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e Consider a problem of 1image reconstruction

* Image 1s represented as a function

e Domain 1s partitioned into a finite number of
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o Z X;fi» J; = indicator of the jth pixel

=



- e
e M'n\")»d:‘www
S IR RS
'~

B e T 4 - Gas R > 2 R N 2 D
-a:-:.»«‘hw_y-\ /W%’ww-w-v“-fgns e uuva.- > e Xairey s 2 = NN e -y.m~<»3\4-4 S d

A

f > -
MWJm,ﬂmﬁcvwmwﬁmﬁw_ T e ——— w«-t,d"‘-ﬂq-&"“

2o ot

= -am—-..,:_\.- D e e

e, e P e it
rm—»;w«--f.w RN Syl

o A T ——
W\mew& R#’JA‘-W A A *""WJ‘W u.\»-:w.-r-

: A
R S Sy oo .e--«o'rm
X e.»*ﬂigefwmm e




A e o e
Nt DY S,

I et A e S
T S P g WYL

SR

W

i o s
2 *»wwwamwwm’w“wwwﬁﬁw

v,

-»'\sﬁ"w-nd&c \—v—-«-- e

o Gt

#Ww ‘-v»,,, s




l
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e Measurements Rifj =a,; RIi=b- i=F2. Kk

Ik
X1
dip Ayp - dyy X b,
ayy Gy -+ Gy, =15
Ay Gry Ay, x b,

s s = =

* Goal: Recover x = ()Cl, s Xn)T from the measurements
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* Typically, one first defines a cost function

* Subsequently, X is recovered as one of the minimisers of the cost function

X = arg min F (w)
weL
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* |.east squares:

n
X =argmin||w| B argminZwiz
weL wEL =

 Maximum entropy:

n
X = arg mn Z w; log w;
weLNRL =
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Function-minimisation approach:
examples

* Mean squared error (MSE) minimisation with respect to a prior guess

n
x =argmin||w —x*| |2 = arg min 2 (w; —xl.*)2
wel weL P

* I-divergence minimisation with respect to a nonnegative prior guess

W + xl.*

w;
X

n
= arg nn 2 w; log
=1
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Function-minimisation approach

* The aforementioned methods are examples of “projection
rules” that involve updating some prior guess

Rn, 9_norm O R, negative Shannon Entropy l 1 }
(1/e)

Thus,

function-

minimisation

defines a
projection
rule
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Projection rules: formal definition

e [et

= {L ={weR": Aw = b}: Ais a k X n matrix having rank k, b € Rk}
where k = 0,1,2,...,n
* A projection rule 1s a mapping
B st 5 %
(L,x*) = II(L|x*) € L

e el sl = ¢
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Projection Rules and Function

Minimisation

F R %

R —

R

(x*, w) = F(w|x™)

[1: £ XR"— R" projection rule

Dehnition: Il is generated by F, if

[I(L|x*) = arg min F(w | x™)

weL
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* Answers to this question were provided by Csiszdr in 1991

The Annals of Statistics
1991, Vol. 19, No. 4, 2032-2066

WHY LEAST SQUARES AND MAXIMUM ENTROPY?
AN AXTIOMATIC APPROACH TO INFERENCE FOR
LINEAR INVERSE PROBLEMS'

By IMRE CsISzAR

Mathematical Institute of the Hungarian Academy of Sciences

An attempt is made to determine the logically consistent rules for
selecting a vector from any feasible set defined by linear constraints, when
either all n-vectors or those with positive components or the probability
vectors are permissible. Some basic postulates are satisfied if and only if the
selection rule is to minimize a certain function which, if a ““prior guess” is
available, is a measure of distance from the prior guess. Two further
natural postulates restrict the permissible distances to the author’s f-
divergences and Bregman’s divergences, respectively. As corollaries, ax-
iomatic characterizations of the methods of least squares and minimum
discrimination information are arrived at. Alternatively, the latter are also
characterized by a postulate of composition consistency. As a special case, a
derivation of the method of maximum entropy from a small set of natural
axioms is obtained.
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Axiomatic approach

e Csiszar demonstrated that if projection rules satisfy some naturaﬂy

appealing axioms, they must be generated by “nice” functions

Axioms satisfied by a projection rule Nature of the function generating the projection rule

n
Regularity + Locality Fow{aXy= Z fi(w; | xl-*), f; continuously differentiable and strictly convex
i=1

