Sparse Support Recovery via Covariance Estimation

Lekshmi Ramesh

(Joint work with Prof. Chandra R. Murthy)

Indian Institute of Science Bangalore

July 13, 2018

Outline

Setup

- Multiple measurement vector setting
- Support recovery problem

Support recovery as covariance estimation

- Covariance matching, Gaussian approximation
- Maximum likelihood-based estimation
- Solution using non negative quadratic programming
- Simulation results
- Remarks on non negative sparse recovery

Conclusion

Problem setup

• Multiple measurement vector (MMV) model: Observations $\{\mathbf{y}_i\}_{i=1}^L$ are generated from the following linear model:

$$\mathbf{y}_i = \Phi \mathbf{x}_i + \mathbf{w}_i, \quad i \in [L],$$

where $\Phi \in \mathbb{R}^{m \times N}$ (m < N), $\mathbf{x}_i \in \mathbb{R}^N$ unknown, random and noise $\mathbf{w}_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2 I)$

- \mathbf{x}_i are k-sparse with common support supp $(\mathbf{x}_i) = T$ for some $T \subset [N]$ with $|T| \leq k, \forall i \in [L]$
- Goal: Recover the common support T given $\{\mathbf{y}_i\}_{i=1}^L$, Φ
- Applications in hyperspectral imaging, sensor networks

Problem setup

• Generative model for \mathbf{x}_i Assumption: Non-zero entries uncorrelated

$$p(\mathbf{x}_i; \boldsymbol{\gamma}) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi\gamma_j}} \exp\left(-\frac{\mathbf{x}_{ij}^2}{2\gamma_j}\right)$$

i.e.,
$$\mathbf{x}_i \stackrel{iid}{\sim} \mathcal{N}(0, \Gamma)$$
 where $\Gamma = \operatorname{diag}(\boldsymbol{\gamma})$

Note:

•
$$\operatorname{supp}(\mathbf{x}_i) = \operatorname{supp}(\boldsymbol{\gamma}) = T$$
 (since $\gamma_j = 0 \Leftrightarrow x_{ij} = 0$ a.s.)
• $\mathbf{y}_i \sim \mathcal{N}(0, \underbrace{\Phi \Gamma \Phi^\top + \sigma^2 I}_{\Sigma \in \mathbb{R}^{m \times m}})$

• Equivalent problem: Recover supp (γ) given $\{\mathbf{y}_i\}_{i=1}^L, \Phi$

 $\bullet \mathbf{x}_i \overset{iid}{\sim} \mathcal{N}(0, \Gamma)$

• $\mathbf{y}_i \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma)$

$$\Sigma = \Phi \Gamma \Phi^\top + \sigma^2 I$$

Support recovery as covariance estimation

- Use the sample covariance matrix $\hat{\Sigma} = \frac{1}{L} \sum_{i=1}^{L} \mathbf{y}_i \mathbf{y}_i^{\top}$ to estimate Γ
- Express $\hat{\Sigma}$ as

$$\hat{\Sigma} = \Sigma + E,$$

where E: Noise/Error matrix For the noiseless case $(\sigma^2 = 0)^1$ $\hat{\Sigma} = \Phi \Gamma \Phi^\top + E$ $\bigvee vectorize$ $\mathbf{r} = \underbrace{(\Phi \odot \Phi)}_{A \subset \mathbb{D} m^2 \times N} \gamma + \mathbf{e}$

where \odot denotes the Khatri-Rao product

 \blacksquare Use Gaussian approximation for ${\bf e}$

Find the maximum likelihood estimate of γ ¹details for noisy case can be found in the paper

Mean

$$\mathbb{E}(E) = \frac{1}{L} \sum_{i=1}^{L} \mathbb{E} \mathbf{y}_i \mathbf{y}_i^{\top} - \Sigma = 0$$

Covariance

$$\operatorname{cov}(\operatorname{vec}(E)) = \frac{1}{L} (\Phi \otimes \Phi) (\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}) \underbrace{\operatorname{cov}(\operatorname{vec}(\mathbf{z}\mathbf{z}^{\top}))}_{B \in \mathbb{R}^{N^{2} \times N^{2}}} (\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}) (\Phi \otimes \Phi)^{\top}$$

where $\mathbf{z} \sim \mathcal{N}(0, I_N)$

• Let $\mathbf{z} = [z_1, z_2, z_3]^{\top}$ with $z_i \stackrel{iid}{\sim} \mathcal{N}(0, 1)$. Then,

The covariance matrix B of $\operatorname{vec}(\mathbf{z}\mathbf{z}^{\top})$ will be of size 9×9 with $B_{i,j} \in \{0,1,2\}, \ 1 \leq i,j \leq 3$.

