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Introduction

What is Finite Blocklength(FB) analysis?

Traditional channel capacity assumes codeword blocklengths

tending to in�nity.

FB analysis adds a blocklength constraint (n is �nite but

possibly large).

Study the backo� from capacity due to FB.



Finite Blocklength Analysis of Channel Capacity

Introduction

Why FB analysis?

In reality, we are limited by blocklength.

Capacity obtained as a function of blocklength is a more useful

than channel capacity which is asymptotic.

Analysis doesn't require explicit code construction!!

Useful also in source coding, JSCC and even information

theoretic secrecy.



Finite Blocklength Analysis of Channel Capacity

Introduction

Related Terminologies

Under FB analysis:

If probability of error (p.o.e.) → 0 exponentially and we study

rates such that this happens, it's called an error exponent

analysis.

If p.o.e. is �xed and we study the maximum rate achievable, it

is a second order analysis.

If p.o.e. → 0 and rate tends to capacity, this study is

moderate deviation asymptotics.

We focus on the second perspective.
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Introduction

Goal

The exact characterization of FB capacity is unknown even for

the most basic channels.

We settle for tight lower and upper bounds.

Preferably, lower and upper bound should have matching

second order terms.

If the �rst order term is independent of ε, you get strong

converse for free.
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Introduction

History of FB

DMCs, second order characterization (Strassen 1964).

AWGN channels, second order characterization (Hayashi 2009).

Re�nements of above (Polyanskiy et.al. 2010, Tomamichel

and Tan 2013 ).

Channels with state (Tomamichel and Tan, 2014).

Energy harvesting channels (Fong and Tan 2015, Shenoy and

Sharma 2016).

Fading channels (Yang et.al. 2015).
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Basics

Maximal and Average p.o.e.

Let U (equiprobable) be the message to be transmitted, Û the

decoded message.

Maximal p.o.e: max
1≤m≤M

Pr [Û 6= m|U = m].

Average p.o.e: Pr [Û 6= U].

Slightly di�erent theorems under each criteria.

A�ects higher order terms.
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Basics

Information Density1

iQ(x ; y) = log
W (y |x)

Q(y)
(1)

If Q = PW , then expected value of above is I (X ;Y ).

In some sense, FB analysis is a detailed study of this.

Basically a log likelihood ratio.

1T.S. Han, Information spectrum methods in Information Theory, Springer

2003.



Finite Blocklength Analysis of Channel Capacity

Basics

Notation

An (n,M, ε) code is a code with M codewords having

blocklength n and p.o.e. ε.

The channel will be represented by W (y |x) or PY |X .



Finite Blocklength Analysis of Channel Capacity

Lower Bounds (Achievability Techs)

Basic Single Shot Achievability Lemmas

Lemma (Shannon)

For any input distribution PX , 0 < ε < 1 average p.o.e., there

exists a (M, ε) code such that for any γ > 0,

ε ≤ Pr [i(X ;Y ) ≤ log γ] +
M − 1

γ
(2)

Lemma (Feinstein)

For any input distribution PX , 0 < ε < 1 maximal p.o.e., there

exists a (M, ε) code such that for any γ > 0,

ε ≤ Pr [i(X ;Y ) ≤ log γ] +
M

γ
(3)
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Lower Bounds (Achievability Techs)

Random Coding Union bound

Lemma (Polyanskiy)

For any input distribution PX , 0 < ε < 1 average p.o.e., there

exists a (M, ε) code such that

ε ≤ E[1 ∧ (M − 1)P[i(X̂ ;Y ) ≥ i(X ;Y )|X ,Y ]] (4)

where PXY X̂ (x , y , u) = PX (x)W (y |x)PX (u).

Non-parametric.

Shannon's lemma can be recovered.
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Lower Bounds (Achievability Techs)

Dependence Testing Bound

Lemma (Polyanskiy)

For any input distribution PX , 0 < ε < 1 average p.o.e., there

exists a (M, ε) code such that

ε ≤ E

[
exp

(
−
[
i(X ;Y )− log

M − 1

2

]+
)]

(5)

where (x)+ = max(x , 0).
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Lower Bounds (Achievability Techs)

Hypothesis Testing Methods

Given two distributions P and Q on X , de�ne

βα(P,Q) , inf

∫
T (1|x)dQ(x) (6)

where the in�mum is over all test functions T such that∫
T (1|x)dP(x) ≥ α.
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Lower Bounds (Achievability Techs)

Given distributions Pi , i ∈ I and Q on X , de�ne

κτ (I,Q) , inf

∫
T (1|x)dQ(x) (7)

where the in�mum is over all test functions T such that∫
T (1|x)dPi (x) ≥ α for every i ∈ I.



Finite Blocklength Analysis of Channel Capacity

Lower Bounds (Achievability Techs)

Lemma (Polyanskiy)

For any 0 < ε < 1, maximal p.o.e., there exists an (M, ε) code with

codewords from F such that

M ≥ κτ (F,QY )

sup
x∈F

β1−ε−τ (W (.|x),QY )
(8)

for any output distribution QY and any 0 < τ < ε.

Recovers earlier bounds.

κτ (F,QY ) is usually hard to bound.
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Lower Bounds (Achievability Techs)

Useful properties

βα(P,Q) ≤ 1
γ for γ > 0 such that P[ dPdQ ≥ γ] ≥ α.

