Efficient Recovery from Multiple Erasures by Accessing Small Number of Disks in Distributed Data Storage

Ganesh R. Kini and Balaji S.B.
Codes and Signal Design Lab
Advisor: Prof Vijay Kumar

17 May 2017

Students' Seminar Series
Department of ECE
Indian Institute of Science

Outline

1. Codes with Sequential Local Recovery

Introduction
An Example: 2D Product Code
Upper Bound on Code Rate
A Rate-Optimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

Codes with Sequential Local Recovery

Outline

1. Codes with Sequential Local Recovery

Introduction
An Example: 2D Product Code
Upper Bound on Code Rate
A Rate-Ontimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

Distributed Storage

- Data is stored by distributing across disks (nodes).
- Requirements:
- High reliability i.e. protection from data loss due to disk failures want to correct large number of erasures

Distributed Storage

- Data is stored by distributing across disks (nodes).
- Requirements:
- High reliability i.e. protection from data loss due to disk failures want to correct large number of erasures
- Low storage overhead
i.e. want high-rate codes

Distributed Storage

- Data is stored by distributing across disks (nodes).
- Requirements:
- High reliability i.e. protection from data loss due to disk failures want to correct large number of erasures
- Low storage overhead i.e. want high-rate codes
- Efficient repair of a disk when it fails want to contact very few surviving nodes

Sequential Recovery

A length 7 code with
code-symbols $c_{1}, c_{2}, c_{3}, \ldots, c_{7}$.

Sequential Recovery

A length 7 code with
code-symbols $c_{1}, c_{2}, c_{3}, \ldots, c_{7}$.
Suppose c_{1}, c_{2} and c_{3} (in general
some t) are lost.

Sequential Recovery

A length 7 code with
code-symbols $c_{1}, c_{2}, c_{3}, \ldots, c_{7}$.
Suppose c_{1}, c_{2} and c_{3} (in general
some t) are lost.
Suppose can access at most 2 (in general r) other symbols to recover each lost symbol.

Sequential Recovery

A length 7 code with
code-symbols $c_{1}, c_{2}, c_{3}, \ldots, c_{7}$.
Suppose c_{1}, c_{2} and c_{3} (in general some t) are lost.
Suppose can access at most 2 (in general r) other symbols to recover each lost symbol.
Property:
$c_{1}=f_{1}\left(c_{4}, c_{5}\right), c_{2}=f_{2}\left(c_{1}, c_{4}\right)$,
$c_{3}=f_{3}\left(c_{1}, c_{2}\right)$
So that, can recover the lost
symbols in the sequence
$c_{1}--c_{2}--c_{3}$.

Sequential Recovery

A length 7 code with
code-symbols $c_{1}, c_{2}, c_{3}, \ldots, c_{7}$.
Suppose c_{1}, c_{2} and c_{3} (in general
some t) are lost.
Suppose can access at most 2 (in general r) other symbols to recover each lost symbol.
Property:
$c_{1}=f_{1}\left(c_{4}, c_{5}\right), c_{2}=f_{2}\left(c_{1}, c_{4}\right)$,
$c_{3}=f_{3}\left(c_{1}, c_{2}\right)$
So that, can recover the lost
symbols in the sequence
$c_{1}--c_{2}--c_{3}$.
Questions: What is the highest "rate" achievable by such codes? How to design such rate-optimal codes with low blocklength, low field-size?

Outline

1. Codes with Sequential Local Recovery

Introduction
An Example: 2D Product Code
Upper Bound on Code Rate
A Rate-Optimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

A Simple Code with Sequential Recovery: 2D Product Code

- $(n=16, k=9, r=3, t=3)_{\text {seq }}$ code
- Rate of the code for general r is $\frac{k}{n}=\frac{r^{2}}{(r+1)^{2}}$
- Every row is a codeword of SPC code, every column is a codeword of SPC code
- Parity is the sum of r symbols

A Simple Code with Sequential Recovery: 2D Product Code

Can correct this erasure-pattern in any sequence

A Simple Code with Sequential Recovery: 2D Product Code

Can correct this erasure-pattern in any sequence

A Simple Code with Sequential Recovery: 2D Product Code

Can correct this erasure-pattern in any sequence

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns? In any sequence?

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can correct any 3-erasures

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can correct any 3-erasures

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can correct any 3-erasures

A Simple Code with Sequential Recovery: 2D Product Code

Can it correct all 3-erasure patterns? In any sequence?

Not in any arbitrary sequence; but can correct any 3-erasures

A Simple Code with Sequential Recovery: 2D Product Code

- Hence can correct any 3-erasure-pattern
- But some 4-erasure-patterns are uncorrectable

Definition of Code with Sequential Local Recovery(Sequential LRC)

Definition

Code with Sequential Local Recovery

An $[n, k]$ code is said to be a locally recoverable code with sequential recovery from t erasures, if for any set of $s \leq t$ erasures, there is an s-step sequential recovery process, in which at each step, a single erased symbol is recovered by accessing at most r other code symbols.

Definition of Code with Sequential Local Recovery(Sequential LRC)

Definition

Code with Sequential Local Recovery

An $[n, k]$ code is said to be a locally recoverable code with sequential recovery from t erasures, if for any set of $s \leq t$ erasures, there is an s-step sequential recovery process, in which at each step, a single erased symbol is recovered by accessing at most r other code symbols.

This is equivalent to the requirement that for any set of $s \leq t$ erasures, the dual code contain a codeword whose support contains the coordinate of precisely one of the s erased symbols.

Definition of Code with Sequential Local Recovery(Sequential LRC)

Definition

Code with Sequential Local Recovery

An $[n, k]$ code is said to be a locally recoverable code with sequential recovery from t erasures, if for any set of $s \leq t$ erasures, there is an s-step sequential recovery process, in which at each step, a single erased symbol is recovered by accessing at most r other code symbols.

This is equivalent to the requirement that for any set of $s \leq t$ erasures, the dual code contain a codeword whose support contains the coordinate of precisely one of the s erased symbols.

