Sparse Support Recovery via Covariance Estimation

Lekshmi Ramesh
(Joint work with Prof. Chandra R. Murthy)

Indian Institute of Science Bangalore

July 13, 2018

Outline

- Setup
- Multiple measurement vector setting
- Support recovery problem

■ Support recovery as covariance estimation

- Covariance matching, Gaussian approximation
- Maximum likelihood-based estimation
- Solution using non negative quadratic programming
- Simulation results

■ Remarks on non negative sparse recovery

- Conclusion

Problem setup

- Multiple measurement vector (MMV) model: Observations $\left\{\mathbf{y}_{i}\right\}_{i=1}^{L}$ are generated from the following linear model:

$$
\mathbf{y}_{i}=\Phi \mathbf{x}_{i}+\mathbf{w}_{i}, \quad i \in[L]
$$

where $\Phi \in \mathbb{R}^{m \times N}(m<N), \mathbf{x}_{i} \in \mathbb{R}^{N}$ unknown, random and noise $\mathbf{w}_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2} I\right)$

- \mathbf{x}_{i} are k-sparse with common support
$\operatorname{supp}\left(\mathbf{x}_{i}\right)=T$ for some $T \subset[N]$ with $|T| \leq k, \forall i \in[L]$
■ Goal: Recover the common support T given $\left\{\mathbf{y}_{i}\right\}_{i=1}^{L}, \Phi$
■ Applications in hyperspectral imaging, sensor networks

Problem setup

- Generative model for \mathbf{x}_{i}

Assumption: Non-zero entries uncorrelated

$$
\begin{aligned}
& p\left(\mathbf{x}_{i} ; \gamma\right)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi \gamma_{j}}} \exp \left(-\frac{\mathbf{x}_{i j}^{2}}{2 \gamma_{j}}\right) \\
& \text { i.e., } \mathbf{x}_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Gamma) \text { where } \Gamma=\operatorname{diag}(\gamma)
\end{aligned}
$$

- Note:
- $\operatorname{supp}\left(\mathbf{x}_{i}\right)=\operatorname{supp}(\gamma)=T \quad\left(\right.$ since $\gamma_{j}=0 \Leftrightarrow x_{i j}=0 \quad$ a.s. $)$
- $\mathbf{y}_{i} \sim \mathcal{N}(0, \underbrace{\Phi \Gamma \Phi^{\top}+\sigma^{2} I}_{\Sigma \in \mathbb{R}^{m \times m}})$

■ Equivalent problem: Recover $\operatorname{supp}(\boldsymbol{\gamma})$ given $\left\{\mathbf{y}_{i}\right\}_{i=1}^{L}, \Phi$

- $\mathbf{x}_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Gamma)$

Γ
- $\mathbf{y}_{i} \stackrel{i i d}{\sim} \mathcal{N}(0, \Sigma)$

Support recovery as covariance estimation

- Use the sample covariance matrix $\hat{\Sigma}=\frac{1}{L} \sum_{i=1}^{L} \mathbf{y}_{i} \mathbf{y}_{i}^{\top}$ to estimate Γ
- Express $\hat{\Sigma}$ as

$$
\hat{\Sigma}=\Sigma+E
$$

where E : Noise/Error matrix
For the noiseless case $\left(\sigma^{2}=0\right)^{1}$

$$
\begin{aligned}
& \hat{\Sigma}=\Phi \Gamma \Phi^{\top}+E \\
& \quad \downarrow \text { vectorize } \\
& \mathbf{r}=\underbrace{(\Phi \odot \Phi)}_{A \in \mathbb{R}^{m^{2} \times N}} \gamma+\mathbf{e}
\end{aligned}
$$

where \odot denotes the Khatri-Rao product
■ Use Gaussian approximation for \mathbf{e}

- Find the maximum likelihood estimate of γ
${ }^{1}$ details for noisy case can be found in the paper

Noise statistics

- Mean

$$
\mathbb{E}(E)=\frac{1}{L} \sum_{i=1}^{L} \mathbb{E} \mathbf{y}_{i} \mathbf{y}_{i}^{\top}-\Sigma=0
$$

