1

• C: columns have weight exactly 2
• E : columns have weight at least 3

15

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s
• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1
• Di : rows have weight at least 1 and columns have weight at most

1
• C: columns have weight exactly 2

• E : columns have weight at least 3

15

P-C Matrix for Sequentially Correcting t Erasures Locally

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
... E

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1

0 0 0 0 . . . 0 0 C

• Ai ’s are ρi−1 × ai and Di ’s are ρi × ai for some ρi ’s and ai ’s
• D0: columns have weight 1 and rows have weight at least 1

•

[
Ai

Di

]
: for i ≥ 1, columns have weight 2

• Ai : columns have weight at least 1
• Di : rows have weight at least 1 and columns have weight at most

1
• C: columns have weight exactly 2
• E : columns have weight at least 3

15

P-C Matrix: Structure

Claim
Ai ’s are matrices with each column having weight 1 and Di ’s are
matrices with each row and each column having weight 1.

Proof.
Fact: dmin(C) ≥ t + 1; hence no x(≤ t) columns of H1 can be linearly
dependent.
Will show that columns of Ai have weight exactly 1 and rows of Di

have weight exactly 1.
If D0 has a row with at least 2 non-zero entries, then 2 columns
become linearly dependent, a contradiction to dmin(C) ≥ t + 1.

D0

Therefore, with column permutation, D0 is diagonal.

16

P-C Matrix: Structure

Claim
Ai ’s are matrices with each column having weight 1 and Di ’s are
matrices with each row and each column having weight 1.

Proof.
Fact: dmin(C) ≥ t + 1; hence no x(≤ t) columns of H1 can be linearly
dependent.

Will show that columns of Ai have weight exactly 1 and rows of Di

have weight exactly 1.
If D0 has a row with at least 2 non-zero entries, then 2 columns
become linearly dependent, a contradiction to dmin(C) ≥ t + 1.

D0

Therefore, with column permutation, D0 is diagonal.

16

P-C Matrix: Structure

Claim
Ai ’s are matrices with each column having weight 1 and Di ’s are
matrices with each row and each column having weight 1.

Proof.
Fact: dmin(C) ≥ t + 1; hence no x(≤ t) columns of H1 can be linearly
dependent.
Will show that columns of Ai have weight exactly 1 and rows of Di

have weight exactly 1.

If D0 has a row with at least 2 non-zero entries, then 2 columns
become linearly dependent, a contradiction to dmin(C) ≥ t + 1.

D0

Therefore, with column permutation, D0 is diagonal.

16

P-C Matrix: Structure

Claim
Ai ’s are matrices with each column having weight 1 and Di ’s are
matrices with each row and each column having weight 1.

Proof.
Fact: dmin(C) ≥ t + 1; hence no x(≤ t) columns of H1 can be linearly
dependent.
Will show that columns of Ai have weight exactly 1 and rows of Di

have weight exactly 1.
If D0 has a row with at least 2 non-zero entries, then 2 columns
become linearly dependent, a contradiction to dmin(C) ≥ t + 1.

D0

Therefore, with column permutation, D0 is diagonal.

16

P-C Matrix: Structure

Claim
Ai ’s are matrices with each column having weight 1 and Di ’s are
matrices with each row and each column having weight 1.

Proof.
Fact: dmin(C) ≥ t + 1; hence no x(≤ t) columns of H1 can be linearly
dependent.
Will show that columns of Ai have weight exactly 1 and rows of Di

have weight exactly 1.
If D0 has a row with at least 2 non-zero entries, then 2 columns
become linearly dependent, a contradiction to dmin(C) ≥ t + 1.

D0

Therefore, with column permutation, D0 is diagonal. 16

P-C Matrix: Structure

A1: columns have weight exactly 1

D0 A1

3 columns linearly dependent.
D2: rows have weight exactly 1

D2

A2D1

D0

A1

D2

A2

A1

D0

D1

Upto 6 columns linearly dependent.