βα(P,Q) ≥ 1
γ

(
α− P[ dPdQ ≥ γ]

)
for any γ > 0.

κτ ≤ τ .
κτ ≥ τQX (F) if QY = QXW .
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Lower Bounds (Achievability Techs)

Berry Esseen Theorem

Theorem

If Xi are i.i.d. random variables with zero mean, variance V and

third moment K <∞, then ∀x ∈ R∣∣∣∣Pr (∑n
i=1 Xi√
nV

≤ x

)
− Φ(x)

∣∣∣∣ ≤ K√
nV 3/2

(9)

where Φ is the cdf of standard normal.

Used to bound the probability terms.

Finite n version of central limit theorem.

Standard strategy to get tight second order terms.
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Lower Bounds (Achievability Techs)

Achievability: Results

For AWGN channels with 0 < ε < 1, maximal p.o.e., SNR P ,
capacity CG and V = P(P+2)

2(P+1)2
log22(e),

logM ≥ nCG +
√
nVΦ−1(ε) + O(1) (10)

For DMC with VD > 0,

logM ≥ nCD +
√
nVDΦ−1(ε) + O(1) (11)
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Upper Bounds (Converse Techs)

Converse: Beyond Fano

logM

n
≤ C + h(ε)

1− ε
(12)

Usually Fano's inequality is the starting point but...

Not re�ned for second order analysis.

Require stronger bounding techniques.
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Upper Bounds (Converse Techs)

Basic Converses

Lemma (Han-Verdu)

For 0 < ε < 1, average p.o.e., every (M, ε) code satis�es the

following for any γ > 0,

ε ≥ inf
PX

Pr [i(X ;Y ) ≤ log γ]− γ

M
(13)

Lemma (Wolfowitz)

For 0 < ε < 1, maximal p.o.e., every (M, ε) code satis�es the

following for any γ > 0,

ε ≥ inf
x∈X

Pr [i(x ;Y ) ≤ log γ]− γ

M
(14)
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Upper Bounds (Converse Techs)

The Meta-Converses

Theorem (Polyanskiy)

For 0 < ε < 1, average p.o.e., every (M, ε) code satis�es the

following for any output distribution QY

M ≤ sup
PX

1

β1−ε(PXY ,PXQY )
. (15)

Theorem (Polyanskiy)

For 0 < ε < 1, maximal p.o.e., every (M, ε) code, with codewords

from F, satis�es the following for any output distribution QY

M ≤ sup
x∈F

1

β1−ε(W (.|x),QY )
. (16)
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Upper Bounds (Converse Techs)

Converse: Results

For AWGN channels with 0 < ε < 1, maximal p.o.e., SNR P ,
capacity CG and V = P(P+2)

2(P+1)2
log22(e),

logM ≤ nCG +
√
nVΦ−1(ε) +

1

2
log n + O(1) (17)

For DMC with VD > 0,

logM ≤ nCD +
√

nVDΦ−1(ε) +
1

2
log n + O(1) (18)

where VD = min
P∈Π

V (P;W ) for 0 < ε < 1/2 and

VD = max
P∈Π

V (P;W ) for 1/2 < ε < 1.
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Useful results

A useful example: BSC

For BSC with crossover probability α 6= 0, 0.5, 1, we have

logM = n(1−h(α))+
√
nα(1− α) log

(
1− α
α

)
Φ−1(ε)+

log n

2
+O(1)

(19)

For α = 0.11, ε = 10−3 and n ≥ 20, the achievability and

converse gap in logM is less than 4 bits.

Even though we don't know what code achieves that...
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Useful results

Recent Advances: β − β bounds

Theorem (Yang et. al.)

For 0 < ε < 1, average p.o.e., there exists an (M, ε) code that

satis�es the following for any input distribution PX , output

distribution QY and 0 < δ < ε

M ≥ βδ(PY ,QY )

β1−ε+δ(PXY ,PXQY )
. (20)

Theorem (Polyanskiy, Verdu)

For 0 < ε < 1, average p.o.e., every (M, ε) code satis�es the

following for any output distribution QY and 0 < δ < 1− ε

M ≤ sup
PX

β1−δ(PY ,QY )

β1−ε−δ(PXY ,PXQY )
. (21)
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Useful results

Recent Advances

The beta-beta bounds share a duality similar to KL divergence.

These bounds have been proven to be tight, including meta

converses.

General recipe is to start with one of these bounds and use

tools like Berry Esseen to re�ne results.
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Application: Energy Harvesting Channels

Energy Harvesting AWGN (EH-AWGN)
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Application: Energy Harvesting Channels

If the energy arrival process has mean µY , then capacity is
1
2 log(1 + µY

σ2
).

For this channel, it was shown that (Fong et. al., Shenoy et.

al.)

logM = nC + Θ(
√
n) (22)

No matching second order term as of now.
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Summary

Summary

Finite blocklength analysis is more useful practically as

opposed to the limiting case.

Lots of tools to re�ne second order asymptotics.

Research in progress for energy harvesting channels and fading

channels.

Major issue is in obtaining matching second order coe�cients.
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Summary

It's a fact

A ratio immutable

Of circle round and width

Produces geometry's deepest conundrum

For as the numerals stay random

No repeat lets out its presence.

Yet it forever stretches forth.

Nothing to eternity.
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