- Covariance

$$
\operatorname{cov}(\operatorname{vec}(E))=\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) \underbrace{\operatorname{cov}\left(\operatorname{vec}\left(\mathbf{z z}^{\top}\right)\right)}_{B \in \mathbb{R}^{N^{2} \times N^{2}}}\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top},
$$

where $\mathbf{z} \sim \mathcal{N}\left(0, I_{N}\right)$

Example: $N=3$

- Let $\mathbf{z}=\left[z_{1}, z_{2}, z_{3}\right]^{\top}$ with $z_{i} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$. Then,

$$
\mathbf{z z}^{\top}=\left[\begin{array}{ccc}
z_{1}^{2} & z_{1} z_{2} & z_{1} z_{3} \\
z_{1} z_{2} & z_{2}^{2} & z_{2} z_{3} \\
z_{1} z_{3} & z_{2} z_{3} & z_{3}^{2}
\end{array}\right] \xrightarrow{\text { vectorize }}\left[\begin{array}{c}
z_{1}^{2} \\
z_{1} z_{2} \\
z_{1} z_{3} \\
z_{1} z_{2} \\
z_{2}^{2} \\
z_{2} z_{3} \\
z_{1} z_{3} \\
z_{2} z_{3} \\
z_{3}^{2}
\end{array}\right]
$$

Example: $\mathrm{N}=3$

- The covariance matrix B of $\operatorname{vec}\left(\mathbf{z z}^{\top}\right)$ will be of size 9×9 with $B_{i, j} \in\{0,1,2\}, 1 \leq i, j \leq 3$.

■ For e.g.,

$$
\begin{aligned}
& B_{1,1}=\operatorname{cov}\left(z_{1}^{2}, z_{1}^{2}\right)=\mathbb{E} z_{1}^{4}-\left(\mathbb{E} z_{1}^{2}\right)^{2}=3-1=2 \\
& B_{1,2}=\operatorname{cov}\left(z_{1}^{2}, z_{1} z_{2}\right)=\mathbb{E} z_{1}^{3} z_{2}-\mathbb{E} z_{1}^{2} \mathbb{E} z_{1} z_{2}=0 \\
& B_{2,4}=\operatorname{cov}\left(z_{1} z_{2}, z_{1} z_{2}\right)=\mathbb{E} z_{1}^{2} z_{2}^{2}-\mathbb{E} z_{1} z_{2} \mathbb{E} z_{1} z_{2}=1
\end{aligned}
$$

Example: $\mathrm{N}=3$

$$
B=\operatorname{cov}\left(\operatorname{vec}\left(\mathbf{z z}^{\top}\right)\right)=\left[\begin{array}{ccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

- We now have the following model

$$
\begin{equation*}
\mathbf{r}=A \gamma+\mathbf{e} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
A & =(\Phi \odot \Phi), \\
\mathbb{E}[\mathbf{e}] & =0, \\
\operatorname{cov}(\mathbf{e}) & =W=\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) B\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top} .
\end{aligned}
$$

■ Remarks

- The noise term vanishes as $L \rightarrow \infty$
- The noise covariance depends on the parameter to be estimated
- $\mathbf{r}, \Phi \odot \Phi$ and \mathbf{e} have redundant entries - restrict to the $\frac{m(m+1)}{2}$ distinct entries

New model, Gaussian approximation

- Pre-multiply (1) by $P \in \mathbb{R}^{\frac{m(m+1)}{2} \times m^{2}}$, formed using a subset of the rows of $I_{m^{2}}$, that picks the relevant entries. Thus,

$$
\mathbf{r}_{P}=A_{P} \boldsymbol{\gamma}+\mathbf{e}_{P}
$$

where $\mathbf{r}_{P}:=P \mathbf{r}, A_{P}:=P A$, and $\mathbf{e}_{P}:=P \mathbf{e}$.

- Further, we approximate the distribution of n_{P} by $\mathcal{N}\left(0, W_{P}\right)$, where $W_{P}=P W P^{\top}$

■ Thus, $\mathbf{r}_{P} \sim \mathcal{N}\left(A_{P} \boldsymbol{\gamma}, W_{P}\right)$

ML estimation of γ

■ Denote the ML estimate of γ by γ_{ML}

$$
\begin{equation*}
\gamma_{\mathrm{ML}}=\underset{\gamma \geq 0}{\arg \max } p\left(\mathbf{r}_{P} ; \boldsymbol{\gamma}\right), \tag{2}
\end{equation*}
$$

where

$$
p\left(\mathbf{r}_{P} ; \gamma\right)=\frac{1}{(2 \pi)^{\frac{m(m+1)}{4}}\left|W_{P}\right|^{\frac{1}{2}}} \exp \left(\frac{-\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right)}{2}\right)
$$