17

P-C Matrix: Structure

A1: columns have weight exactly 1

D0 A1

3 columns linearly dependent.
D2: rows have weight exactly 1

D2

A2D1

D0

A1

D2

A2

A1

D0

D1

Upto 6 columns linearly dependent.

17

P-C Matrix: Structure

A1: columns have weight exactly 1

D0 A1

3 columns linearly dependent.

D2: rows have weight exactly 1

D2

A2D1

D0

A1

D2

A2

A1

D0

D1

Upto 6 columns linearly dependent.

17

P-C Matrix: Structure

A1: columns have weight exactly 1

D0 A1

3 columns linearly dependent.
D2: rows have weight exactly 1

D2

A2D1

D0

A1

D2

A2

A1

D0

D1

Upto 6 columns linearly dependent.

17

P-C Matrix: Structure

A1: columns have weight exactly 1

D0 A1

3 columns linearly dependent.
D2: rows have weight exactly 1

D2

A2D1

D0

A1

D2

A2

A1

D0

D1

Upto 6 columns linearly dependent.

17

P-C Matrix: Structure

A1: columns have weight exactly 1

D0 A1

3 columns linearly dependent.
D2: rows have weight exactly 1

D2

A2D1

D0

A1

D2

A2

A1

D0

D1

Upto 6 columns linearly dependent.
17

P-C Matrix: Structure

For some 0 ≤ i ≤ t
2 − 1, upto 2(i + 1) ≤ t columns become linearly

dependent, which is a contradiction to dmin(C) ≥ t + 1.

Thus, the Claim is true. i.e.
Ai ’s are matrices with each column having weight 1 and Di ’s are
matrices with each row and each column having weight 1.

Therefore, Di ’s are diagonal (identity, after scaling) matrices with
number of rows ρi and number of columns ai equal.

ρi = ai

18

Let’s recall...

a0 a1 at/2-1 at/2

at/2-1
p

a0
a1

m

n

19

Now we count...

Equating sum of row-weights and sum of column-weights of Ai :

a3

a2

ai−1r ≥ ai

20

Now we count...

Equating sum of row-weights and sum of column-weights of C:

at/2-1 at/2

at/2-1
p

2a t
2
≤ (a t

2−1 + p)(r + 1)− a t
2−1

21

Now we count...

Equating sum of row-weights and sum of column-weights of H1:

m(r + 1) ≥ a0 + 2(

t
2∑

i=1

ai) + 3(n −
t
2∑

i=0

ai)

22

The Inequalities

We now have the following set of inequalities:

ai−1r ≥ ai (3)

2a t
2
≤ (a t

2−1 + p)(r + 1)− a t
2−1 (4)

m(r + 1) ≥ a0 + 2(

t
2∑

i=1

ai) + 3(n −
t
2∑

i=0

ai) (5)

Also,

t
2−1∑
i=0

ai + p = m (6)

Now we obtain a lower bound on m

23

The Inequalities

We now have the following set of inequalities:

ai−1r ≥ ai (3)

2a t
2
≤ (a t

2−1 + p)(r + 1)− a t
2−1 (4)

m(r + 1) ≥ a0 + 2(

t
2∑

i=1

ai) + 3(n −
t
2∑

i=0

ai) (5)

Also,

t
2−1∑
i=0

ai + p = m (6)

Now we obtain a lower bound on m

23

The Inequalities

We now have the following set of inequalities:

ai−1r ≥ ai (3)

2a t
2
≤ (a t

2−1 + p)(r + 1)− a t
2−1 (4)

m(r + 1) ≥ a0 + 2(

t
2∑

i=1

ai) + 3(n −
t
2∑

i=0

ai) (5)

Also,

t
2−1∑
i=0

ai + p = m (6)

