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Era of Short Packets

I Upcoming wireless systems ought to support novel traffic types
(e.g., machine-to-machine)

I Typically short packets are involved (traffic generated by sensors)
I Stringent reliability and latency requirements
I Need to refine classical physical layer performance metrics

(ergodic capacity, outage capacity etc.)

CONTROL DATA

CONTROL DATA

Figure 1: Short packet: Size of metadata and data are comparable
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Information Theoretic Metrics
Delay sensitive data over a Wireless Channel

I Earlier: Delay-limited capacity, outage capacity, average capacity
etc.

I What’s relevant: R∗(n, ε) - maximal coding rate at blocklength n,
probability of error ε

I But,

complexity of computing R∗(n, ε) is prohibitive
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A New Benchmark
Delay sensitive data over a Wireless Channel

I Good proxies for R∗(n, ε)?

I Normal approximation [Polyanskiy-Poor-Verdú, 2010]: For many
channels of interest,

R∗(n, ε) ≈ C +

√
V

n
Φ−1(ε)

I C− Channel capacity, V− Channel dispersion, Φ−1(.)− Inverse
Gaussian cdf

I Question: Finite blocklength approximations for fading channels?
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Channel Model
I Fading takes values in {η0, η1, . . . , ηN}, ηi 6= 0

f(M;Hb) g(Y n; HB)
X Y

HX + Z

Z ∼ N (0; σ2

N
)

H ∼ FH

M M̂

Figure 2: A blockfading channel

1 2 nc

Block 1 Block 2 Block 3 Block b Block B

1 2 nc

Codeword length n = Bnc

Figure 3: Independent, identically distributed gains across blocks
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Code Constraints

I Average probability of error: 0 < ε < 1
2

I Power constraint:
I Short term (ST) constraint:

B∑
b=1

nc∑
k=1

X2
[bk](m,H

b) ≤ BncP̄ , ∀m ∈ [1 : M ].

I ST constraint: Corresponds to peak-power limitations of the
circuitry
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Related Work

I Dispersion of fading channel with CSIR and no CSIT (Polyanskiy
and Verdú, ISIT’11)

I Second order coding rate of a DMC with finite states and with non
causal CSIT and CSIR (Tomamichel & Tan, T-IT,Aug’14)

I Back off from outage capacity of block fading channel with a single
fading block with CSIT and CSIR (Yang et al., T-IT Sep’15)
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Channel Capacity & Optimal Power Allocation

I Capacity:

C(P̄ ) = EH
[1

2
log
(

1 +
H2PWF(H)

σ2
N

)]
I Water filling power allocation:

PWF(H) =
(
λ−

σ2
N

H2

)+
, EH

[
PWF(H)

]
= P̄

Question: Given a codeword length n, average probability of error ε and
power constraint P̄ , what is the back off from C(P̄ )?
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Result
Lower bound on maximal coding rate R∗(n, P̄ , ε)

I ST constraint, i.e., ||X||2 ≤ nP̄ :

R∗(n, P̄ , ε) ≥ C(P̄ ) +

√
VBF(P̄ )
n Φ−1(ε)− cε(P̄ )√

n
+ logn

2n +O
(

1
n

)
VBF
(
P̄
)
, E

[
V
(
G
)]

+ ncVar
[
C
(
G
)]

+
1

2
Var
[
L
(
G
)]

L(x) =
σ2
N

x+σ2
N
, V (x) = 1−L2(x)

2 , C(x) = 1
2 log

(
1 + x

σ2
N

)
, G = H2PWF(H)
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Result
Upper bound on maximal coding rate R∗(n, P̄ , ε)

I ST constraint, i.e., ||X||2 ≤ nP̄ :

R∗(n, P̄ , ε) ≤ C(P̄ ) +

√
VBF
′(P̄ )
n Φ−1(ε) + logn

2n +O
(

1
n

)

V ′BF(P̄ ) , EG[V (G)] + ncVar
[
C(G) +

P̄

2λ
− L(G)

2

]
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Obtaining Lower Bound
1) Decouple Coding & Power Control

I Sample codewords uniformly from {x′ : ||x′||2 = n(1− δn)}
I Power control: Xk =

√
PWF(Hk)X

′
k

I ST constraint violation at time k: If power transmitted till k > nP̄

P
[
violating ST constraint

]
= P

[
B⋃
b=1

{
b∑
l=1

||X ′l||2PWF(Hl) > BncP̄

}]
≤c1 exp

(
− c2nδ

2
n

)
= ε∗n < ε.

