Ax=b: A Familiar Setup, Axioms and An Open Question

Karthik P. N.

Joint work with Prof. Rajesh Sundaresan

Consider a problem of <u>image reconstruction</u>

- Consider a problem of image reconstruction
- Image is represented as a function

- Consider a problem of <u>image reconstruction</u>
- Image is represented as a function
- Domain is partitioned into a finite number of "pixels"

- Consider a problem of <u>image reconstruction</u>
- Image is represented as a function
- Domain is partitioned into a finite number of "pixels"

$$f = \sum_{j=1}^{n} x_j f_j$$
, f_j = indicator of the *j*th pixel

• Measurements

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$

A x b

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$ \sqrt{A} x b

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$

 $\checkmark A \quad Q \quad x \quad b \checkmark$

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$ \sqrt{A} Qx $b\sqrt{}$

• Goal: Recover $x = (x_1, ..., x_n)^T$ from the measurements

Criterion for / goodness of

recovery

Criterion for / goodness of recovery

• Typically, one first defines a cost function

Criterion for / goodness of recovery

- Typically, one first defines a cost function
- Subsequently, x is recovered as one of the minimisers of the cost function

Criterion for / goodness of recovery

- Typically, one first defines a cost function
- Subsequently, x is recovered as one of the minimisers of the cost function

 $L = \{ w \in \mathbb{R}^n : Aw = b \}$

 $x = \arg\min_{w \in L} F(w)$

• Least squares:

$x = \arg\min_{w \in L} ||w||^2 = \arg\min_{w \in L} \sum_{i=1}^{n} w_i^2$

• Least squares:

$x = \arg\min_{w \in L} ||w||^2 = \arg\min_{w \in L} \sum_{i=1}^n w_i^2$

• Maximum entropy:

• Least squares:

$$x = \arg\min_{w \in L} ||w||^2 = \arg\min_{w \in L} \sum_{i=1}^{n} w_i^2$$

• Maximum entropy:

$$x = \arg \min_{w \in L \cap \mathbb{R}^n_+} \sum_{i=1}^n w_i \log w_i$$

• Mean squared error (MSE) minimisation with respect to a prior guess

• Mean squared error (MSE) minimisation with respect to a prior guess

$$x = \arg\min_{w \in L} ||w - x^{\star}||^{2} = \arg\min_{w \in L} \sum_{i=1}^{n} (w_{i} - x_{i}^{\star})^{2}$$

• Mean squared error (MSE) minimisation with respect to a prior guess

$$x = \arg\min_{w \in L} ||w - x^{\star}||^{2} = \arg\min_{w \in L} \sum_{i=1}^{n} (w_{i} - x_{i}^{\star})^{2}$$

• I-divergence minimisation with respect to a <u>nonnegative</u> prior guess

• Mean squared error (MSE) minimisation with respect to a prior guess

$$x = \arg\min_{w \in L} ||w - x^{\star}||^{2} = \arg\min_{w \in L} \sum_{i=1}^{n} (w_{i} - x_{i}^{\star})^{2}$$

• I-divergence minimisation with respect to a <u>nonnegative</u> prior guess

$$x = \arg \min_{w \in L \cap \mathbb{R}^n_+} \sum_{i=1}^n w_i \log \frac{w_i}{x_i^{\star}} - w_i + x_i^{\star}$$

Projection rules: formal definition

• Let

$$\mathscr{L} = \left\{ L = \{ w \in \mathbb{R}^n : Aw = b \} : A \text{ is a } k \times n \text{ matrix having rank } k, b \in \mathbb{R}^k \right\}$$

where k = 0, 1, 2, ..., n

Projection rules: formal definition

• Let

$$\mathcal{L} = \left\{ L = \{ w \in \mathbb{R}^n : Aw = b \} : A \text{ is a } k \times n \text{ matrix having rank } k, b \in \mathbb{R}^k \right\}$$

where $k = 0, 1, 2, ..., n$

• A projection rule is a mapping
Projection rules: formal definition

• Let

$$\mathcal{L} = \left\{ L = \{ w \in \mathbb{R}^n : Aw = b \} : A \text{ is a } k \times n \text{ matrix having rank } k, b \in \mathbb{R}^k \right\}$$

where $k = 0, 1, 2, ..., n$

• A projection rule is a mapping $\Pi : \mathscr{L} \times \mathbb{R}^n \to \mathbb{R}^n$ $(L, x^*) \mapsto \Pi(L | x^*) \in L$