Now we obtain a lower bound on m

23

Upper Bound on Rate

• either by manipulating the inequalities

• or by observing that the inequalities are linear in a0, ...,a t
2
,p;

hence formulating a linear programming problem

We obtain:

m ≥
2n
∑ t

2−1
i=0 r i

r t
2 + 2

∑ t
2−1
i=0 r i

(7)

Now, n − k ≥ m
(Recall m is the number of independent “local” parity checks only)
Therefore we get,

k
n
≤ 1− m

n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

(8)

Proof for odd t proceeds along similar lines

24

Upper Bound on Rate

• either by manipulating the inequalities

• or by observing that the inequalities are linear in a0, ...,a t
2
,p;

hence formulating a linear programming problem

We obtain:

m ≥
2n
∑ t

2−1
i=0 r i

r t
2 + 2

∑ t
2−1
i=0 r i

(7)

Now, n − k ≥ m
(Recall m is the number of independent “local” parity checks only)
Therefore we get,

k
n
≤ 1− m

n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

(8)

Proof for odd t proceeds along similar lines

24

Upper Bound on Rate

• either by manipulating the inequalities

• or by observing that the inequalities are linear in a0, ...,a t
2
,p;

hence formulating a linear programming problem

We obtain:

m ≥
2n
∑ t

2−1
i=0 r i

r t
2 + 2

∑ t
2−1
i=0 r i

(7)

Now, n − k ≥ m
(Recall m is the number of independent “local” parity checks only)
Therefore we get,

k
n
≤ 1− m

n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

(8)

Proof for odd t proceeds along similar lines

24

Upper Bound on Rate

• either by manipulating the inequalities

• or by observing that the inequalities are linear in a0, ...,a t
2
,p;

hence formulating a linear programming problem

We obtain:

m ≥
2n
∑ t

2−1
i=0 r i

r t
2 + 2

∑ t
2−1
i=0 r i

(7)

Now, n − k ≥ m
(Recall m is the number of independent “local” parity checks only)

Therefore we get,

k
n
≤ 1− m

n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

(8)

Proof for odd t proceeds along similar lines

24

Upper Bound on Rate

• either by manipulating the inequalities

• or by observing that the inequalities are linear in a0, ...,a t
2
,p;

hence formulating a linear programming problem

We obtain:

m ≥
2n
∑ t

2−1
i=0 r i

r t
2 + 2

∑ t
2−1
i=0 r i

(7)

Now, n − k ≥ m
(Recall m is the number of independent “local” parity checks only)
Therefore we get,

k
n
≤ 1− m

n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

(8)

Proof for odd t proceeds along similar lines

24

Upper Bound on Rate

• either by manipulating the inequalities

• or by observing that the inequalities are linear in a0, ...,a t
2
,p;

hence formulating a linear programming problem

We obtain:

m ≥
2n
∑ t

2−1
i=0 r i

r t
2 + 2

∑ t
2−1
i=0 r i

(7)

Now, n − k ≥ m
(Recall m is the number of independent “local” parity checks only)
Therefore we get,

k
n
≤ 1− m

n
≤ r

t
2

r t
2 + 2

∑ t
2−1
i=0 r i

(8)

Proof for odd t proceeds along similar lines

24

Conditions for Equality

• ai =
2nr i

r
t
2 +2

∑ t
2 −1
j=0 r j

, for 0 ≤ i ≤ t
2 − 1,

• a t
2
= nr

t
2

r
t
2 +2

∑ t
2 −1
j=0 r j

,

• p = 0

• Note that
∑ t

2
i=0 ai = n, therefore E is an empty matrix.

