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An example

• Consider a problem of image reconstruction

• Image is represented as a function 

• Domain is partitioned into a finite number of 
“pixels”

f =
n

∑
j=1

xj fj , fj =  indicator of the jth pixel
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• Measurements Ri fj = aij, Ri f = bi, i = 1,2,…, k

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮

ak1 ak2 ⋯ akn

⋅

x1
x2
⋮
⋮
xn

=

b1

b2
⋮
bk

• Goal: Recover                                from the measurements            x = (x1, …, xn)T

A x b
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Criterion for / goodness of 
recovery

• Typically, one first defines a cost function

L = {w ∈ ℝn : Aw = b}
x

F

x = arg min
w∈L

F(w)

• Subsequently,      is recovered as one of the minimisers of the cost functionx
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Function-minimisation approach: 
examples

• Least squares: 

x = arg min
w∈L

| |w | |2 = arg min
w∈L

n

∑
i=1

w2
i

• Maximum entropy: 

x = arg min
w∈L∩ℝn

+

n

∑
i=1

wi log wi
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Function-minimisation approach: 
examples

• Mean squared error (MSE) minimisation with respect to a prior guess 

x = arg min
w∈L

| |w − x⋆ | |2 = arg min
w∈L

n

∑
i=1

(wi − x⋆
i )2

• I-divergence minimisation with respect to a nonnegative prior guess 

x = arg min
w∈L∩ℝn

+

n

∑
i=1

wi log
wi

x⋆
i

− wi + x⋆
i
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Function-minimisation approach
• The aforementioned methods are examples of “projection 

rules’’ that involve updating some prior guess

0

Lx

ℝn,  2-norm

x⋆

Lx

ℝn,  Euclidean distance

(1/e)

1
1
⋮
1

Lx

ℝn
+,  negative Shannon Entropy

x⋆

Lx

ℝn
+,  I-divergence

Thus, 
function-

minimisation
defines a

projection 
rule  
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Projection rules: formal definition

• Let

ℒ = {L = {w ∈ ℝn : Aw = b}: A is a k × n matrix having rank k, b ∈ ℝk}
where k = 0,1,2,…, n

• A projection rule is a mapping

Π : ℒ × ℝn → ℝn

(L, x⋆) ↦ Π(L |x⋆) ∈ L

If x⋆ ∈ L,  then Π(L |x⋆) = x⋆
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Projection Rules and Function 
Minimisation

F : ℝn × ℝn → ℝ
(x⋆, w) ↦ F(w |x⋆)

Π : ℒ × ℝn → ℝn projection rule

Π(L |x⋆) = arg min
w∈L

F(w |x⋆)

Definition: Π is generated by F,  if
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• Csiszár demonstrated that if projection rules satisfy some naturally 
appealing axioms, they must be generated by “nice”  functions

Axioms satisfied by a projection rule Nature of the function generating the projection rule

Regularity + Locality

Regularity+ Locality + Subspace 
Transitivity

Regularity+ Locality + Subspace 
Transitivity + Statistical

Regularity + Locality + Subspace 
Transitivity + Location Invariance + Scale 

Invariance 

F(w |x⋆) =
n

∑
i=1

fi(wi |x⋆
i ), fi continuously differentiable and strictly convex

F(w |x⋆) =  Bregman's divergence

F(w |x⋆) = I-divergence

F(w |x⋆) = Euclidean distance
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The axiom of regularity
Π : ℒ × ℝn → ℝn projection rule

ℳ = {{w ∈ ℝn : aTw = b}, a ∈ ℝn, a ≠ 0, b ∈ ℝ}

Regularity

(Consistency)
L′� ⊂ L, Π(L |x⋆) ∈ L′� ⟹ Π(L′�|x⋆) = Π(L |x⋆)

(Distinctness)
L, L̃ ∈ ℳ, L ≠ L̃, x⋆ ∉ L ∩ L̃ ⟹ Π(L |x⋆) ≠ Π(L̃ |x⋆)