■ For e.g.,

$$B_{1,1} = \operatorname{cov}(z_1^2, z_1^2) = \mathbb{E}z_1^4 - (\mathbb{E}z_1^2)^2 = 3 - 1 = 2$$

$$B_{1,2} = \operatorname{cov}(z_1^2, z_1 z_2) = \mathbb{E}z_1^3 z_2 - \mathbb{E}z_1^2 \mathbb{E}z_1 z_2 = 0$$

$$B_{2,4} = \operatorname{cov}(z_1 z_2, z_1 z_2) = \mathbb{E}z_1^2 z_2^2 - \mathbb{E}z_1 z_2 \mathbb{E}z_1 z_2 = 1$$

• We now have the following model

$$\mathbf{r} = A\boldsymbol{\gamma} + \mathbf{e},\tag{1}$$

where

$$A = (\Phi \odot \Phi),$$

$$\mathbb{E}[\mathbf{e}] = 0,$$

$$\operatorname{cov}(\mathbf{e}) = W = \frac{1}{L} (\Phi \otimes \Phi) (\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}) B (\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}) (\Phi \otimes \Phi)^{\top}.$$

Remarks

- \blacksquare The noise term vanishes as $L \to \infty$
- The noise covariance depends on the parameter to be estimated
- **r**, $\Phi \odot \Phi$ and **e** have redundant entries restrict to the $\frac{m(m+1)}{2}$ distinct entries

New model, Gaussian approximation

Pre-multiply (1) by $P \in \mathbb{R}^{\frac{m(m+1)}{2} \times m^2}$, formed using a subset of the rows of I_{m^2} , that picks the relevant entries. Thus,

$$\mathbf{r}_P = A_P \boldsymbol{\gamma} + \mathbf{e}_P,$$

where $\mathbf{r}_P := P\mathbf{r}$, $A_P := PA$, and $\mathbf{e}_P := P\mathbf{e}$.

• Further, we approximate the distribution of n_P by $\mathcal{N}(0, W_P)$, where $W_P = PWP^{\top}$

• Thus, $\mathbf{r}_P \sim \mathcal{N}(A_P \boldsymbol{\gamma}, W_P)$

ML estimation of $\boldsymbol{\gamma}$

Denote the ML estimate of γ by γ_{ML}

$$\boldsymbol{\gamma}_{\mathrm{ML}} = \underset{\boldsymbol{\gamma} \ge 0}{\operatorname{arg max}} p(\mathbf{r}_{P}; \boldsymbol{\gamma}), \tag{2}$$

where

$$p(\mathbf{r}_P; \boldsymbol{\gamma}) = \frac{1}{(2\pi)^{\frac{m(m+1)}{4}} |W_P|^{\frac{1}{2}}} \exp\left(\frac{-(\mathbf{r}_P - A_P \boldsymbol{\gamma})^\top W_P^{-1}(\mathbf{r}_P - A_p \boldsymbol{\gamma})}{2}\right)$$

■ Simplifying (2), we get

$$\boldsymbol{\gamma}_{\mathrm{ML}} = \underset{\boldsymbol{\gamma} \ge 0}{\operatorname{arg min}} \quad \log |W_P| + (\mathbf{r}_P - A_P \boldsymbol{\gamma})^\top W_P^{-1} (\mathbf{r}_P - A_p \boldsymbol{\gamma}). \tag{3}$$

• For a fixed W_P , (3) can be solved using Non Negative Quadratic Programming (NNQP)

Algorithm 1 MRNNQP

- 1: Input: Measurement matrix Φ , vectorized sample covariance **r**, initial value $\Gamma^{(0)} = \text{diag}(\boldsymbol{\gamma}^{(0)}), i = 1$
- 2: While (not converged) do