The parity-check matrix then is

H1 =

D0 A1 0 0 . . . 0 0 0
0 D1 A2 0 . . . 0 0 0
0 0 D2 A3 . . . 0 0 0
0 0 0 D3 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . A t
2−2 0 0

0 0 0 0 . . . D t
2−2 A t

2−1 0
0 0 0 0 . . . 0 D t

2−1 C

25

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

26

Rate-Optimal Binary Code Construction

• A graph-based construction

• An iterative procedure for constructing a graph G t
2−1 starting

from a regular graph G0

• Add nodes to the graph in every step in a layer-by-layer fashion,
each time maintaining the girth of graph to be at least t + 1

27

Rate-Optimal Binary Code Construction

• A graph-based construction

• An iterative procedure for constructing a graph G t
2−1 starting

from a regular graph G0

• Add nodes to the graph in every step in a layer-by-layer fashion,
each time maintaining the girth of graph to be at least t + 1

27

Rate-Optimal Binary Code Construction

• A graph-based construction

• An iterative procedure for constructing a graph G t
2−1 starting

from a regular graph G0

• Add nodes to the graph in every step in a layer-by-layer fashion,
each time maintaining the girth of graph to be at least t + 1

27

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Graph Construction

Pick G0, r -regular, girth ≥ (t + 1),
U0 = V (G0), |U0| = u0,

i = 1

Pick bipartite graph Bi : (r , ui−1)-biregular,
V (Bi) = Ui ∪ Li , girth ≥ d(t + 1)/(i + 1/2)e

Replicate the graph Gi−1 li times (thus each
upper node in Ui−1 is also replicated li times)

Split each of the `i lower nodes in Bi ,
each of degree ui−1, into ui−1 degree-1 nodes

Merge the ui−1, degree-1 nodes obtained from
splitting a single node of Li with the ui−1 nodes lying
in Ui−1 and corresponding to a single copy of Gi−1

The resulting graph is Gi ; can be verified that Gi

has girth ≥ t + 1, the nodes Ui ⊂ V (Gi) now form
the upper layer of the graph Gi and these are the

nodes in Gi that participate in the next iterative step

is i = t
2 − 1?

stop

i=
i+

1

NO

YES

t = 4, r = 3 construction

28

Girth of the Graph

Suppose we are constructing Gi using copies of Gi−1 and Bi , a
bipartite graph with girth at least gBi ≥ t+1

i+ 1
2

Assumption: Gi−1 has girth at least t + 1

Length of any cycle ≥ 2q + q(2(i − 1) + 1) (9)

≥ gBi +
gBi

2
(2(i − 1) + 1)

≥ gBi (i +
1
2
) ≥ t + 1

i + 1
2

(i +
1
2
) = t + 1

Hence for every i , girth of Gi is at least t + 1

29

Girth of the Graph

Suppose we are constructing Gi using copies of Gi−1 and Bi , a
bipartite graph with girth at least gBi ≥ t+1

i+ 1
2

Assumption: Gi−1 has girth at least t + 1

Length of any cycle ≥ 2q + q(2(i − 1) + 1) (9)

≥ gBi +
gBi

2
(2(i − 1) + 1)

≥ gBi (i +
1
2
) ≥ t + 1

i + 1
2

(i +
1
2
) = t + 1

Hence for every i , girth of Gi is at least t + 1

29

Girth of the Graph

Suppose we are constructing Gi using copies of Gi−1 and Bi , a
bipartite graph with girth at least gBi ≥ t+1

i+ 1
2

Assumption: Gi−1 has girth at least t + 1

Length of any cycle ≥ 2q + q(2(i − 1) + 1) (9)

≥ gBi +
gBi

2
(2(i − 1) + 1)

≥ gBi (i +
1
2
) ≥ t + 1

i + 1
2

(i +
1
2
) = t + 1

Hence for every i , girth of Gi is at least t + 1

29

Girth of the Graph

Suppose we are constructing Gi using copies of Gi−1 and Bi , a
bipartite graph with girth at least gBi ≥ t+1

i+ 1
2

Assumption: Gi−1 has girth at least t + 1

Length of any cycle ≥ 2q + q(2(i − 1) + 1) (9)

≥ gBi +
gBi

2
(2(i − 1) + 1)