We will formally refer to this class of codes as $(n, k, r, t)_{\text {seq }}$ codes.

Outline

1. Codes with Sequential Local Recovery

Introduction
An Example: 2D Product Code
Upper Bound on Code Rate
A Rate-Optimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

Question of Code-Rate

Given locality parameter r and erasure correctability parameter t, what is the maximum achievable code-rate?

Question of Code-Rate

Given locality parameter r and erasure correctability parameter t, what is the maximum achievable code-rate?

Theorem

Rate Bound' : Let \mathcal{C} be an $(n, k, r, t)_{\text {seq }}$ code over a field \mathbb{F}_{q}. Let $r \geq 3$. Then

$$
\begin{array}{ll}
\frac{k}{n} \leq \frac{r^{\frac{t}{2}}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} & \text { for even } t \\
\frac{k}{n} \leq \frac{r^{s}}{r^{s}+2 \sum^{s-1} r^{i}+1} & \text { for odd } t \tag{2}
\end{array}
$$

where $s=\frac{t+1}{2}$.

[^0]
Question of Code-Rate

Given locality parameter r and erasure correctability parameter t, what is the maximum achievable code-rate?

Theorem

Rate Bound: Let \mathcal{C} be an $(n, k, r, t)_{\text {seq }}$ code over a field \mathbb{F}_{q}. Let $r \geq 3$. Then

$$
\begin{array}{ll}
\frac{k}{n} \leq \frac{r^{\frac{t}{2}}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} & \text { for even } t \\
\frac{k}{n} \leq \frac{r^{s}}{r^{s}+2 \sum_{i=1}^{s-1} r^{i}+1} & \text { for odd } t \tag{2}
\end{array}
$$

where $s=\frac{t+1}{2}$.

Proof.

We investigate the structure of the parity check matrix

Parity-Check Matrix

- Let $\mathcal{S}=\operatorname{span}\left(\underline{c} \in \mathcal{C}^{\perp}: w_{H}(\underline{c}) \leq r+1\right)$, where \underline{c} is a row-vector

Parity-Check Matrix

- Let $\mathcal{S}=\operatorname{span}\left(\underline{c} \in \mathcal{C}^{\perp}: w_{H}(\underline{c}) \leq r+1\right)$, where \underline{c} is a row-vector
- Let m be dimension of \mathcal{S}, and c_{1}, \ldots, c_{m} be a basis of \mathcal{S} s.t. $w_{H}\left(\underline{c_{i}}\right) \leq r+1$

Parity-Check Matrix

- Let $\mathcal{S}=\operatorname{span}\left(\underline{c} \in \mathcal{C}^{\perp}: w_{H}(\underline{c}) \leq r+1\right)$, where \underline{c} is a row-vector
- Let m be dimension of \mathcal{S}, and c_{1}, \ldots, c_{m} be a basis of \mathcal{S} s.t.
$w_{H}\left(\underline{c_{i}}\right) \leq r+1$
- Let $H_{1}=\left[\begin{array}{c}\underline{c_{1}} \\ \underline{c_{2}} \\ \vdots \\ \underline{c_{m}}\end{array}\right]$

Parity-Check Matrix

- Let $\mathcal{S}=\operatorname{span}\left(\underline{c} \in \mathcal{C}^{\perp}: w_{H}(\underline{c}) \leq r+1\right)$, where \underline{c} is a row-vector
- Let m be dimension of \mathcal{S}, and $\underline{c_{1}}, \ldots, \underline{c_{m}}$ be a basis of \mathcal{S} s.t.
$w_{H}\left(\underline{c_{i}}\right) \leq r+1$
- Let $H_{1}=\left[\begin{array}{c}\underline{c_{1}} \\ \underline{c_{2}} \\ \vdots \\ \underline{c_{m}}\end{array}\right]$
- H_{1} is a parity-check matrix of an $(n, n-m, r, t)_{\text {seq }}$ code

Parity Check Matrix of a Linear Code

Suppose an n-length code has code-symbols c_{1}, \ldots, c_{n}.
The rows of a parity check matrix of the code are nothing but the linear equations that the code-symbols satisfy.

Suppose $\left[a_{1}, \ldots, a_{n}\right]$ is one row, then $\sum_{i=1}^{n} a_{i} c_{i}=0$
If the dimension of the code is k, then the parity check matrices have rank $n-k$.

P-C Matrix for Sequentially Correcting t Erasures Locally

We'll now see the case of even t

P-C Matrix for Sequentially Correcting t Erasures Locally

Start with any (n, k, r, t) code, consider the matrix H_{1} for it, with row and column permutations it looks like this:
$H_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\ \hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\ \hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & D_{3} & \ldots & 0 & 0 & 0 \\ \hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\ \hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\ \hline 0 & 0 & 0 & 0 & \ldots & 0 & D_{\frac{t}{2}-1} & \\ \hline 0 & 0 & 0 & 0 & \ldots & 0 & 0 & C\end{array}\right]$

P-C Matrix: Row and Column Permutation

Take H_{1} matrix of any $(n, k, r, t)_{\text {seq }}$ code. Permute rows and columns to get the staircase form:

$$
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline & & & \bullet & & & \bullet & \\
\hline & & \bullet & & & & & & \bullet \\
\hline & & & & \bullet & & \bullet & \bullet \\
\hline & \bullet & & & & & & \bullet & \\
\hline & & \bullet & & \bullet & \bullet & & \bullet \\
\hline \bullet & \bullet & & & \bullet & & \bullet & \\
\hline & & & & & & \bullet & & \bullet \\
\hline & & & & & & & \\
\hline
\end{array}
$$

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
H_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \ldots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \ldots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
\boldsymbol{H}_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \cdots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \cdots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & D_{\frac{t}{2}}-1 & \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's
- D_{0} : columns have weight 1 and rows have weight at least 1

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
\boldsymbol{H}_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \ldots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's
- D_{0} : columns have weight 1 and rows have weight at least 1
- $\left[\begin{array}{c}A_{i} \\ D_{i}\end{array}\right]$: for $i \geq 1$, columns have weight 2

