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Problem setup

Multiple measurement vector (MMV) model:
Observations {yi}Li=1 are generated from the following linear
model:

yi = Φxi + wi, i ∈ [L],

where Φ ∈ Rm×N (m < N), xi ∈ RN unknown, random and noise
wi

iid∼ N (0, σ2I)

xi are k-sparse with common support
supp(xi) = T for some T ⊂ [N ] with |T | ≤ k, ∀i ∈ [L]

Goal: Recover the common support T given {yi}Li=1, Φ

Applications in hyperspectral imaging, sensor networks
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Problem setup

Generative model for xi
Assumption: Non-zero entries uncorrelated

p(xi; γ) =
N∏
j=1

1√
2πγj

exp
(
−

x2
ij

2γj

)

i.e., xi
iid∼ N (0,Γ) where Γ = diag(γ)

Note:
supp(xi) = supp(γ) = T (since γj = 0⇔ xij = 0 a.s.)

yi ∼ N (0,ΦΓΦ> + σ2I︸ ︷︷ ︸
Σ∈Rm×m

)

Equivalent problem: Recover supp(γ) given {yi}Li=1, Φ
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xi
iid∼ N (0,Γ)

x1 x2 xL Γ

· · ·

yi
iid∼ N (0,Σ)

y1 y2 yL Σ = ΦΓΦ> + σ2I

· · ·
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Support recovery as covariance estimation

Use the sample covariance matrix Σ̂ = 1
L

∑L
i=1 yiy>i to estimate Γ

Express Σ̂ as
Σ̂ = Σ + E,

where E: Noise/Error matrix
For the noiseless case (σ2 = 0)1

Σ̂ = ΦΓΦ> + Eyvectorize
r = (Φ� Φ)︸ ︷︷ ︸

A∈Rm2×N

γ + e

where � denotes the Khatri-Rao product

Use Gaussian approximation for e

Find the maximum likelihood estimate of γ
1details for noisy case can be found in the paper 6 / 21



Noise statistics

Mean

E(E) = 1
L

L∑
i=1

Eyiy>i − Σ = 0

Covariance

cov(vec(E)) = 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 ) cov(vec(zz>))︸ ︷︷ ︸

B∈RN2×N2

(Γ
1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>,

where z ∼ N (0, IN )
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Example: N=3

Let z = [z1, z2, z3]> with zi
iid∼ N (0, 1). Then,

zz> =

 z2
1 z1z2 z1z3

z1z2 z2
2 z2z3

z1z3 z2z3 z2
3

 vectorize−−−−−→



z2
1

z1z2
z1z3
z1z2
z2

2
z2z3
z1z3
z2z3
z2

3
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Example: N=3

The covariance matrix B of vec(zz>) will be of size 9× 9 with
Bi,j ∈ {0, 1, 2}, 1 ≤ i, j ≤ 3.

For e.g.,

B1,1 = cov(z2
1 , z

2
1) = Ez4

1 − (Ez2
1)2 = 3− 1 = 2

B1,2 = cov(z2
1 , z1z2) = Ez3

1z2 − Ez2
1Ez1z2 = 0

B2,4 = cov(z1z2, z1z2) = Ez2
1z

2
2 − Ez1z2Ez1z2 = 1
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Example: N=3

B = cov(vec(zz>)) =



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2
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We now have the following model

r = Aγ + e, (1)

where

A = (Φ� Φ),
E[e] = 0,

cov(e) = W = 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 )B(Γ

1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>.

Remarks
The noise term vanishes as L→∞

The noise covariance depends on the parameter to be estimated

r, Φ� Φ and e have redundant entries – restrict to the m(m+1)
2

distinct entries
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New model, Gaussian approximation

Pre-multiply (1) by P ∈ R
m(m+1)

2 ×m2 , formed using a subset of the
rows of Im2 , that picks the relevant entries. Thus,

rP = APγ + eP ,

where rP := Pr, AP := PA, and eP := Pe.

Further, we approximate the distribution of nP by N (0,WP ),
where WP = PWP>

Thus, rP ∼ N (APγ,WP )
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ML estimation of γ

Denote the ML estimate of γ by γML

γML = arg max
γ≥0

p(rP ; γ), (2)

where

p(rP ; γ) = 1

(2π)
m(m+1)

4 |WP |
1
2

exp
(
−(rP −APγ)>W−1

P (rP −Apγ)
2

)
.