I Probability of error in decoding: ε− ε∗
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Obtaining Lower Bound
2) The β − β bound

I The β − β bound [Yang et al., 2016]: For any τ ∈ (0, ε′), ε′ = ε− ε∗,
any auxiliary channel Q,

M∗ ≥
βτ

(
P̃1, P̃2

)
β1−ε′+τ

(
P1,P2

) ,

βα
(
PA,PB

)
: Minimum false alarm probability in deciding PA

against PB , with minimum detection probability α

PY|H,X
PX P̃1 QY|H,X

PX P̃2

Figure 4: Joint distributions P1 and P2 resp.
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Obtaining Lower Bound
3) Choosing Q and bounding β terms

I Fix auxiliary channel Q
Y
∣∣X,H ≡ B∏

b=1

nc∏
k=1

N
(
0, σ2

N +H2
bPWF(Hb)

)
I Lower bound on log βτ

(
P̃1, P̃2

)
:

log βτ

(
P̃1, P̃2

)
≥ τ−1

[
− 1−D

(
P̃1||P̃2

)]
=O
(
1
)
.

I Upper bound on β1−ε′+τ

(
P1,P2

)
: For appropriate choice of γ0,

log β1−ε′+τ

(
P1,P2

)
≤ logP2

[dP1

dP2
≥ γ0

]
≤− log n

2
−log γ0+constant.
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Obtaining Upper Bound
1) Meta Converse & Choice of Auxiliary Channel

I Assume non causal CSIT.
I C

(
M,n, ε, P̄

)
: code satisfy ST constraint with equality.

I Fix auxiliary channel Q
Y
∣∣X,H ≡ B∏

b=1

nc∏
k=1

N
(
0, σ2

N +H2
bPWF(Hb)

)
.

I Avg. prob. of error of C
(
M,n, ε, P̄

)
over Q: M−1

M

I Meta-converse and its relaxation: For any Q, γ > 0,

M ≤ 1

β1−ε
(
PX,H,Y,QX,H,Y

) ≤ γ

P
[
Iγ
]
− ε

,

P
[
Iγ
]

= P

[
dPX,H,Y

dQX,H,Y
≤ γ

]
.
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Obtaining Upper Bound
2) Lower bound on P

[
Iγ

]
: Two step approximation

I View as a parallel channel with N sub channels
I Constraint set ⊂ RN (instead of Rn)

I Using Berry Esseen, for some µ, ν , c3 > 0

P
[
Iγ
]
≥ EH

[
Φ

(
log γ − µ(H)√

ν(H)

)]
− c3√

n

I EH

[
Φ

(
log γ−µ(H)√

ν(H)

)]
≥ Φ

(
log γ−nC(P̄ )√

nV ′BF(P̄ )

)
− c4√

n
.

I Infinite Taylor series, concentration bounds, Berry Esseen

I Choosing γ = nC(P̄ ) +
√
nV ′BF(P̄ )Φ−1(ε+ 2c4√

n
), the result follows.
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Numerical example
Finite blocklength approximation: Rate versus power

Figure 5: Rate versus power

I Fading distribution: A quantized version of Rayleigh distribution
with parameter 0.75, 10 mass points
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Concluding remarks

I Result holds for for general fading state space, long term power
constraint

I Quest for matching second order coefficients...

Finite Blocklength Rates over a Fading Channel ESSS April’18 18 / 18