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
\boldsymbol{H}_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \ldots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's
- D_{0} : columns have weight 1 and rows have weight at least 1
- $\left[\begin{array}{c}A_{i} \\ D_{i}\end{array}\right]$: for $i \geq 1$, columns have weight 2
- \bar{A}_{i} : columns have weight at least 1

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
\boldsymbol{H}_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \ldots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's
- D_{0} : columns have weight 1 and rows have weight at least 1
- $\left[\begin{array}{c}A_{i} \\ D_{i}\end{array}\right]$: for $i \geq 1$, columns have weight 2
- \bar{A}_{i} : columns have weight at least 1
- D_{i} : rows have weight at least 1 and columns have weight at most 1

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
\boldsymbol{H}_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \cdots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & D_{\frac{t}{2}}-2 & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's
- D_{0} : columns have weight 1 and rows have weight at least 1
- $\left[\begin{array}{c}A_{i} \\ D_{i}\end{array}\right]$: for $i \geq 1$, columns have weight 2
- \bar{A}_{i} : columns have weight at least 1
- D_{i} : rows have weight at least 1 and columns have weight at most 1
- C: columns have weight exactly 2

P-C Matrix for Sequentially Correcting t Erasures Locally

$$
H_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c|}
D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \cdots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{1}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \ldots & 0 & 0 & C
\end{array}\right]
$$

- A_{i} 's are $\rho_{i-1} \times a_{i}$ and D_{i} 's are $\rho_{i} \times a_{i}$ for some ρ_{i} 's and a_{i} 's
- D_{0} : columns have weight 1 and rows have weight at least 1
- $\left[\begin{array}{c}A_{i} \\ D_{i}\end{array}\right]$: for $i \geq 1$, columns have weight 2
- \bar{A}_{i} : columns have weight at least 1
- D_{i} : rows have weight at least 1 and columns have weight at most 1
- C: columns have weight exactly 2
- E : columns have weight at least 3

P-C Matrix: Structure

Claim

A_{i} 's are matrices with each column having weight 1 and D_{i} 's are matrices with each row and each column having weight 1.

P-C Matrix: Structure

Claim

A_{i} 's are matrices with each column having weight 1 and D_{i} 's are matrices with each row and each column having weight 1.

Proof.

Fact: $d_{\text {min }}(\mathcal{C}) \geq t+1$; hence no $x(\leq t)$ columns of H_{1} can be linearly dependent.

P-C Matrix: Structure

Claim

A_{i} 's are matrices with each column having weight 1 and D_{i} 's are matrices with each row and each column having weight 1.

Proof.

Fact: $d_{\text {min }}(\mathcal{C}) \geq t+1$; hence no $x(\leq t)$ columns of H_{1} can be linearly dependent.
Will show that columns of A_{i} have weight exactly 1 and rows of D_{i} have weight exactly 1.

P-C Matrix: Structure

Claim
A_{i} 's are matrices with each column having weight 1 and D_{i} 's are matrices with each row and each column having weight 1 .

Proof.

Fact: $d_{\text {min }}(\mathcal{C}) \geq t+1$; hence no $x(\leq t)$ columns of H_{1} can be linearly dependent.
Will show that columns of A_{i} have weight exactly 1 and rows of D_{i} have weight exactly 1.
If D_{0} has a row with at least 2 non-zero entries, then 2 columns become linearly dependent, a contradiction to $d_{\min }(\mathcal{C}) \geq t+1$.

P-C Matrix: Structure

Claim

A_{i} 's are matrices with each column having weight 1 and D_{i} 's are matrices with each row and each column having weight 1.

Proof.

Fact: $d_{\text {min }}(\mathcal{C}) \geq t+1$; hence no $x(\leq t)$ columns of H_{1} can be linearly dependent.
Will show that columns of A_{i} have weight exactly 1 and rows of D_{i} have weight exactly 1.
If D_{0} has a row with at least 2 non-zero entries, then 2 columns become linearly dependent, a contradiction to $d_{\min }(\mathcal{C}) \geq t+1$.

Therefore, with column permutation, D_{0} is diagonal.

P-C Matrix: Structure

A_{1} : columns have weight exactly 1

P-C Matrix: Structure

A_{1} : columns have weight exactly 1

P-C Matrix: Structure

A_{1} : columns have weight exactly 1

3 columns linearly dependent.

P-C Matrix: Structure

A_{1} : columns have weight exactly 1

3 columns linearly dependent. D_{2} : rows have weight exactly 1

P-C Matrix: Structure

A_{1} : columns have weight exactly 1

3 columns linearly dependent. D_{2} : rows have weight exactly 1

P-C Matrix: Structure

A_{1} : columns have weight exactly 1

3 columns linearly dependent. D_{2} : rows have weight exactly 1

Upto 6 columns linearly dependent.

P-C Matrix: Structure

For some $0 \leq i \leq \frac{t}{2}-1$, upto $2(i+1) \leq t$ columns become linearly dependent, which is a contradiction to $d_{\min }(\mathcal{C}) \geq t+1$.

Thus, the Claim is true. i.e.
A_{i} 's are matrices with each column having weight 1 and D_{i} 's are matrices with each row and each column having weight 1.

Therefore, D_{i} 's are diagonal (identity, after scaling) matrices with number of rows ρ_{i} and number of columns a_{i} equal.

$$
\rho_{i}=a_{i}
$$

Let's recall...

Now we count...