Projection rules: formal definition

• Let

$$\mathcal{L} = \left\{ L = \{ w \in \mathbb{R}^n : Aw = b \} : A \text{ is a } k \times n \text{ matrix having rank } k, b \in \mathbb{R}^k \right\}$$

where $k = 0, 1, 2, ..., n$

• A projection rule is a mapping $\Pi : \mathscr{L} \times \mathbb{R}^n \to \mathbb{R}^n$ $(L, x^*) \mapsto \Pi(L \mid x^*) \in L$

If $x^* \in L$, then $\Pi(L|x^*) = x^*$

 $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ $(x^*, w) \mapsto F(w \,|\, x^*)$

$F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ $(x^*, w) \mapsto F(w \,|\, x^*)$

$\Pi: \mathscr{L} \times \mathbb{R}^n \to \mathbb{R}^n \text{ projection rule}$

$F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ $(x^*, w) \mapsto F(w \,|\, x^*)$

$\Pi: \mathscr{L} \times \mathbb{R}^n \to \mathbb{R}^n \text{ projection rule}$

Definition: Π is generated by F, if

 $\Pi(L | x^*) = \arg\min_{w \in L} F(w | x^*)$

Is every projection rule generated by some function?

Is every projection rule generated by some function?

• Answers to this question were provided by Csiszár in 1991

Is every projection rule generated by some function?

Answers to this question were provided by Csiszár in 1991

The Annals of Statistics 1991, Vol. 19, No. 4, 2032–2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY? AN AXIOMATIC APPROACH TO INFERENCE FOR LINEAR INVERSE PROBLEMS¹

By IMRE CSISZÁR

Mathematical Institute of the Hungarian Academy of Sciences

An attempt is made to determine the logically consistent rules for selecting a vector from any feasible set defined by linear constraints, when either all *n*-vectors or those with positive components or the probability vectors are permissible. Some basic postulates are satisfied if and only if the selection rule is to minimize a certain function which, if a "prior guess" is available, is a measure of distance from the prior guess. Two further natural postulates restrict the permissible distances to the author's *f*-divergences and Bregman's divergences, respectively. As corollaries, axiomatic characterizations of the methods of least squares and minimum discrimination information are arrived at. Alternatively, the latter are also characterized by a postulate of composition consistency. As a special case, a derivation of the method of maximum entropy from a small set of natural axioms is obtained.

Axiomatic approach

Axiomatic approach

• Csiszár demonstrated that if projection rules satisfy some naturally appealing axioms, they must be generated by "nice" functions

Axiomatic approach

• Csiszár demonstrated that if projection rules satisfy some naturally appealing axioms, they must be generated by "nice" functions

Axioms satisfied by a projection rule	Nature of the function generating the projection rule
Regularity + Locality	$F(w x^*) = \sum_{i=1}^{n} f_i(w_i x_i^*), f_i \text{ continuously differentiable and strictly convex}$
Regularity + Locality + Subspace Transitivity	$F(w x^*) =$ Bregman's divergence
Regularity + Locality + Subspace Transitivity + Statistical	$F(w x^*) = $ I-divergence
Regularity + Locality + Subspace Transitivity + Location Invariance + Scale Invariance	$F(w x^*) =$ Euclidean distance

The axiom of regularity

 $\mathcal{M} = \left\{ \{ w \in \mathbb{R}^n : a^T w = b \}, a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R} \right\}$