■ Simplifying (2), we get

$$
\begin{equation*}
\gamma_{\mathrm{ML}}=\underset{\gamma \geq 0}{\arg \min } \log \left|W_{P}\right|+\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right) . \tag{3}
\end{equation*}
$$

■ For a fixed $W_{P},(3)$ can be solved using Non Negative Quadratic Programming (NNQP)

NNQP-based algorithm

Algorithm 1 MRNNQP

1: Input: Measurement matrix Φ, vectorized sample covariance \mathbf{r}, initial value $\Gamma^{(0)}=\operatorname{diag}\left(\gamma^{(0)}\right), i=1$
2: While (not converged) do
3: $\quad W_{P}^{(i)} \leftarrow \frac{1}{L} P(\Phi \otimes \Phi) B\left(\Gamma^{(i-1)} \otimes \Gamma^{(i-1)}\right)(\Phi \otimes \Phi)^{\top} P^{\top}$
4: $\quad \mathbf{b}^{(i)} \leftarrow-A_{P}^{\top} W_{P}^{(i)^{-1}} \mathbf{r}_{P}$
5: $\quad Q^{(i)} \leftarrow A_{P}^{\top} W_{P}^{(i)^{-1}} A_{P}$
6: $\quad \gamma^{(i)} \leftarrow \operatorname{NNQP}\left(Q^{(i)}, \mathbf{b}^{(i)}\right)$
7: $\quad \Gamma^{(i)} \leftarrow \operatorname{diag}\left(\gamma^{(i)}\right)$
8: $\quad i \leftarrow i+1$
9: end While
10: Output: support of $\gamma^{(i)}$

The MSBL algorithm

■ $X=\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{L}\right], Y=\left[\mathbf{y}_{1}, \cdots, \mathbf{y}_{L}\right]$

- Posterior moments

$$
R=\operatorname{cov}\left(\mathbf{x}_{i} \mid \mathbf{y}_{i} ; \gamma\right) ; \quad M=\left[\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{L}\right]
$$

Algorithm 2 MSBL 2

1: Input: Measurement matrix Φ, observations Y, initial value $\Gamma^{(0)}=$ $\operatorname{diag}\left(\gamma^{(0)}\right), i=1$
2: While (not converged) do
3: $\quad R^{(i)} \leftarrow \Gamma^{i-1}-\Gamma^{(i-1)} \Phi^{\top}\left(\Sigma^{(i-1)}\right)^{-1} \Phi \Gamma^{(i-1)}$
4: $\quad M^{(i)} \leftarrow \Gamma^{(i-1)} \Phi^{\top}\left(\Sigma^{(i-1)}\right)^{-1} Y$
5: $\quad \gamma_{j}^{(i)} \leftarrow \frac{1}{L}\left\|\boldsymbol{\mu}_{j}^{(i)}\right\|_{2}^{2}+R_{j j}^{(i)}$
6: $\quad i \leftarrow i+1$
7: end While
8: Output: $\hat{\mathbf{x}}_{j}=\boldsymbol{\mu}_{j}^{(i)}$
${ }^{2}$ David P. Wipf and Bhaskar D. Rao. "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem". In: TSP 55.7-2 (2GB7)21

Support recovery performance

$N=40, m=20, k=25$; exact recovery over 200 trials

Figure 1 : Support recovery performance of the NNQP-based approach $_{6 / 21}$

Support recovery performance

$N=70, m=20, L=50,1000$; exact recovery over 200 trials

Figure 2 : Support recovery performance of the NNQP-based approach $_{7} / 21$

Phase transition

Figure 3 : Phase transition. $N=20, L=200$

Observations

■ Exact support recovery possible for $k<m$ regime with "small" L For $k \geq m$, recovery possible with "large" L

- Dependence of computational complexity on parameters
- L : in computing $\hat{\Sigma}$ (offline)
- m, N : scales as $m^{4} N^{2}$
- Comparison with Co-LASSO, MSBL
- Improvement in performance by accounting for error due to $\hat{\Sigma}$
- Only a one time computation of $\hat{\Sigma}$ is required whereas MSBL uses the entire set of measurements $\left\{\mathbf{y}_{i}\right\}_{i=1}^{L}$ in every iteration of EM

Remarks on non negative sparse recovery

■ Inner loop in the ML estimation problem

$$
\underset{\gamma \geq 0}{\arg \min }\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right)
$$

Note: no sparsity-inducing regularizer

- Implicit regularization property of NNQP has been noted before ${ }^{3,4}$

■ For successful recovery, require conditions on sign pattern of vectors in null space of A