Equating sum of row-weights and sum of column-weights of A_{i} :

$H_{1}=\left[\right.$| $\stackrel{a_{3}}{D_{0}}$ | | | | | | | A_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{2} | 0 | 0 | \ldots | 0 | 0 | 0 | |
| 0 | D_{1} | A_{2} | 0 | \ldots | 0 | 0 | 0 |
| 0 | 0 | D_{2} | A_{3} | \ldots | 0 | 0 | 0 |
| 0 | 0 | 0 | D_{3} | \ldots | 0 | 0 | 0 |
| \vdots | \vdots | \vdots | \vdots | \ldots | \vdots | \vdots | \vdots |
| 0 | 0 | 0 | 0 | \ldots | $A_{\frac{t}{2}-2}$ | 0 | 0 |
| 0 | 0 | 0 | 0 | \ldots | $D_{\frac{t}{2}-2}$ | $A_{\frac{t}{2}-1}$ | 0 |
| 0 | 0 | 0 | 0 | \ldots | 0 | $D_{\frac{t}{2}-1}$ | |
| 0 | 0 | 0 | 0 | \ldots | 0 | 0 | C |$]$

$$
a_{i-1} r \geq a_{i}
$$

Now we count...

Equating sum of row-weights and sum of column-weights of C :

							$\mathrm{a}_{\mathrm{t} 2 \text {-1 }}$	$\mathrm{a}_{\mathrm{t} 2}$	
	[D_{0}	A_{1}	0	0	\ldots	0	0	0	
	0	D_{1}	A_{2}	0	...	0	0	0	
	0	0	D_{2}	A_{3}	\ldots	0	0	0	
	0	0	0	D_{3}	\ldots	0	0	0	
$H_{1}=$	\vdots	\vdots	\vdots	\vdots	\ldots	:	:	\vdots	E
	0	0	0	0	\ldots	$A_{\frac{t}{2}-2}$	0	0	
	0	0	0	0	\ldots	$D_{\frac{1}{2}-2}$	$A_{\frac{t}{2}-1}$	0	
	0	0	0	0	\ldots	0	$D_{\frac{t}{2}-1}$		
	0	0	0	0		0	0	C	

Now we count...

Equating sum of row-weights and sum of column-weights of H_{1} :

$$
\begin{gathered}
H_{1}=\left(\begin{array}{c|c|c|c|c|c|c|c|}
\hline D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\hline 0 & D_{1} & A_{2} & 0 & \cdots & 0 & 0 & 0 \\
\hline 0 & 0 & D_{2} & A_{3} & \cdots & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & D_{3} & \cdots & 0 & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
\hline 0 & 0 & 0 & 0 & \cdots & A_{\frac{t}{2}-2} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & D_{\frac{t}{2}-1} & \\
\hline 0 & 0 & 0 & 0 & \cdots & 0 & 0 & C
\end{array}\right. \\
m(r+1) \geq a_{0}+2\left(\sum_{i=1}^{\frac{t}{2}} a_{i}\right)+3\left(n-\sum_{i=0}^{\frac{t}{2}} a_{i}\right)
\end{gathered}
$$

The Inequalities

We now have the following set of inequalities:

$$
\begin{align*}
a_{i-1} r & \geq a_{i} \tag{3}\\
2 a_{\frac{t}{2}} & \leq\left(a_{\frac{t}{2}-1}+p\right)(r+1)-a_{\frac{t}{2}-1} \tag{4}\\
m(r+1) & \geq a_{0}+2\left(\sum_{i=1}^{\frac{t}{2}} a_{i}\right)+3\left(n-\sum_{i=0}^{\frac{t}{2}} a_{i}\right) \tag{5}
\end{align*}
$$

The Inequalities

We now have the following set of inequalities:

$$
\begin{align*}
a_{i-1} r & \geq a_{i} \tag{3}\\
2 a_{\frac{t}{2}} & \leq\left(a_{\frac{t}{2}-1}+p\right)(r+1)-a_{\frac{t}{2}-1} \tag{4}\\
m(r+1) & \geq a_{0}+2\left(\sum_{i=1}^{\frac{t}{2}} a_{i}\right)+3\left(n-\sum_{i=0}^{\frac{t}{2}} a_{i}\right) \tag{5}
\end{align*}
$$

Also,

$$
\begin{equation*}
\sum_{i=0}^{\frac{t}{2}-1} a_{i}+p=m \tag{6}
\end{equation*}
$$

The Inequalities

We now have the following set of inequalities:

$$
\begin{align*}
a_{i-1} r & \geq a_{i} \tag{3}\\
2 a_{\frac{t}{2}} & \leq\left(a_{\frac{t}{2}-1}+p\right)(r+1)-a_{\frac{t}{2}-1} \tag{4}\\
m(r+1) & \geq a_{0}+2\left(\sum_{i=1}^{\frac{t}{2}} a_{i}\right)+3\left(n-\sum_{i=0}^{\frac{t}{2}} a_{i}\right) \tag{5}
\end{align*}
$$

Also,

$$
\begin{equation*}
\sum_{i=0}^{\frac{t}{2}-1} a_{i}+p=m \tag{6}
\end{equation*}
$$

Now we obtain a lower bound on m

Upper Bound on Rate

- either by manipulating the inequalities

Upper Bound on Rate

- either by manipulating the inequalities
- or by observing that the inequalities are linear in $a_{0}, \ldots, a_{\frac{t}{2}}, p$; hence formulating a linear programming problem

Upper Bound on Rate

- either by manipulating the inequalities
- or by observing that the inequalities are linear in $a_{0}, \ldots, a_{\frac{t}{2}}, p$; hence formulating a linear programming problem

We obtain:

$$
\begin{equation*}
m \geq \frac{2 n \sum_{i=0}^{\frac{t}{2}-1} r^{i}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} \tag{7}
\end{equation*}
$$

Upper Bound on Rate

- either by manipulating the inequalities
- or by observing that the inequalities are linear in $a_{0}, \ldots, a_{\frac{t}{2}}, p$; hence formulating a linear programming problem

We obtain:

$$
\begin{equation*}
m \geq \frac{2 n \sum_{i=0}^{\frac{t}{2}-1} r^{i}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} \tag{7}
\end{equation*}
$$

Now, $n-k \geq m$
(Recall m is the number of independent "local" parity checks only)

Upper Bound on Rate

- either by manipulating the inequalities
- or by observing that the inequalities are linear in $a_{0}, \ldots, a_{\frac{t}{2}}, p$; hence formulating a linear programming problem