≥ gBi (i +
1
2
) ≥ t + 1

i + 1
2

(i +
1
2
) = t + 1

Hence for every i , girth of Gi is at least t + 1

29

Girth of the Graph

Suppose we are constructing Gi using copies of Gi−1 and Bi , a
bipartite graph with girth at least gBi ≥ t+1

i+ 1
2

Assumption: Gi−1 has girth at least t + 1

Length of any cycle ≥ 2q + q(2(i − 1) + 1) (9)

≥ gBi +
gBi

2
(2(i − 1) + 1)

≥ gBi (i +
1
2
) ≥ t + 1

i + 1
2

(i +
1
2
) = t + 1

Hence for every i , girth of Gi is at least t + 1
29

Code Defined on the Graph: Tanner Graph

• To every node in top-most layer, attach an edge (with a dummy
node)

• Now every edge represents a code symbol
• Every node (except the dummy nodes) represents a parity check

of symbols represented by the r + 1 edges incident on it
• The graph has girth at least t + 1
• Any two dummy nodes are separated by a path of length at least

t + 1

30

Code Defined on the Graph: Tanner Graph

• To every node in top-most layer, attach an edge (with a dummy
node)

• Now every edge represents a code symbol

• Every node (except the dummy nodes) represents a parity check
of symbols represented by the r + 1 edges incident on it

• The graph has girth at least t + 1
• Any two dummy nodes are separated by a path of length at least

t + 1

30

Code Defined on the Graph: Tanner Graph

• To every node in top-most layer, attach an edge (with a dummy
node)

• Now every edge represents a code symbol
• Every node (except the dummy nodes) represents a parity check

of symbols represented by the r + 1 edges incident on it

• The graph has girth at least t + 1
• Any two dummy nodes are separated by a path of length at least

t + 1

30

Code Defined on the Graph: Tanner Graph

• To every node in top-most layer, attach an edge (with a dummy
node)

• Now every edge represents a code symbol
• Every node (except the dummy nodes) represents a parity check

of symbols represented by the r + 1 edges incident on it
• The graph has girth at least t + 1

• Any two dummy nodes are separated by a path of length at least
t + 1

30

Code Defined on the Graph: Tanner Graph

• To every node in top-most layer, attach an edge (with a dummy
node)

• Now every edge represents a code symbol
• Every node (except the dummy nodes) represents a parity check

of symbols represented by the r + 1 edges incident on it
• The graph has girth at least t + 1
• Any two dummy nodes are separated by a path of length at least

t + 1

30

Erasure Correction

Suppose there are multiple erasures.

If among the edges incident on one node, only one is erased, then it
can be recovered. But, if two edges incident on a node are erased,
then cannot recover using that parity check.

Hence, for correcting multiple erasures, at every step there should
exist at least one parity check, with exactly one erased symbol.
When do we run into trouble?

31

Erasure Correction

Suppose there are multiple erasures.
If among the edges incident on one node, only one is erased, then it
can be recovered. But, if two edges incident on a node are erased,
then cannot recover using that parity check.

Hence, for correcting multiple erasures, at every step there should
exist at least one parity check, with exactly one erased symbol.

When do we run into trouble?

31

Erasure Correction

Suppose there are multiple erasures.
If among the edges incident on one node, only one is erased, then it
can be recovered. But, if two edges incident on a node are erased,
then cannot recover using that parity check.

Hence, for correcting multiple erasures, at every step there should
exist at least one parity check, with exactly one erased symbol.
When do we run into trouble?

31

t Erasure Correctability

Suppose there are e erasures.

In the graph retain only those edges representing the erased
symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

• The graph does not have cycles of length less than t + 1.
Therefore the first case does not arise

• Any two dummy nodes are separated by a path of length at least
t + 1. Hence the second case is also avoided

32

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased
symbols, and the nodes they are connected to.