Regularity+ Locality + Subspace
Transitivity

F(w|x*) = Bregman's divergence

Regularity+ Locality + Subspace *\ =
Transitivity + Statistical I (W | X ) o I-dlvergence

Regularity + Locality + Subspace e : :
Transitivity + Location Invariance + Scale E (W | X ) = EUClldean dlStance

Invariance
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The axiom of regularity

IT1: &£ X R" - R" projection rule

/%={{we[R”:aTw=b},a€|R”,a7éO,belR}

IT satisfies regularity if, for all x* € R”,

(Consistency)
LEcE IE| e cfF = W =Rl

(Distinctness)
LEc - L+ o ¢ 6f — v = IEe)

(Continuity)

I1( - | x™) restricted to any fixed dimension is continuous

Regularity




The axiom of consistency

e IR = e —— I+ =—F T



The axiom of consistency

B el —— - T

Additional observations do not give a reason to change the
original selection



The axiom of distinctness

Lile . L+L x*¢ILnl — THL|xN) #£THL|x
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Axiom of continuity

Let
X = {(A,b) e R®" x R¥ : A has rank k}

Define an equivalence relation on X as follows:
(A,b) ~ (A,b) & {w: Aw =b} = {w: Aw = b)
Equivalence classes

Y = {[(A, b)] € R*" x RX: A has rank k}

Topology on Y 1s the quotient topology derived out of
the Euchdean topology on X
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The axiom of continuity

collection of all (n — 2)-dimensional sets

L

M = collection of all (n — 1)-dimensional sets



The axiom of continuity

collection of all (n — 2)-dimensional sets

M = collection of all (n — 1)-dimensional sets

II( - | x™) restricted to any fixed dimension is continuous



Axiom of subspace transitivity

el = HE | x5 =L B )
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Why are these axioms of interest
to us’?

* Kumar and Sundaresan ('15) discovered a tamily of

projection rules that

Regularity v
Subspace transitivity v
Locality X

e These projection rules are generated by a divergence
known as Sundaresan’s divergence (relative a-entropy)

Kumar, M. Ashok, and Rajesh Sundaresan. "Minimization Problems Based on Relative $\alpha $-Entropy I: Forward Projection." IEEE Transactions on Information Theory 61.9
(2015): 5063-5080.
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Sundaresan’s divergence

e A parametric generalisation of KL divergence (or I-

n a—1
a Z W X;
l—a (.=1IIWI| [ 1x]] )

l/a
where||x||=<2xf‘> —a >0 o<1
i=1

divergence)

WX =



Sundaresan’s divergence

e A parametric generalisation of KL divergence (or I-

n a—1
a Z W X;
l—a ( * [{wl] \ x| )

=

l/a
where ||x]|]| = <in“> —a >0 o<1

g

divergence)

WX =

e This 1s not a Bregman'’s divergence. Hence, the

corresponding projection rule 1s not local
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Branch of a tree, or the trunk?

* Are the projection rules generated by Sundaresan’s
divergence the only rules which are regular,
subspace transitive and nonlocal?

* Towards obtaining answers to the above question,
we study the axiom of ‘regularity’ in more detail

Remainder of the talk 1s about regularity, and more....