The axiom of regularity

 $\Pi : \mathscr{L} \times \mathbb{R}^{n} \to \mathbb{R}^{n} \text{ projection rule}$ $\mathscr{M} = \left\{ \{ w \in \mathbb{R}^{n} : a^{T}w = b \}, a \in \mathbb{R}^{n}, a \neq 0, b \in \mathbb{R} \right\}$

The axiom of regularity

$$\Pi : \mathscr{L} \times \mathbb{R}^{n} \to \mathbb{R}^{n} \text{ projection rule}$$
$$\mathscr{M} = \left\{ \{ w \in \mathbb{R}^{n} : a^{T}w = b \}, a \in \mathbb{R}^{n}, a \neq 0, b \in \mathbb{R} \right\}$$

 Π satisfies regularity if, for all $x^* \in \mathbb{R}^n$,

Regularity

(Consistency) $L' \subset L, \Pi(L|x^*) \in L' \implies \Pi(L'|x^*) = \Pi(L|x^*)$ (Distinctness) $L, \tilde{L} \in \mathcal{M}, L \neq \tilde{L}, x^* \notin L \cap \tilde{L} \implies \Pi(L|x^*) \neq \Pi(\tilde{L}|x^*)$ (Continuity) $\Pi(\cdot |x^*) \text{ restricted to any fixed dimension is continuous}$

The axiom of consistency

$L' \subset L, \Pi(L|x^*) \in L' \implies \Pi(L'|x^*) = \Pi(L|x^*)$

The axiom of consistency

$L' \subset L, \Pi(L|x^*) \in L' \implies \Pi(L'|x^*) = \Pi(L|x^*)$

Additional observations do not give a reason to change the original selection

The axiom of distinctness

 $L, \tilde{L} \in \mathcal{M}, L \neq \tilde{L}, x^* \notin L \cap \tilde{L} \implies \Pi(L | x^*) \neq \Pi(\tilde{L} | x^*)$

 $X = \left\{ (A, b) \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$

• Let

• Let

$$X = \left\{ (A, b) \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

• Define an equivalence relation on X as follows:

• Let

$$X = \left\{ (A, b) \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

• Define an equivalence relation on *X* as follows: $(A, b) \sim (\bar{A}, \bar{b}) \Leftrightarrow \{w : Aw = b\} = \{w : \bar{A}w = \bar{b}\}$

• Let

$$X = \left\{ (A, b) \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

- Define an equivalence relation on X as follows: $(A, b) \sim (\bar{A}, \bar{b}) \Leftrightarrow \{w : Aw = b\} = \{w : \bar{A}w = \bar{b}\}$
- Equivalence classes

• Let

$$X = \left\{ (A, b) \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

- Define an equivalence relation on *X* as follows: $(A, b) \sim (\bar{A}, \bar{b}) \Leftrightarrow \{w : Aw = b\} = \{w : \bar{A}w = \bar{b}\}$
- Equivalence classes

$$Y = \left\{ \left[(A, b) \right] \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

• Let

$$X = \left\{ (A, b) \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

- Define an equivalence relation on *X* as follows: $(A, b) \sim (\overline{A}, \overline{b}) \Leftrightarrow \{w : Aw = b\} = \{w : \overline{A}w = \overline{b}\}$
- Equivalence classes

$$Y = \left\{ \left[(A, b) \right] \in \mathbb{R}^{k \times n} \times \mathbb{R}^k : A \text{ has rank } k \right\}$$

• Topology on *Y* is the quotient topology derived out of the Euclidean topology on *X*

The axiom of continuity

The axiom of continuity

collection of all (n - 2)-dimensional sets

The axiom of continuity

collection of all (n - 2)-dimensional sets

 $\Pi(\cdot | x^*)$ restricted to any fixed dimension is continuous

Axiom of subspace transitivity

$L' \subset L \implies \Pi(L'|x^*) = \Pi(\Pi(L|x^*)|x^*)$

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative \$\alpha \$-Entropy I: Forward Projection." *IEEE Transactions on Information Theory* 61.9 (2015): 5063-5080.