We obtain:

$$
\begin{equation*}
m \geq \frac{2 n \sum_{i=0}^{\frac{t}{2}-1} r^{i}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} \tag{7}
\end{equation*}
$$

Now, $n-k \geq m$
(Recall m is the number of independent "local" parity checks only) Therefore we get,

$$
\begin{equation*}
\frac{k}{n} \leq 1-\frac{m}{n} \leq \frac{r^{\frac{t}{2}}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} \tag{8}
\end{equation*}
$$

Upper Bound on Rate

- either by manipulating the inequalities
- or by observing that the inequalities are linear in $a_{0}, \ldots, a_{\frac{t}{2}}, p$; hence formulating a linear programming problem

We obtain:

$$
\begin{equation*}
m \geq \frac{2 n \sum_{i=0}^{\frac{t}{2}-1} r^{i}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} \tag{7}
\end{equation*}
$$

Now, $n-k \geq m$
(Recall m is the number of independent "local" parity checks only) Therefore we get,

$$
\begin{equation*}
\frac{k}{n} \leq 1-\frac{m}{n} \leq \frac{r^{\frac{t}{2}}}{r^{\frac{t}{2}}+2 \sum_{i=0}^{\frac{t}{2}-1} r^{i}} \tag{8}
\end{equation*}
$$

Proof for odd t proceeds along similar lines

Conditions for Equality

- $a_{i}=\frac{2 n r^{i}}{r^{\frac{t}{2}}+2 \sum_{j=0}^{\frac{t}{2}-1} r j}$, for $0 \leq i \leq \frac{t}{2}-1$,
- $\boldsymbol{a}_{\frac{t}{2}}=\frac{n r^{\frac{t}{2}}}{r^{\frac{t}{2}}+2 \sum_{j=0}^{\frac{t}{2}-1} r j^{j}}$,
- $p=0$
- Note that $\sum_{i=0}^{\frac{t}{2}} a_{i}=n$, therefore E is an empty matrix.

The parity-check matrix then is
$H_{1}=\left[\begin{array}{c|c|c|c|c|c|c|c}D_{0} & A_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\ \hline 0 & D_{1} & A_{2} & 0 & \ldots & 0 & 0 & 0 \\ \hline 0 & 0 & D_{2} & A_{3} & \ldots & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & D_{3} & \ldots & 0 & 0 & 0 \\ \hline \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\ \hline 0 & 0 & 0 & 0 & \ldots & A_{\frac{t}{2}-2} & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & \ldots & D_{\frac{t}{2}-2} & A_{\frac{t}{2}-1} & 0 \\ \hline 0 & 0 & 0 & 0 & \ldots & 0 & D_{\frac{t}{2}-1} & C\end{array}\right]$

Outline

1. Codes with Sequential Local Recovery

Introduction
An Example: 2D Product Code
Unper Bound on Code Rate
A Rate-Optimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

Rate-Optimal Binary Code Construction

- A graph-based construction

Rate-Optimal Binary Code Construction

- A graph-based construction
- An iterative procedure for constructing a graph $G_{\frac{t}{2}-1}$ starting from a regular graph G_{0}

Rate-Optimal Binary Code Construction

- A graph-based construction
- An iterative procedure for constructing a graph $G_{\frac{t}{2}-1}$ starting from a regular graph G_{0}
- Add nodes to the graph in every step in a layer-by-layer fashion, each time maintaining the girth of graph to be at least $t+1$

Graph Construction

$$
\begin{gathered}
\text { Pick } G_{0}, r \text {-regular, girth } \geq(t+1), \\
U_{0}=V\left(G_{0}\right),\left|U_{0}\right|=u_{0}
\end{gathered}
$$

$$
t=4, r=3 \text { construction }
$$

$\longleftarrow 3$ - regular graph with $u_{0}=10$ nodes and girth $=5$

Graph Construction

$$
\begin{gathered}
\text { Pick } G_{0}, r \text {-regular, girth } \geq(t+1), \\
U_{0}=V\left(G_{0}\right),\left|U_{0}\right|=u_{0} \\
t \\
i=1
\end{gathered}
$$

$$
t=4, r=3 \text { construction }
$$

$\longleftarrow 3$ - regular graph with $u_{0}=10$ nodes and girth $=5$

Graph Construction

Pick G_{0}, r-regular, girth $\geq(t+1)$,

$$
U_{0}=V\left(G_{0}\right),\left|U_{0}\right|=u_{0}
$$

$$
\begin{gathered}
\downarrow \\
i=1 \\
\downarrow
\end{gathered}
$$

Pick bipartite graph $B_{i}:\left(r, u_{i-1}\right)$-biregular, $V\left(B_{i}\right)=U_{i} \cup L_{i}$, girth $\geq\lceil(t+1) /(i+1 / 2)\rceil$

$$
t=4, r=3 \text { construction }
$$

G_{0}

$\longleftarrow 3$ - regular graph with $u_{0}=10$ nodes and girth $=5$

Graph Construction

 \[t=4, r=3 construction
\]
 \section*{$t=4, r=3$ construction}
 \section*{$t=4, r=3$ construction}

Pick G_{0}, r-regular, girth $\geq(t+1)$, $U_{0}=V\left(G_{0}\right),\left|U_{0}\right|=u_{0}$, $\underset{\substack{i=1 \\ \downarrow}}{\downarrow}$
Pick bipartite graph $B_{i}:\left(r, u_{i-1}\right)$-biregular, $V\left(B_{i}\right)=U_{i} \cup L_{i}$, girth $\geq\lceil(t+1) /(i+1 / 2)\rceil$

Replicate the graph $G_{i-1} l_{i}$ times (thus each upper node in U_{i-1} is also replicated I_{i} times)

Graph Construction

$t=4, r=3$ construction

Pick G_{0}, r-regular, girth $\geq(t+1)$, $U_{0}=V\left(G_{0}\right),\left|U_{0}\right|=u_{0}$,
\downarrow
$i=1$
\downarrow
Pick bipartite graph $B_{i}:\left(r, u_{i-1}\right)$-biregular, $V\left(B_{i}\right)=U_{i} \cup L_{i}$, girth $\geq\lceil(t+1) /(i+1 / 2)\rceil$