(Continuity)
Π( ⋅ |x⋆) restricted to any fixed dimension is continuous

Π satisfies regularity if, for all x⋆ ∈ ℝn,
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The axiom of consistency

Additional observations do not give a reason to change the 
original selection

L′� ⊂ L, Π(L |x⋆) ∈ L′� ⟹ Π(L′�|x⋆) = Π(L |x⋆)
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L, L̃ ∈ ℳ, L ≠ L̃, x⋆ ∉ L ∩ L̃ ⟹ Π(L |x⋆) ≠ Π(L̃ |x⋆)
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Axiom of continuity
• Let

X = {(A, b) ∈ ℝk×n × ℝk : A has rank k}
• Define an equivalence relation on     as follows:X

(A, b) ∼ (Ā, b̄) ⇔ {w : Aw = b} = {w : Āw = b̄}
• Equivalence classes

Y = {[(A, b)] ∈ ℝk×n × ℝk : A has rank k}
• Topology on     is the quotient topology derived out of 

the Euclidean topology on
Y

X
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The axiom of continuity

ℳ =  collection of all (n − 1)-dimensional sets

 collection of all (n − 2)-dimensional sets

(n − 3)-dimensional sets

Π( ⋅ |x⋆) restricted to any fixed dimension is continuous



Axiom of subspace transitivity

L′� ⊂ L ⟹ Π(L′�|x⋆) = Π(Π(L |x⋆) |x⋆)
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Why are these axioms of interest 
to us?

• Kumar and Sundaresan (’15) discovered a family of 
projection rules that 

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative $\alpha $-Entropy I: Forward Projection." IEEE Transactions on Information Theory 61.9 
(2015): 5063-5080.

Regularity

Subspace transitivity

Locality

• These projection rules are generated by a divergence 
known as Sundaresan’s divergence (relative   -entropy)α
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• A parametric generalisation of KL divergence (or I-
divergence)

ℐα(w, x) =
α

1 − α
log (

n

∑
i=1

wi

| |w | | ( xi

| |x | | )
α−1

),

where | |x | | = (
n

∑
i=1

xα
i )

1/α

, α > 0, α ≠ 1



Sundaresan’s divergence

• A parametric generalisation of KL divergence (or I-
divergence)

ℐα(w, x) =
α

1 − α
log (

n

∑
i=1

wi

| |w | | ( xi

| |x | | )
α−1

),

where | |x | | = (
n

∑
i=1

xα
i )

1/α

, α > 0, α ≠ 1

• This is not a Bregman’s divergence. Hence, the 
corresponding projection rule is not local
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Branch of a tree, or the trunk?

• Are the projection rules generated by Sundaresan’s 
divergence the only rules which are regular, 
subspace transitive and nonlocal?

• Towards obtaining answers to the above question, 
we study the axiom of ‘regularity’ in more detail

Remainder of the talk is about regularity, and more….



What we want to know about 
regularity

• Csiszár’s results provide a necessary and sufficient 
axiomatic characterisation of many projection rules

Regularity + Locality Projection rule generated by F(w |x⋆) =
n

∑
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fi(wi |x⋆
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Regularity + Locality
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What we want to know about 
regularity

• Csiszár’s results provide a necessary and sufficient 
axiomatic characterisation of many projection rules

Regularity + Locality Projection rule generated by F(w |x⋆) =
n

∑
i=1

fi(wi |x⋆
i )

Regularity + Locality
+ Subspace 
Transitivity

Projection rule generated by Bregman's divergence

Regularity Projection rule generated by ???
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• Let

ℒ0(x⋆) = {L ∈ ℒ : Π(L |x⋆) = x⋆}, x⋆ ∈ ℝn

ℳ = {{w ∈ ℝn : aTw = b}, a ∈ ℝn, a ≠ 0, b ∈ ℝ}
• Recall

• Csiszár showed in his paper that
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Homeomorphism
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Regularity and vector fields