• Kumar and Sundaresan ('15) discovered a family of projection rules that

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative \$\alpha \$-Entropy I: Forward Projection." *IEEE Transactions on Information Theory* 61.9 (2015): 5063-5080.

• Kumar and Sundaresan ('15) discovered a family of projection rules that

Regularity

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative \$\alpha \$-Entropy I: Forward Projection." *IEEE Transactions on Information Theory* 61.9 (2015): 5063-5080.

• Kumar and Sundaresan ('15) discovered a family of projection rules that

Regularity V Subspace transitivity

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative \$\alpha + Entropy I: Forward Projection." *IEEE Transactions on Information Theory* 61.9 (2015): 5063-5080.

• Kumar and Sundaresan ('15) discovered a family of projection rules that

Regularity Subspace transitivity Locality

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative \$\alpha +Entropy I: Forward Projection." *IEEE Transactions on Information Theory* 61.9 (2015): 5063-5080.

• Kumar and Sundaresan ('15) discovered a family of projection rules that

Regularity Subspace transitivity Locality

 These projection rules are generated by a divergence known as Sundaresan's divergence (relative α-entropy)

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative \$\alpha \$-Entropy I: Forward Projection." *IEEE Transactions on Information Theory* 61.9 (2015): 5063-5080.
• A parametric generalisation of KL divergence (or Idivergence)

• A parametric generalisation of KL divergence (or Idivergence)

$$\mathcal{F}_{\alpha}(w,x) = \frac{\alpha}{1-\alpha} \log\left(\sum_{i=1}^{n} \frac{w_i}{||w||} \left(\frac{x_i}{||x||}\right)^{\alpha-1}\right),$$

where $||x|| = \left(\sum_{i=1}^{n} x_i^{\alpha}\right)^{1/\alpha}, \quad \alpha > 0, \, \alpha \neq 1$

• A parametric generalisation of KL divergence (or Idivergence)

$$\mathcal{F}_{\alpha}(w,x) = \frac{\alpha}{1-\alpha} \log\left(\sum_{i=1}^{n} \frac{w_i}{||w||} \left(\frac{x_i}{||x||}\right)^{\alpha-1}\right),$$

where $||x|| = \left(\sum_{i=1}^{n} x_i^{\alpha}\right)^{1/\alpha}, \quad \alpha > 0, \, \alpha \neq 1$

• This is <u>not a Bregman's divergence</u>. Hence, the corresponding projection rule is not local

 Are the projection rules generated by Sundaresan's divergence the only rules which are regular, subspace transitive and nonlocal?

- Are the projection rules generated by Sundaresan's divergence the only rules which are regular, subspace transitive and nonlocal?
- Towards obtaining answers to the above question, we study the axiom of 'regularity' in more detail

- Are the projection rules generated by Sundaresan's divergence the only rules which are regular, subspace transitive and nonlocal?
- Towards obtaining answers to the above question, we study the axiom of 'regularity' in more detail

Remainder of the talk is about regularity, and more....

What we want to know about regularity

• Csiszár's results provide a necessary and sufficient axiomatic characterisation of many projection rules

Regularity + Locality

Regularity + Locality + Subspace Transitivity

i=1

 \rightarrow

Projection rule generated by Bregman's divergence

What we want to know about regularity

 Csiszár's results provide a necessary and sufficient axiomatic characterisation of many projection rules

Regularity + Locality

Projection rule generated by $F(w | x^*) = \sum f_i(w_i | x_i^*)$

Regularity + Locality + Subspace Transitivity

Projection rule generated by Bregman's divergence

i=1

Regularity

Projection rule generated by ???