Replicate the graph $G_{i-1} l_{i}$ times (thus each upper node in U_{i-1} is also replicated I_{i} times)

Split each of the ℓ_{i} lower nodes in B_{i}, each of degree u_{i-1}, into u_{i-1} degree-1 nodes

Graph Construction

Pick G_{0}, r-regular, girth $\geq(t+1)$,

$$
U_{0}=V\left(G_{0}\right),\left|U_{0}\right|=u_{0}
$$

$$
\frac{\downarrow}{i=1}+\frac{\downarrow}{\downarrow}
$$

Pick bipartite graph $B_{i}:\left(r, u_{i-1}\right)$-biregular, $V\left(B_{i}\right)=U_{i} \cup L_{i}$, girth $\geq\lceil(t+1) /(i+1 / 2)\rceil$

Replicate the graph $G_{i-1} l_{i}$ times (thus each upper node in U_{i-1} is also replicated I_{i} times)

Split each of the ℓ_{i} lower nodes in B_{i}, each of degree u_{i-1}, into u_{i-1} degree-1 nodes

Merge the u_{i-1}, degree-1 nodes obtained from splitting a single node of L_{i} with the u_{i-1} nodes lying in U_{i-1} and corresponding to a single copy of G_{i-1}

$t=4, r=3$ construction

B_{1}

G_{0}

$\longleftarrow 3$ - regular graph with $u_{0}=10$ nodes and girth $=5$

Graph Construction

Merge the u_{i-1}, degree-1 nodes obtained from splitting a single node of L_{i} with the u_{i-1} nodes lying in U_{i-1} and corresponding to a single copy of G_{i-1}

The resulting graph is G_{i}; can be verified that G_{i} has girth $\geq t+1$, the nodes $U_{i} \subset V\left(G_{i}\right)$ now form the upper layer of the graph G_{i} and these are the nodes in G_{i} that participate in the next iterative step

$t=4, r=3$ construction

Graph Construction

Pick bipartite graph $B_{i}:\left(r, u_{i-1}\right)$-biregular, $V\left(B_{i}\right)=U_{i} \cup L_{i}$, girth $\geq\lceil(t+1) /(i+1 / 2)\rceil$

Replicate the graph $G_{i-1} l_{i}$ times (thus each upper node in U_{i-1} is also replicated I_{i} times)

Split each of the ℓ_{i} lower nodes in B_{i}, each of degree u_{i-1}, into u_{i-1} degree-1 nodes

Merge the u_{i-1}, degree-1 nodes obtained from splitting a single node of L_{i} with the u_{i-1} nodes lying in U_{i-1} and corresponding to a single copy of G_{i-1}

The resulting graph is G_{i}; can be verified that G_{i} has girth $\geq t+1$, the nodes $U_{i} \subset V\left(G_{i}\right)$ now form the upper layer of the graph G_{i} and these are the nodes in G_{i} that participate in the next iterative step

$t=4, r=3$ construction

Graph Construction

$t=4, r=3$ construction

Girth of the Graph

Suppose we are constructing G_{i} using copies of G_{i-1} and B_{i}, a bipartite graph with girth at least $g_{B_{i}} \geq \frac{t+1}{i+\frac{1}{2}}$

Girth of the Graph

Suppose we are constructing G_{i} using copies of G_{i-1} and B_{i}, a bipartite graph with girth at least $g_{B_{i}} \geq \frac{t+1}{i+\frac{1}{2}}$
Assumption: G_{i-1} has girth at least $t+1$

Girth of the Graph

Suppose we are constructing G_{i} using copies of G_{i-1} and B_{i}, a bipartite graph with girth at least $g_{B_{i}} \geq \frac{t+1}{i+\frac{1}{2}}$
Assumption: G_{i-1} has girth at least $t+1$

Girth of the Graph

Suppose we are constructing G_{i} using copies of G_{i-1} and B_{i}, a bipartite graph with girth at least $g_{B_{i}} \geq \frac{t+1}{i+\frac{1}{2}}$
Assumption: G_{i-1} has girth at least $t+1$

Length of any cycle $\geq 2 q+q(2(i-1)+1)$

$$
\begin{align*}
& \geq g_{B_{i}}+\frac{g_{B_{i}}}{2}(2(i-1)+1) \tag{9}\\
& \geq g_{B_{i}}\left(i+\frac{1}{2}\right) \geq \frac{t+1}{i+\frac{1}{2}}\left(i+\frac{1}{2}\right)=t+1
\end{align*}
$$

Girth of the Graph

Suppose we are constructing G_{i} using copies of G_{i-1} and B_{i}, a bipartite graph with girth at least $g_{B_{i}} \geq \frac{t+1}{i+\frac{1}{2}}$
Assumption: G_{i-1} has girth at least $t+1$

Length of any cycle $\geq 2 q+q(2(i-1)+1)$

Hence for every i, girth of G_{i} is at least $t+1$

Code Defined on the Graph: Tanner Graph

- To every node in top-most layer, attach an edge (with a dummy node)

Code Defined on the Graph: Tanner Graph

- To every node in top-most layer, attach an edge (with a dummy node)
- Now every edge represents a code symbol

Code Defined on the Graph: Tanner Graph

- To every node in top-most layer, attach an edge (with a dummy node)
- Now every edge represents a code symbol
- Every node (except the dummy nodes) represents a parity check of symbols represented by the $r+1$ edges incident on it

Code Defined on the Graph: Tanner Graph

- To every node in top-most layer, attach an edge (with a dummy node)
- Now every edge represents a code symbol
- Every node (except the dummy nodes) represents a parity check of symbols represented by the $r+1$ edges incident on it
- The graph has girth at least $t+1$

Code Defined on the Graph: Tanner Graph

- To every node in top-most layer, attach an edge (with a dummy node)
- Now every edge represents a code symbol
- Every node (except the dummy nodes) represents a parity check of symbols represented by the $r+1$ edges incident on it
- The graph has girth at least $t+1$
- Any two dummy nodes are separated by a path of length at least $t+1$

Erasure Correction

Suppose there are multiple erasures.