Two types of erasure-patterns can cause the decoder to stop:

• The graph does not have cycles of length less than t + 1.
Therefore the first case does not arise

• Any two dummy nodes are separated by a path of length at least
t + 1. Hence the second case is also avoided

32

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased
symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

• The graph does not have cycles of length less than t + 1.
Therefore the first case does not arise

• Any two dummy nodes are separated by a path of length at least
t + 1. Hence the second case is also avoided

32

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased
symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

• The graph does not have cycles of length less than t + 1.
Therefore the first case does not arise

• Any two dummy nodes are separated by a path of length at least
t + 1. Hence the second case is also avoided

32

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased
symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

• The graph does not have cycles of length less than t + 1.
Therefore the first case does not arise

• Any two dummy nodes are separated by a path of length at least
t + 1. Hence the second case is also avoided

32

Rate-Optimality of the construction

Upon counting the number of code symbols and number of parity
checks, one can see that this construction yields rate-optimal codes
for any even t and any r ≥ 3.

33

Codes with Availability

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

34

Availability

Same setting as earlier

Desirable:
c1 = f1(c4, c5), c2 = f2(c4, c6),
c3 = f3(c5, c7)

So that, can recover the lost
symbols in any order.

c1 c2 c3 c4 c5 c6 c7

An additional property called “majority-logic decodability”.

Questions:
What is the highest “rate” achievable by such codes? Highest
“minimum-distance”? How to design such rate-optimal codes with low
blocklength, low field-size?

35

Definition: Strict Availability via Orthogonal Parity Checks

H︸︷︷︸
(m×n)

=

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

︸ ︷︷ ︸

m wH (each column)=t m

⇔ wH(each row) = (r + 1)

• Let S(i)
j be the support of the j th row having a 1 in column i

• Then

S(i)
j ∩ S(i)

l = {i}, j = 1,2, · · · , t , j 6= l .

• t orthogonal parity checks per code symbol
• Terminology: (n, k , r , t)sa codes.

36

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code

Upper Bound on Code Rate

A Rate-Optimal Binary Code Construction

2. Codes with Availability

A Greedy Algorithm for Rate-Bound

37

Rate-Bound for Strict Availability for t = 3

Theorem

Rate-Bound1 Let C be an (n, k , r ,3)sa code over the field Fq having
connected Tanner graph, then its rate is upper bounded by the
following expression:

k
n
≤ 1− 3(1 + L1 + L2)

(r + 1)(3 + L1 + 2L2)
, (10)

where: m =
3n

r + 1
, L1 =

⌈
(2r − 1)m
3(r + 2)

− 1
r + 2

− 1
⌉
,

L2 =

⌊
m − 3− L1

2

⌋
,

1S. B. Balaji and P. Vijay Kumar, “Bounds on Codes with Locality and Availability”,2017. [Online]
.Available: https://arxiv.org/abs/1611.00159

38

Greedy Algorithm : Step 1

H =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

S = {1},

P =

1 1 1

1 1 1

1 1 1

39

Greedy Algorithm: Step 2

H =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

S = {1,2},

P =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

40

Greedy Algorithm: Step 3

H =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

S = {1,2,5},

P =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

41

Greedy Algorithm: Step 4

H =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

S = {1,2,5,6}, Hence P = H and k ≤ n − |S| = 3

P =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

42

Greedy Algorithm

1. Let S = ∅,P = ∅.
2. Step 1: Pick an arbitrary number σ1 from [n] and set S = {σ1} and

P = {c ∈ Rows(H) : σ1 ∈ Support(c)}.
3. Step i , i ≥ 2: Choose a number σi ∈ [n]− S such that

σi = argmax{j∈[n]−S}|Dj | × I(|Dj | ≤ 2)
where Dj = {c ∈ P : j ∈ Support(c)}.
Now S = S ∪ {σi} and
P = P ∪ {c ∈ Rows(H)− P : σi ∈ Support(c)}.