3:
$$W_P^{(i)} \leftarrow \frac{1}{L} P(\Phi \otimes \Phi) B(\Gamma^{(i-1)} \otimes \Gamma^{(i-1)}) (\Phi \otimes \Phi)^\top P^\top$$

4:
$$\mathbf{b}^{(i)} \leftarrow -A_P^\top W_P^{(i)^{-1}} \mathbf{r}_P$$

5:
$$Q^{(i)} \leftarrow A_P^\top W_P^{(i)^{-1}} A_P$$

6: $\gamma^{(i)} \leftarrow \text{NNOP}(Q^{(i)}, \mathbf{b}^{(i)})$

6:
$$\gamma^{(i)} \leftarrow \text{NNQP}(Q^{(i)}, \mathbf{b})$$

7: $\Gamma^{(i)} \leftarrow \text{diag}(\boldsymbol{\gamma}^{(i)})$

8:
$$i \leftarrow i+1$$

- 9: end While
- 10: Output: support of $oldsymbol{\gamma}^{(i)}$

The MSBL algorithm

•
$$X = [\mathbf{x}_1, \cdots, \mathbf{x}_L], Y = [\mathbf{y}_1, \cdots, \mathbf{y}_L]$$

• Posterior moments

$$R = \operatorname{cov}(\mathbf{x}_i | \mathbf{y}_i; \boldsymbol{\gamma}); \quad M = [\boldsymbol{\mu}_1, \cdots, \boldsymbol{\mu}_L]$$

Algorithm 2 MSBL²

- 1: Input: Measurement matrix Φ , observations Y, initial value $\Gamma^{(0)} = \text{diag}(\boldsymbol{\gamma}^{(0)}), i = 1$
- 2: While (not converged) do
- 3: $R^{(i)} \leftarrow \Gamma^{i-1} \Gamma^{(i-1)} \Phi^{\top} (\Sigma^{(i-1)})^{-1} \Phi \Gamma^{(i-1)}$
- 4: $M^{(i)} \leftarrow \Gamma^{(i-1)} \Phi^{\top} (\Sigma^{(i-1)})^{-1} Y$
- 5: $\gamma_j^{(i)} \leftarrow \frac{1}{L} \| \boldsymbol{\mu}_j^{(i)} \|_2^2 + R_{jj}^{(i)}$

$$6: \quad i \leftarrow i+1$$

- 7: end While
- 8: Output: $\hat{\mathbf{x}}_j = \boldsymbol{\mu}_j^{(i)}$

²David P. Wipf and Bhaskar D. Rao. "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem". In: TSP 55.7-2 (2007)21

Support recovery performance

N = 40, m = 20, k = 25; exact recovery over 200 trials

Figure 1 : Support recovery performance of the NNQP-based approach $_{6/21}$

Support recovery performance

N = 70, m = 20, L = 50, 1000; exact recovery over 200 trials

Figure 2 : Support recovery performance of the NNQP-based approach $_{7/21}$

Phase transition

Figure 3 : Phase transition. N = 20, L = 200

- Exact support recovery possible for k < m regime with "small" L For $k \ge m$, recovery possible with "large" L
- Dependence of computational complexity on parameters
 - L: in computing $\hat{\Sigma}$ (offline)
 - m, N: scales as $m^4 N^2$
- Comparison with Co-LASSO, MSBL
 - Improvement in performance by accounting for error due to $\hat{\Sigma}$
 - Only a one time computation of $\hat{\Sigma}$ is required whereas MSBL uses the entire set of measurements $\{\mathbf{y}_i\}_{i=1}^{L}$ in every iteration of EM

Remarks on non negative sparse recovery

Inner loop in the ML estimation problem

$$\underset{\gamma \geq 0}{\operatorname{arg\,min}} \ (\mathbf{r}_P - A_P \boldsymbol{\gamma})^\top W_P^{-1} (\mathbf{r}_P - A_p \boldsymbol{\gamma})$$

Note: no sparsity-inducing regularizer

■ Implicit regularization property of NNQP has been noted before^{3,4}

For successful recovery, require conditions on sign pattern of vectors in null space of A

³Martin Slawski and Matthias Hein. "Sparse Recovery by Thresholded Nonnegative Least Squares". In: *Advances in Neural Information Processing Systems*. 2011.