Erasure Correction

Suppose there are multiple erasures.
If among the edges incident on one node, only one is erased, then it can be recovered. But, if two edges incident on a node are erased, then cannot recover using that parity check.

Hence, for correcting multiple erasures, at every step there should exist at least one parity check, with exactly one erased symbol.

Erasure Correction

Suppose there are multiple erasures.
If among the edges incident on one node, only one is erased, then it can be recovered. But, if two edges incident on a node are erased, then cannot recover using that parity check.

Hence, for correcting multiple erasures, at every step there should exist at least one parity check, with exactly one erased symbol.
When do we run into trouble?

t Erasure Correctability

Suppose there are e erasures.

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased symbols, and the nodes they are connected to.

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

- The graph does not have cycles of length less than $t+1$. Therefore the first case does not arise

t Erasure Correctability

Suppose there are e erasures.
In the graph retain only those edges representing the erased symbols, and the nodes they are connected to.
Two types of erasure-patterns can cause the decoder to stop:

- The graph does not have cycles of length less than $t+1$. Therefore the first case does not arise
- Any two dummy nodes are separated by a path of length at least $t+1$. Hence the second case is also avoided

Rate-Optimality of the construction

Upon counting the number of code symbols and number of parity checks, one can see that this construction yields rate-optimal codes for any even t and any $r \geq 3$.

Codes with Availability

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code
Upper Bound on Code Rate
A Rate-Ontimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

Availability

Same setting as earlier

Desirable:

$c_{1}=f_{1}\left(c_{4}, c_{5}\right), c_{2}=f_{2}\left(c_{4}, c_{6}\right)$,
$c_{3}=f_{3}\left(c_{5}, c_{7}\right)$
So that, can recover the lost symbols in any order.

An additional property called "majority-logic decodability".

Questions:

What is the highest "rate" achievable by such codes? Highest "minimum-distance"? How to design such rate-optimal codes with low blocklength, low field-size?

Definition: Strict Availability via Orthogonal Parity Checks

$$
\left[\begin{array}{l|l|l|l|l|l|l}
1 & 1 & & 1 & & & \\
\hline & 1 & 1 & & 1 & &
\end{array}\right] \Leftrightarrow w_{H}(\text { each row })=(r+1)
$$

- Let $S_{j}^{(i)}$ be the support of the j th row having a 1 in column i
- Then

$$
S_{j}^{(i)} \cap S_{l}^{(i)}=\{i\}, \quad j=1,2, \cdots, t, \quad j \neq I .
$$

- t orthogonal parity checks per code symbol
- Terminology: $(n, k, r, t)_{\text {sa }}$ codes.

Outline

1. Codes with Sequential Local Recovery

Introduction

An Example: 2D Product Code
Upper Bound on Code Rate
A Rate-Ontimal Binary Code Construction
2. Codes with Availability

A Greedy Algorithm for Rate-Bound

Rate-Bound for Strict Availability for $\mathbf{t}=3$

Theorem
Rate-Bound ${ }^{1}$ Let \mathcal{C} be an $(n, k, r, 3)_{\text {sa }}$ code over the field \mathbb{F}_{q} having connected Tanner graph, then its rate is upper bounded by the following expression:

$$
\begin{array}{r}
\frac{k}{n} \leq 1-\frac{3\left(1+L_{1}+L_{2}\right)}{(r+1)\left(3+L_{1}+2 L_{2}\right)}, \tag{10}\\
\text { where: } m=\frac{3 n}{r+1}, \quad L_{1}=\left[\frac{(2 r-1) m}{3(r+2)}-\frac{1}{r+2}-1\right\rceil, \\
\quad L_{2}=\left\lfloor\frac{m-3-L_{1}}{2}\right\rfloor,
\end{array}
$$

[^1]
Greedy Algorithm : Step 1

$H=\left[\begin{array}{l|l|l|l|l|l|l}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & 1 & 1 & & 1 & \\ \hline & & & 1 & 1 & & 1 \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$
$S=\{1\}$,

$$
P=\left[\begin{array}{c|c|c|c|c|c|c}
1 & 1 & & 1 & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 1 & & & & 1 & 1 & \\
\hline 1 & & & & & & \\
\hline
\end{array}\right.
$$

Greedy Algorithm: Step 2

$H=\left[\begin{array}{l|l|l|l|l|l|l}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & 1 & 1 & & 1 & \\ \hline & & & 1 & 1 & & 1 \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$
$S=\{1,2\}$,
$P=\left[\begin{array}{c|c|c|c|c|c|c}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$

Greedy Algorithm: Step 3

$H=\left[\begin{array}{l|l|l|l|l|l|l}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & 1 & 1 & & 1 & \\ \hline & & & 1 & 1 & & 1 \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$
$S=\{1,2,5\}$,
$P=\left[\begin{array}{c|c|c|c|c|c|c}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & & & & & \\ \hline & & & 1 & 1 & & 1 \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$

Greedy Algorithm: Step 4

$H=\left[\begin{array}{l|l|l|l|l|l|l}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & 1 & 1 & & 1 & \\ \hline & & & 1 & 1 & & 1 \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$
$S=\{1,2,5,6\}$, Hence $P=H$ and $k \leq n-|S|=3$
$P=\left[\begin{array}{c|c|c|c|c|c|c}1 & 1 & & 1 & & & \\ \hline & 1 & 1 & & 1 & & \\ \hline & & 1 & 1 & & 1 & \\ \hline & & & 1 & 1 & & 1 \\ \hline 1 & & & & 1 & 1 & \\ \hline & 1 & & & & 1 & 1 \\ \hline 1 & & 1 & & & & 1\end{array}\right]$