Simplifying (2), we get

γML = arg min
γ≥0

log |WP |+ (rP −APγ)>W−1
P (rP −Apγ). (3)

For a fixed WP , (3) can be solved using Non Negative Quadratic
Programming (NNQP)
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NNQP-based algorithm

Algorithm 1 MRNNQP
1: Input: Measurement matrix Φ, vectorized sample covariance r, ini-

tial value Γ(0) = diag(γ(0)), i = 1
2: While (not converged) do
3: W

(i)
P ←

1
LP (Φ⊗ Φ)B(Γ(i−1) ⊗ Γ(i−1))(Φ⊗ Φ)>P>

4: b(i) ← −A>PW
(i)−1

P rP
5: Q(i) ← A>PW

(i)−1

P AP
6: γ(i) ← NNQP(Q(i),b(i))
7: Γ(i) ← diag(γ(i))
8: i← i+ 1
9: end While

10: Output: support of γ(i)
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The MSBL algorithm

X = [x1, · · · ,xL], Y = [y1, · · · ,yL]
Posterior moments
R = cov(xi|yi; γ); M = [µ1, · · · ,µL]

Algorithm 2 MSBL2

1: Input: Measurement matrix Φ, observations Y , initial value Γ(0) =
diag(γ(0)), i = 1

2: While (not converged) do
3: R(i) ← Γi−1 − Γ(i−1)Φ>(Σ(i−1))−1ΦΓ(i−1)

4: M (i) ← Γ(i−1)Φ>(Σ(i−1))−1Y

5: γ
(i)
j ← 1

L‖µ
(i)
j ‖22 +R

(i)
jj

6: i← i+ 1
7: end While
8: Output: x̂j = µ

(i)
j

2David P. Wipf and Bhaskar D. Rao. “An Empirical Bayesian Strategy for
Solving the Simultaneous Sparse Approximation Problem”. In: TSP 55.7-2 (2007).15 / 21



Support recovery performance

N = 40,m = 20, k = 25; exact recovery over 200 trials
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Figure 1 : Support recovery performance of the NNQP-based approach16 / 21



Support recovery performance

N = 70,m = 20, L = 50, 1000; exact recovery over 200 trials
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Figure 2 : Support recovery performance of the NNQP-based approach17 / 21



Phase transition
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Figure 3 : Phase transition. N = 20, L = 200
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Observations

Exact support recovery possible for k < m regime with “small” L
For k ≥ m, recovery possible with “large” L

Dependence of computational complexity on parameters
L: in computing Σ̂ (offline)
m,N : scales as m4N2

Comparison with Co-LASSO, MSBL
Improvement in performance by accounting for error due to Σ̂
Only a one time computation of Σ̂ is required whereas MSBL uses
the entire set of measurements {yi}L

i=1 in every iteration of EM
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Remarks on non negative sparse recovery

Inner loop in the ML estimation problem

arg min
γ≥0

(rP −APγ)>W−1
P (rP −Apγ)

Note: no sparsity-inducing regularizer

Implicit regularization property of NNQP has been noted before3,4

For successful recovery, require conditions on sign pattern of
vectors in null space of A

3Martin Slawski and Matthias Hein. “Sparse Recovery by Thresholded
Nonnegative Least Squares”. In: Advances in Neural Information Processing
Systems. 2011.

4Simon Foucart and David Koslicki. “Sparse Recovery by means of Nonnegative
Least Squares”. In: IEEE Signal Proc. Letters 21 (2014), pp. 498–502.
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Concluding remarks

Sparse support recovery can be done using maximum
likelihood-based covariance estimation

Support recovery possible even when k > m

No explicit sparsity promoting regularizer needed

Recovery guarantees depend on properties of null space of Φ� Φ
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Thank you



Non-negative quadratic program5

minimize
γ≥0

(rP −APγ)>W−1
P (rP −Apγ)

Solution (entry-wise update equation for γ):

γ
(i+1)
j = γ

(i)
j

−bj +
√
b2
j + 4(Q+γ(i))j(Q−γ(i))j

2(Q+γ(i))j

 ,
where b = −A>PW

−1
P rP , Q = A>PW

−1
P AP ,

Q+
ij =

{
Qij , if Qij > 0,
0, otherwise, Q−ij =

{
−Qij , if Qij < 0,
0, otherwise.

5Fei Sha, Lawrence K. Saul, and Daniel D. Lee. “Multiplicative Updates for
Nonnegative Quadratic Programming in Support Vector Machines”. In: Advances
in Neural Information Processing Systems. 2002, pp. 1041–1048.



Noise statistics

Covariance

cov(E) = cov
(

L∑
i=1

(
yiy>i
L
− Σ
L

))

= Lcov
(

y1y>1
L
− Σ
L

)
(sum of L indep. random matrices)

= 1
L

cov(y1y>1 − Σ)

= 1
L

cov(yy>)

Represent y as
y = Cz,

where z ∼ N (0, I) and Σ = CC>



Noise statistics

cov(E) = 1
L

cov(yy>)

For σ2 = 0, Σ = ΦΓΦ>; can take C = ΦΓ
1
2

Using properties of Kronecker products:

cov(vec(E)) = 1
L

cov(vec(Czz>C>))

= 1
L

cov((C ⊗ C)vec(zz>))

= 1
L

(C ⊗ C)cov(vec(zz>))(C ⊗ C)>

= 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 ) cov(vec(zz>))︸ ︷︷ ︸

B∈RN2×N2

(Γ
1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>

Last step: use (A⊗B)(C ⊗D) = AB ⊗ CD
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