⁴Simon Foucart and David Koslicki. "Sparse Recovery by means of Nonnegative Least Squares". In: *IEEE Signal Proc. Letters* 21 (2014), pp. 498–502.

- Sparse support recovery can be done using maximum likelihood-based covariance estimation
- Support recovery possible even when k > m
- No explicit sparsity promoting regularizer needed
- Recovery guarantees depend on properties of null space of $\Phi \odot \Phi$

Thank you

Non-negative quadratic program⁵

$$\underset{\boldsymbol{\gamma} \geq 0}{\text{minimize}} \ (\mathbf{r}_P - A_P \boldsymbol{\gamma})^\top W_P^{-1} (\mathbf{r}_P - A_p \boldsymbol{\gamma})$$

Solution (entry-wise update equation for γ):

$$\gamma_j^{(i+1)} = \gamma_j^{(i)} \left(\frac{-b_j + \sqrt{b_j^2 + 4(Q^+ \boldsymbol{\gamma}^{(i)})_j (Q^- \boldsymbol{\gamma}^{(i)})_j}}{2(Q^+ \boldsymbol{\gamma}^{(i)})_j} \right),$$

where $\mathbf{b} = -A_P^{\top} W_P^{-1} \mathbf{r}_P$, $Q = A_P^{\top} W_P^{-1} A_P$,

$$Q_{ij}^{+} = \begin{cases} Q_{ij}, & \text{if } Q_{ij} > 0, \\ 0, & \text{otherwise}, \end{cases} \qquad \qquad Q_{ij}^{-} = \begin{cases} -Q_{ij}, & \text{if } Q_{ij} < 0, \\ 0, & \text{otherwise}. \end{cases}$$

⁵Fei Sha, Lawrence K. Saul, and Daniel D. Lee. "Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines". In: *Advances in Neural Information Processing Systems.* 2002, pp. 1041–1048.

Noise statistics

Covariance

$$\operatorname{cov}(E) = \operatorname{cov}\left(\sum_{i=1}^{L} \left(\frac{\mathbf{y}_{i}\mathbf{y}_{i}^{\top}}{L} - \frac{\Sigma}{L}\right)\right)$$
$$= L\operatorname{cov}\left(\frac{\mathbf{y}_{1}\mathbf{y}_{1}^{\top}}{L} - \frac{\Sigma}{L}\right)$$
$$= \frac{1}{L}\operatorname{cov}(\mathbf{y}_{1}\mathbf{y}_{1}^{\top} - \Sigma)$$
$$= \frac{1}{L}\operatorname{cov}(\mathbf{y}\mathbf{y}^{\top})$$

(sum of L indep. random matrices)

 \blacksquare Represent ${\bf y}$ as

$$\mathbf{y} = C\mathbf{z},$$

where $\mathbf{z} \sim \mathcal{N}(0, I)$ and $\Sigma = CC^{\top}$

Noise statistics

$$\operatorname{cov}(E) = \frac{1}{L}\operatorname{cov}(\mathbf{y}\mathbf{y}^{\top})$$

• For
$$\sigma^2 = 0$$
, $\Sigma = \Phi \Gamma \Phi^{\top}$; can take $C = \Phi \Gamma^{\frac{1}{2}}$

Using properties of Kronecker products:

$$\operatorname{cov}(\operatorname{vec}(E)) = \frac{1}{L} \operatorname{cov}(\operatorname{vec}(C\mathbf{z}\mathbf{z}^{\top}C^{\top}))$$

= $\frac{1}{L} \operatorname{cov}((C \otimes C)\operatorname{vec}(\mathbf{z}\mathbf{z}^{\top}))$
= $\frac{1}{L}(C \otimes C)\operatorname{cov}(\operatorname{vec}(\mathbf{z}\mathbf{z}^{\top}))(C \otimes C)^{\top}$
= $\frac{1}{L}(\Phi \otimes \Phi)(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}})\underbrace{\operatorname{cov}(\operatorname{vec}(\mathbf{z}\mathbf{z}^{\top}))}_{B \in \mathbb{R}^{N^{2} \times N^{2}}}(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}})(\Phi \otimes \Phi)^{\top}$

• Last step: use $(A \otimes B)(C \otimes D) = AB \otimes CD$