• Let

 $\mathscr{L}^{0}(x^{\star}) = \left\{ L \in \mathscr{L} : \Pi(L \mid x^{\star}) = x^{\star} \right\}, \quad x^{\star} \in \mathbb{R}^{n}$

• Let

 $\mathscr{L}^{0}(x^{\star}) = \left\{ L \in \mathscr{L} : \Pi(L \mid x^{\star}) = x^{\star} \right\}, \quad x^{\star} \in \mathbb{R}^{n}$

• Let

$$\mathcal{L}^{0}(x^{\star}) = \left\{ L \in \mathcal{L} : \Pi(L \mid x^{\star}) = x^{\star} \right\}, \quad x^{\star} \in \mathbb{R}^{n}$$

• Recall

$$\mathcal{M} = \left\{ \{ w \in \mathbb{R}^n : a^T w = b \}, a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R} \right\}$$

• Let

$$\mathscr{L}^{0}(x^{\star}) = \left\{ L \in \mathscr{L} : \Pi(L \mid x^{\star}) = x^{\star} \right\}, \quad x^{\star} \in \mathbb{R}^{n}$$

• Recall

$$\mathcal{M} = \left\{ \{ w \in \mathbb{R}^n : a^T w = b \}, a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R} \right\}$$

Csiszár showed in his paper that

• Let

$$\mathscr{L}^{0}(x^{\star}) = \left\{ L \in \mathscr{L} : \Pi(L \mid x^{\star}) = x^{\star} \right\}, \quad x^{\star} \in \mathbb{R}^{n}$$

• Recall

$$\mathcal{M} = \left\{ \{ w \in \mathbb{R}^n : a^T w = b \}, a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R} \right\}$$

• Csiszár showed in his paper that $\Pi(\cdot | x^*): \mathscr{M} \setminus \mathscr{L}^0(x^*) \to \mathbb{R}^n \setminus \{x^*\}$ is a homeomorphism

$\Pi(\cdot | x^*): \mathscr{M} \setminus \mathscr{L}^0(x^*) \to \mathbb{R}^n \setminus \{x^*\} \text{ is a homeomorphism}$

Implications of regularity

This means that for every $w \neq x^*$, there exists a unique set *L* of dimension (n - 1)such that $\Pi(L|x^*) = w$. Denote this *L* as $L(w|x^*)$

Implications of regularity

This means that for every $w \neq x^*$, there exists a unique set *L* of dimension (n - 1)such that $\Pi(L|x^*) = w$. Denote this *L* as $L(w|x^*)$

$$\frac{a}{||a||} = \tilde{a}(\omega|x^{*}) = \{y \in \mathbb{R}^{n} : a^{T}y = b\}$$

$$= \{y \in \mathbb{R}^{n} : a^{T}y = a^{T}\omega\}$$

$$= \{y \in \mathbb{R}^{n} : \frac{a^{T}}{||a||} = 0\}$$

$$= \{y \in \mathbb{R}^{n} : \frac{a^{T}}{||a||} = 0\}$$

$$= \{y \in \mathbb{R}^{n} : \tilde{a}(\omega|x^{*})(y - \omega) = 0\}$$

Regularity and vector fields

• Mere regularity helps us extract a vector field

Regularity and vector fields

• Mere regularity helps us extract a vector field

 $\tilde{a}(\cdot | x^*) : \mathbb{R}^n \to \mathbb{R}^n$ $\tilde{a}(\cdot | x^*) \text{ continuous}$ $\tilde{a}(x^* | x^*) = 0,$ $\tilde{a}(w | x^*) \neq 0 \text{ for all } w \neq x^*$

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Regularity + Locality

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Regularity + Locality There exists a smooth function $F(w | x^*) = \sum_{i=1}^{n} f_i(w_i | x_i^*) \text{ such that}$ $\nabla F(w | x^*) = \lambda \tilde{a}(w | x^*) \text{ for all } w \neq x^*$

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Regularity + Locality There exists a smooth function $F(w | x^*) = \sum_{i=1}^{n} f_i(w_i | x_i^*) \text{ such that}$ $\nabla F(w | x^*) = \lambda \tilde{u}(w | x^*) \text{ for all } w \neq x^*$