What we want to know about

regularity

» Csiszar's results provide a necessary and sufficient
axiomatic characterisation of many projection rules

Regularity = Locality <= Projection rule generated by F(w|x*) = 2 fi(Wilxi*)
=]
Regularity + Locality
+ Subspace <= Projection rule generated by Bregman's divergence
Transitivity



What we want to know about

regularity

» Csiszar's results provide a necessary and sufficient
axiomatic characterisation of many projection rules

Regularity + Locality <= Projection rule generated by F (W= Z filw; | x)

=1

Regularity + Locality
+ Subspace <= Projection rule generated by Bregman's divergence
Transitivity

Regularity s e Projection rule generated by 7?7
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Some implications of regularity

e et
L) = {LESZ:H(le*)=x*}, r c B

e Recall

/%={{wEIR”:aTw=b},a€|R”,a;éO,bER}

* Csiszdr showed in his paper that
HE - 20 = R LY

is a homeomorphism



(- |x*): M\L'(x*) - R\ {x*} is a homeomor phism
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there exists a unique set L of dimension (n — 1)

such that TI(L | x*) = w. Denote this L as L(w | x¥)



Implications of regularity

This means that for every w # x*,

there exists a unique set L of dimension (n — 1)

such that TI(L | x*) = w. Denote this L as L(w | x*)

A a

) 4 ~
a w_xﬂ-;a(wlx*) W o= o - =
il L) =ser:0u = 4]

={uer’: a'y =ew)

:{ﬂeﬂZﬂ: _E‘_T<9-"~’)=D}

lall

£ (W *) = { uelR" : a/(wlx*)Té_w) -_-o}
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Regularity and vector helds

* Mere regularity helps us extract a vector field

at - |x*:R* - R”
a( - | x®) continuous
gty 1)

aw|x*) # 0 for all w #£ x*
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Csiszar's results and vector fields

* The proof of Theorem 1 in Csiszar's paper reveals the following:

There exists a smooth function

Regularity
+

Locality

isuch that

This particular @(W | x*) for all w # x*
form is due to *

locality axiom
A # 0, could depend on w, x*

Thus, VF(W Ix*) ZC/I(W I-x*)d(W | X*)) This vector field is

conservative!!

for all w # x™, A(w|x™) # 0 and continuous at w
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'
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Conservative vector fields and
regularity axiom

e While the specific form of the function may be due to locality, our
feeling 1s that the conservative property may be due to regularity

II( - |x™) regular | s 1 (- |x*) continuous vector field

>

Regularity

!

Projection rule generated

'

Does there exist a nonzero scaling A( - | x™)

A(w
A(
A(w

X iorally = r

x™) continuous except at x* such that

x®)a(w | x*) = VE(w|x™) for some smogg{F]




Conservative vector fields and
regularity axiom

e While the specific form of the function may be due to locality, our
feeling 1s that the conservative property may be due to regularity

II( - |x™) regular | s 1 (- |x*) continuous vector field

= l Open question

Regularity

!

Does there exist a nonzero scaling A( - | x™)
Aw]|x™) # 0 for all w # x™,

A( + | x*) continuous except at x* such that

Aw|x®aw|x*) = VF(w|x™) for some smooth @

Projection rule generated
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An open question on conservative
vector fields

Given a continuous vector field, does there
exist a continuous scaling function such that
the scaled vector field 1s conservative?

a: R" - R" continuous

A : R" -5 R continuous

v
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Under more assumption

* Suppose we are in 3-dim, and we know

a: R’ - R’is continuously differentiable

Is there a differentiable scaling
function A such that A - a = VF?

— aj(w) = OA(W) = < da,(w) = da,(w) ,

W»H awl awl aWZ

— 0;1(w) = 0Mw) _ /1(W)< 0as(w)  da(w) ’

W3 0W2 0W2 aW3

OA(W) oA(W) — < da;(w) = da;(w) >

— a;(w)

a\W
3( ) awl 0W3

0W3 awl




Summary

Axiomatic characterisation of projection rules
Regularity: a fundamental axiom

Regularity has connections with conservative vector

fields

Given a continuous vector field that 1s not necessarily
conservative, 1s there a continuous scaling that can
make the product vector field conservative? Open!



Thank you
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» Consider two sets L and L of the form
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The axiom of locality

» Consider two sets L and L of the form
= el sl
L={weR":w,€Ly,w, €L"}

where J C {1,2,...,n} 1s arbitrary
Then, (II(L|x*)); = (II(L|x*)),

L//

D
L/ V‘.’Z'
D

Li=peR iy +ntyu=8 Li={yeR iy +yn+y,=1)

5~0:97:8