4. Pseudocode for the Greedy Algorithm: P = ∅,S = ∅, i = 1.
while |P| < m
do Step i
i = i + 1
end while.

5. It is clear that, k ≤ n − |S| at the end of the algorithm.

43

Backup Slides

Rawat et al. Regular Graph Construction

Any (r + 1)-regular (bipartite) graph, with girth at least t + 1 gives the
Tanner graph of an (n, k , r , t)seq code.

Can show that rate is r−1
r+1 + 1

n .
Can show that it meets our bound only when the graph is a Moore
graph, which are very rare. Hence sub-optimal for most parameters.

Rawat et al. Regular Graph Construction

Any (r + 1)-regular (bipartite) graph, with girth at least t + 1 gives the
Tanner graph of an (n, k , r , t)seq code.
Can show that rate is r−1

r+1 + 1
n .

Can show that it meets our bound only when the graph is a Moore
graph, which are very rare. Hence sub-optimal for most parameters.

Rawat et al. Regular Graph Construction

Any (r + 1)-regular (bipartite) graph, with girth at least t + 1 gives the
Tanner graph of an (n, k , r , t)seq code.
Can show that rate is r−1

r+1 + 1
n .

Can show that it meets our bound only when the graph is a Moore
graph, which are very rare. Hence sub-optimal for most parameters.

Analysis of Greedy Algorithm

Let gi ∈ {1,2} be the number of new codewords added to P at step i .
Let si

1, s
i
2, s

i
3 be the number of weight 1,2,3 columns in the matrix

formed by codewords in P respectively.

if gi+1 = 2,gi+2 = 2 then

si+1
1 = si

1 + 2r − 1, si+1
2 = si

2 + 0, si+1
3 = si

3 + 1.

if gi+1 = 1,gi+2 = 2 then

si+1
1 = si

1 − φi + r + 1, si+1
2 = si

2 − φi , si+1
3 = si

3 + φi ,

for some 1 ≤ φi ≤ r + 1.

if gi+1 = 2,gi+2 = 1 then

si+1
1 = si

1 + 2r − 1− 2Ii , si+1
2 = si

2 + Ii , si+1
3 = si

3 + 1,

for some 0 < Ii ≤ 2r .

Analysis of Greedy Algorithm

Let Suj = {i : gi+1 = u,gi+2 = j , |S| − 1 ≥ i ≥ 2} and luj = |Suj | at the
end of the algorithm. Now using the global constraints (s1 = s|S|1 = 0,
s2 = s|S|2 = 0, s3 = s|S|3 = n at the end of the algorithm.):

s|S|2 = γ1 −
∑
i∈S12

φi +
∑
i∈S21

Ii −
∑
i∈S11

Ji +
∑
i∈S11

ψi − (r + 1) = 0,

m =
3n

r + 1
= 5 + g3 + 2(l22 + l12) + l21 + l11.

Analysis of Greedy Algorithm

l11 + l21 ≥ (2r − 1)m
3(r + 2)

− 1
r + 2

− 1.

1. For j = 1,2, let Lj = |{i : gi = j , |S| ≥ i ≥ 1}| at the end of the
algorithm.

2. |S| = L1 + L2 + 1 and m = L1 + 2L2 + 3. Hence L1 ≥ l11 + l21.

References

S. B. Balaji, G. R. Kini, and P. V. Kumar, “A tight rate bound and a matching
construction for locally recoverable codes with sequential recovery from any number of
multiple erasures, 2017. [Online].
Available: http://arxiv.org/abs/1611.08561

S. B. Balaji and P. Vijay Kumar, “Bounds on Codes with Locality and Availability”,2017.
[Online] .

Available: https://arxiv.org/abs/1611.00159

Thank you!

Questions?

	Codes with Sequential Local Recovery
	Introduction
	An Example: 2D Product Code
	Upper Bound on Code Rate
	A Rate-Optimal Binary Code Construction

	Codes with Availability
	A Greedy Algorithm for Rate-Bound

	Appendix