 $\lambda \neq 0$, could depend on w, x^*

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Regularity + Locality There exists a smooth function $F(w | x^*) = \sum_{i=1}^{n} f_i(w_i | x_i^*) \text{ such that}$ $\nabla F(w | x^*) = \lambda \tilde{a}(w | x^*) \text{ for all } w \neq x^*$

 $\lambda \neq 0$, could depend on w, x^*

Thus, $\nabla F(w | x^*) = \lambda(w | x^*) \tilde{a}(w | x^*)$

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Regularity + Locality There exists a smooth function $F(w | x^*) = \sum_{i=1}^{n} f_i(w_i | x_i^*) \text{ such that}$ $\nabla F(w | x^*) = \lambda \tilde{u}(w | x^*) \text{ for all } w \neq x^*$

 $\lambda \neq 0$, could depend on w, x^*

Thus, $\nabla F(w | x^*) = \lambda(w | x^*) \tilde{a}(w | x^*)$

for all $w \neq x^*$, $\lambda(w \mid x^*) \neq 0$ and continuous at w

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Regularity + Locality There exists a smooth function $F(w | x^{\star}) = \sum_{i=1}^{n} f_i(w_i | x_i^{\star}) \text{ such that}$ $\nabla F(w | x^{\star}) = \lambda \tilde{a}(w | x^{\star}) \text{ for all } w \neq x^{\star}$

 $\lambda \neq 0$, could depend on w, x^*

Thus, $\nabla F(w | x^*) = \lambda(w | x^*) \tilde{a}(w | x^*)$

This vector field is conservative!!

for all $w \neq x^*$, $\lambda(w \mid x^*) \neq 0$ and continuous at w

• The proof of Theorem 1 in Csiszár's paper reveals the following:

Thus, $\nabla F(w | x^*) = \lambda(w | x^*) \tilde{a}(w | x^*)$

This vector field is conservative!!

for all $w \neq x^*$, $\lambda(w \mid x^*) \neq 0$ and continuous at w

• While the specific form of the function may be due to locality, our feeling is that the **conservative property may be due to regularity**

 $\Pi(\cdot | x^*) \text{ regular} \longrightarrow \tilde{a}(\cdot | x^*) \text{ continuous vector field}$

Does there exist a nonzero scaling $\lambda(\cdot | x^*)$ $\lambda(w | x^*) \neq 0$ for all $w \neq x^*$, $\lambda(\cdot | x^*)$ continuous except at x^* such that $\lambda(w | x^*) \tilde{a}(w | x^*) = \nabla F(w | x^*)$ for some smooth *F*

• While the specific form of the function may be due to locality, our feeling is that the **conservative property may be due to regularity**

 $\Pi(\cdot | x^*) \text{ regular} \longrightarrow \tilde{a}(\cdot | x^*) \text{ continuous vector field}$

Does there exist a nonzero scaling $\lambda(\cdot | x^*)$ $\lambda(w | x^*) \neq 0 \text{ for all } w \neq x^*,$ $\lambda(\cdot | x^*) \text{ continuous except at } x^* \text{ such that}$ $\lambda(w | x^*) \tilde{a}(w | x^*) = \nabla F(w | x^*) \text{ for some smooth } F$
Conservative vector fields and regularity axiom

• While the specific form of the function may be due to locality, our feeling is that the **conservative property may be due to regularity**

Conservative vector fields and regularity axiom

• While the specific form of the function may be due to locality, our feeling is that the **conservative property may be due to regularity**

Conservative vector fields and regularity axiom

• While the specific form of the function may be due to locality, our feeling is that the **conservative property may be due to regularity**

An open question on conservative vector fields

An open question on conservative vector fields

Given a continuous vector field, does there exist a continuous scaling function such that the scaled vector field is conservative?

An open question on conservative vector fields

Given a continuous vector field, does there exist a continuous scaling function such that the scaled vector field is conservative?