Greedy Algorithm

1. Let $S=\emptyset, P=\emptyset$.
2. Step 1: Pick an arbitrary number σ_{1} from $[n]$ and set $S=\left\{\sigma_{1}\right\}$ and $P=\left\{\underline{c} \in \operatorname{Rows}(H): \sigma_{1} \in \operatorname{Support}(\underline{c})\right\}$.
3. Step $i, i \geq 2$: Choose a number $\sigma_{i} \in[n]-S$ such that $\sigma_{i}=\operatorname{argmax}_{\{j \in[n]-S\}}\left|D_{j}\right| \times I\left(\left|D_{j}\right| \leq 2\right)$ where $D_{j}=\{\underline{c} \in P: j \in \operatorname{Support}(\underline{c})\}$.
Now $S=S \cup\left\{\sigma_{i}\right\}$ and
$P=P \cup\left\{\underline{c} \in \operatorname{Rows}(H)-P: \sigma_{i} \in \operatorname{Support}(\underline{c})\right\}$.
4. Pseudocode for the Greedy Algorithm: $P=\emptyset, S=\emptyset, i=1$.
while $|P|<m$
do Step i
$i=i+1$
end while.
5. It is clear that, $k \leq n-|S|$ at the end of the algorithm.

Backup Slides

Rawat et al. Regular Graph Construction

Any $(r+1)$-regular (bipartite) graph, with girth at least $t+1$ gives the Tanner graph of an $(n, k, r, t)_{\text {seq }}$ code.

Rawat et al. Regular Graph Construction

Any $(r+1)$-regular (bipartite) graph, with girth at least $t+1$ gives the Tanner graph of an $(n, k, r, t)_{\text {seq }}$ code.
Can show that rate is $\frac{r-1}{r+1}+\frac{1}{n}$.

Rawat et al. Regular Graph Construction

Any $(r+1)$-regular (bipartite) graph, with girth at least $t+1$ gives the Tanner graph of an $(n, k, r, t)_{\text {seq }}$ code.
Can show that rate is $\frac{r-1}{r+1}+\frac{1}{n}$.
Can show that it meets our bound only when the graph is a Moore graph, which are very rare. Hence sub-optimal for most parameters.

Analysis of Greedy Algorithm

Let $g_{i} \in\{1,2\}$ be the number of new codewords added to P at step i. Let $s_{1}^{i}, s_{2}^{i}, s_{3}^{i}$ be the number of weight $1,2,3$ columns in the matrix formed by codewords in P respectively.

$$
\begin{gathered}
\text { if } g_{i+1}=2, g_{i+2}=2 \text { then } \\
s_{1}^{i+1}=s_{1}^{i}+2 r-1, \quad s_{2}^{i+1}=s_{2}^{i}+0, \quad s_{3}^{i+1}=s_{3}^{i}+1 . \\
\text { if } g_{i+1}=1, g_{i+2}=2 \text { then } \\
s_{1}^{i+1}=s_{1}^{i}-\phi_{i}+r+1, \quad s_{2}^{i+1}=s_{2}^{i}-\phi_{i}, \quad s_{3}^{i+1}=s_{3}^{i}+\phi_{i}, \\
\text { for some } 1 \leq \phi_{i} \leq r+1 . \\
\text { if } g_{i+1}=2, g_{i+2}=1 \text { then } \\
s_{1}^{i+1}=s_{1}^{i}+2 r-1-2 l_{i}, \quad s_{2}^{i+1}=s_{2}^{i}+l_{i}, \quad s_{3}^{i+1}=s_{3}^{i}+1, \\
\text { for some } 0<l_{i} \leq 2 r .
\end{gathered}
$$

Analysis of Greedy Algorithm

Let $S_{u j}=\left\{i: g_{i+1}=u, g_{i+2}=j,|S|-1 \geq i \geq 2\right\}$ and $I_{u j}=\left|S_{u j}\right|$ at the end of the algorithm. Now using the global constraints ($s_{1}=s_{1}^{|S|}=0$, $s_{2}=s_{2}^{|S|}=0, s_{3}=s_{3}^{|S|}=n$ at the end of the algorithm.):

$$
\begin{aligned}
s_{2}^{|S|} & =\gamma_{1}-\sum_{i \in S_{12}} \phi_{i}+\sum_{i \in S_{21}} I_{i}-\sum_{i \in S_{11}} J_{i}+\sum_{i \in S_{11}} \psi_{i}-(r+1)=0, \\
m & =\frac{3 n}{r+1}=5+g_{3}+2\left(l_{22}+l_{12}\right)+l_{21}+l_{11} .
\end{aligned}
$$

Analysis of Greedy Algorithm

$$
l_{11}+l_{21} \geq \frac{(2 r-1) m}{3(r+2)}-\frac{1}{r+2}-1 .
$$

1. For $j=1,2$, let $L_{j}=\left|\left\{i: g_{i}=j,|S| \geq i \geq 1\right\}\right|$ at the end of the algorithm.
2. $|S|=L_{1}+L_{2}+1$ and $m=L_{1}+2 L_{2}+3$. Hence $L_{1} \geq I_{11}+I_{21}$.

References

S. B. Balaji, G. R. Kini, and P. V. Kumar, "A tight rate bound and a matching construction for locally recoverable codes with sequential recovery from any number of multiple erasures, 2017. [Online].
Available: http://arxiv.org/abs/1611.08561
S. B. Balaji and P. Vijay Kumar, "Bounds on Codes with Locality and Availability",2017. [Online].
Available: https://arxiv.org/abs/1611.00159

Thank you!

Questions?

[^0]: ${ }^{1}$ S. B. Balaji, G. R. Kini, and P. V. Kumar, "A tight rate bound and a matching construction for locally recoverable codes with sequential recovery from any number of multiple erasures, 2017. [Online]. Available: http://arxiv.org/abs/1611.08561

[^1]: ${ }^{1}$ S. B. Balaji and P. Vijay Kumar, "Bounds on Codes with Locality and Availability",2017. [Online] .Available: https://arxiv.org/abs/1611.00159