• Mere regularity helps us extract a vector field

ã( ⋅ |x⋆) : ℝn → ℝn

ã( ⋅ |x⋆) continuous
ã(x⋆ |x⋆) = 0,
ã(w |x⋆) ≠ 0 for all w ≠ x⋆
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Regularity 
+

Locality

There exists a smooth function 

F(w |x⋆) =
n

∑
i=1

fi(wi |x⋆
i ) such that

∇F(w |x⋆) = λã(w |x⋆) for all w ≠ x⋆

• The proof of Theorem 1 in Csiszár’s paper reveals the following:

λ ≠ 0, could depend on w, x⋆

Thus, ∇F(w |x⋆) = λ(w |x⋆)ã(w |x⋆)

for all w ≠ x⋆, λ(w |x⋆) ≠ 0 and continuous at w

This vector field is 
conservative!!

This particular 
form is due to 
locality axiom
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Conservative vector fields and 
regularity axiom

• While the specific form of the function may be due to locality, our 
feeling is that the conservative property may be due to regularity

Π( ⋅ |x⋆) regular ã( ⋅ |x⋆) continuous vector field

Does there exist a nonzero scaling λ( ⋅ |x⋆)
λ(w |x⋆) ≠ 0 for all w ≠ x⋆,
λ( ⋅ |x⋆) continuous except at x⋆ such that
λ(w |x⋆)ã(w |x⋆) = ∇F(w |x⋆) for some smooth F

Open question

Regularity

Projection rule generated 
by ???

😀
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the scaled vector field is conservative?

a : ℝn → ℝn continuous

λ : ℝn → ℝ continuous

λ ⋅ a = ∇F?
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Under more assumption

• Suppose we are in 3-dim, and we know

a : ℝ3 → ℝ3 is continuously differentiable

Is there a differentiable scaling
function λ such that λ ⋅ a = ∇F?

∇ × (λa) = 0

a1(w)
∂λ(w)
∂w2

− a2(w)
∂λ(w)
∂w1

= λ(w)( ∂a2(w)
∂w1

−
∂a1(w)

∂w2 ),

a2(w)
∂λ(w)
∂w3

− a3(w)
∂λ(w)
∂w2

= λ(w)( ∂a3(w)
∂w2

−
∂a2(w)

∂w3 ),

a3(w)
∂λ(w)
∂w1

− a1(w)
∂λ(w)
∂w3

= λ(w)( ∂a1(w)
∂w3

−
∂a3(w)

∂w1 )



Summary

• Axiomatic characterisation of projection rules

• Regularity: a fundamental axiom

• Regularity has connections with conservative vector 
fields

• Given a continuous vector field that is not necessarily 
conservative, is there a continuous scaling that can 
make the product vector field conservative? Open!



Thank you



The axiom of locality
• Consider two sets                 of the formL and L̃

L = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�}

L̃ = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�′�}
where J ⊂ {1,2,…, n} is arbitrary



The axiom of locality
• Consider two sets                 of the formL and L̃

L = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�}

L̃ = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�′�}
where J ⊂ {1,2,…, n} is arbitrary

w1
w2
⋮
wk
⋮
wl
⋮
wn

L0 = {y ∈ ℝ4 : y1 + y2 + y4 = 1}

L′�



The axiom of locality
• Consider two sets                 of the formL and L̃

L = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�}

L̃ = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�′�}
where J ⊂ {1,2,…, n} is arbitrary

w1
w2
⋮
wk
⋮
wl
⋮
wn

L0 = {y ∈ ℝ4 : y1 + y2 + y4 = 1}

L′�′�

w1
w2
⋮
wk
⋮
wl
⋮
wn

L0 = {y ∈ ℝ4 : y1 + y2 + y4 = 1}

L′�



The axiom of locality
• Consider two sets                 of the formL and L̃

L = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�}

L̃ = {w ∈ ℝn : wJ ∈ L0, wJc ∈ L′�′�}
where J ⊂ {1,2,…, n} is arbitrary

Then, (Π(L |x⋆))J = (Π(L̃ |x⋆))J
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⋮
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⋮
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⋮
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