 $a: \mathbb{R}^n \to \mathbb{R}^n \text{ continuous}$ $\lambda: \mathbb{R}^n \to \mathbb{R} \text{ continuous}$ $\lambda \cdot a = \nabla F?$

• Suppose we are in 3-dim, and we know

 $a: \mathbb{R}^3 \to \mathbb{R}^3$ is continuously differentiable

• Suppose we are in 3-dim, and we know

 $a: \mathbb{R}^3 \to \mathbb{R}^3$ is continuously differentiable

Is there a differentiable scaling function λ such that $\lambda \cdot a = \nabla F$?

• Suppose we are in 3-dim, and we know

 $a: \mathbb{R}^3 \to \mathbb{R}^3$ is continuously differentiable

Is there a differentiable scaling function λ such that $\lambda \cdot a = \nabla F$?

 $\checkmark \rightarrow \qquad \nabla \times (\lambda a) = 0$

• Suppose we are in 3-dim, and we know

 $a: \mathbb{R}^3 \to \mathbb{R}^3$ is continuously differentiable

Is there a differentiable scaling function λ such that $\lambda \cdot a = \nabla F$?

 $\nabla \times (\lambda a) = 0$

$$\begin{aligned} a_1(w)\frac{\partial\lambda(w)}{\partial w_2} - a_2(w)\frac{\partial\lambda(w)}{\partial w_1} &= \lambda(w)\left(\frac{\partial a_2(w)}{\partial w_1} - \frac{\partial a_1(w)}{\partial w_2}\right), \\ a_2(w)\frac{\partial\lambda(w)}{\partial w_3} - a_3(w)\frac{\partial\lambda(w)}{\partial w_2} &= \lambda(w)\left(\frac{\partial a_3(w)}{\partial w_2} - \frac{\partial a_2(w)}{\partial w_3}\right), \\ a_3(w)\frac{\partial\lambda(w)}{\partial w_1} - a_1(w)\frac{\partial\lambda(w)}{\partial w_3} &= \lambda(w)\left(\frac{\partial a_1(w)}{\partial w_3} - \frac{\partial a_3(w)}{\partial w_1}\right), \end{aligned}$$

Summary

- Axiomatic characterisation of projection rules
- Regularity: a fundamental axiom
- Regularity has connections with conservative vector fields
- Given a continuous vector field that is not necessarily conservative, is there a continuous scaling that can make the product vector field conservative? Open!

• Consider two sets L and \tilde{L} of the form $L = \{w \in \mathbb{R}^n : w_J \in L_0, w_{J^c} \in L'\}$ $\tilde{L} = \{w \in \mathbb{R}^n : w_J \in L_0, w_{J^c} \in L''\}$ where $J \subset \{1, 2, ..., n\}$ is arbitrary

• Consider two sets L and \tilde{L} of the form $L = \{w \in \mathbb{R}^n : w_J \in L_0, w_{J^c} \in L'\}$ $\tilde{L} = \{w \in \mathbb{R}^n : w_J \in L_0, w_{J^c} \in L''\}$ where $J \subset \{1, 2, ..., n\}$ is arbitrary

• Consider two sets L and \tilde{L} of the form $L = \{w \in \mathbb{R}^n : w_J \in L_0, w_{J^c} \in L'\}$ $\tilde{L} = \{w \in \mathbb{R}^n : w_J \in L_0, w_{J^c} \in L''\}$ where $J \subset \{1, 2, ..., n\}$ is arbitrary

• Consider two sets L and \tilde{L} of the form $L = \{w \in \mathbb{R}^{n} : w_{J} \in L_{0}, w_{J^{c}} \in L'\}$ $\tilde{L} = \{w \in \mathbb{R}^{n} : w_{J} \in L_{0}, w_{J^{c}} \in L''\}$ where $J \subset \{1, 2, ..., n\}$ is arbitrary Then, $(\Pi(L \mid x^{\star}))_{I} = (\Pi(\tilde{L} \mid x^{\star}))_{I}$