[^0]
Concluding remarks

■ Sparse support recovery can be done using maximum likelihood-based covariance estimation

■ Support recovery possible even when $k>m$
■ No explicit sparsity promoting regularizer needed
■ Recovery guarantees depend on properties of null space of $\Phi \odot \Phi$

Thank you

Non-negative quadratic program ${ }^{5}$

$$
\underset{\gamma \geq 0}{\operatorname{minimize}}\left(\mathbf{r}_{P}-A_{P} \gamma\right)^{\top} W_{P}^{-1}\left(\mathbf{r}_{P}-A_{p} \gamma\right)
$$

Solution (entry-wise update equation for γ):

$$
\gamma_{j}^{(i+1)}=\gamma_{j}^{(i)}\left(\frac{-b_{j}+\sqrt{b_{j}^{2}+4\left(Q^{+} \gamma^{(i)}\right)_{j}\left(Q^{-} \gamma^{(i)}\right)_{j}}}{2\left(Q^{+} \gamma^{(i)}\right)_{j}}\right)
$$

where $\mathbf{b}=-A_{P}^{\top} W_{P}^{-1} \mathbf{r}_{P}, Q=A_{P}^{\top} W_{P}^{-1} A_{P}$,

$$
Q_{i j}^{+}=\left\{\begin{array}{ll}
Q_{i j}, & \text { if } Q_{i j}>0, \\
0, & \text { otherwise },
\end{array} \quad Q_{i j}^{-}= \begin{cases}-Q_{i j}, & \text { if } Q_{i j}<0 \\
0, & \text { otherwise }\end{cases}\right.
$$

${ }^{5}$ Fei Sha, Lawrence K. Saul, and Daniel D. Lee. "Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines". In: Advances in Neural Information Processing Systems. 2002, pp. 1041-1048.

Noise statistics

■ Covariance

$$
\begin{aligned}
\operatorname{cov}(E) & =\operatorname{cov}\left(\sum_{i=1}^{L}\left(\frac{\mathbf{y}_{i} \mathbf{y}_{i}^{\top}}{L}-\frac{\Sigma}{L}\right)\right) \\
& =L \operatorname{cov}\left(\frac{\mathbf{y}_{1} \mathbf{y}_{1}^{\top}}{L}-\frac{\Sigma}{L}\right) \\
& =\frac{1}{L} \operatorname{cov}\left(\mathbf{y}_{1} \mathbf{y}_{1}^{\top}-\Sigma\right) \\
& =\frac{1}{L} \operatorname{cov}\left(\mathbf{y} \mathbf{y}^{\top}\right)
\end{aligned}
$$

■ Represent y as

$$
\mathbf{y}=C \mathbf{z}
$$

where $\mathbf{z} \sim \mathcal{N}(0, I)$ and $\Sigma=C C^{\top}$

Noise statistics

$$
\operatorname{cov}(E)=\frac{1}{L} \operatorname{cov}\left(\mathbf{y} \mathbf{y}^{\top}\right)
$$

- For $\sigma^{2}=0, \Sigma=\Phi \Gamma \Phi^{\top}$; can take $C=\Phi \Gamma^{\frac{1}{2}}$
- Using properties of Kronecker products:

$$
\begin{aligned}
\operatorname{cov}(\operatorname{vec}(E)) & =\frac{1}{L} \operatorname{cov}\left(\operatorname{vec}\left(C \mathbf{z z}^{\top} C^{\top}\right)\right) \\
& =\frac{1}{L} \operatorname{cov}\left((C \otimes C) \operatorname{vec}\left(\mathbf{z \mathbf { z } ^ { \top }}\right)\right) \\
& =\frac{1}{L}(C \otimes C) \operatorname{cov}\left(\operatorname{vec}\left(\mathbf{z} \mathbf{z}^{\top}\right)\right)(C \otimes C)^{\top} \\
& =\frac{1}{L}(\Phi \otimes \Phi)\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right) \underbrace{\operatorname{cov}\left(\operatorname{vec}\left(\mathbf{z z}^{\top}\right)\right)}_{B \in \mathbb{R}^{N^{2} \times N^{2}}}\left(\Gamma^{\frac{1}{2}} \otimes \Gamma^{\frac{1}{2}}\right)(\Phi \otimes \Phi)^{\top}
\end{aligned}
$$

■ Last step: use $(A \otimes B)(C \otimes D)=A B \otimes C D$

[^0]: ${ }^{3}$ Martin Slawski and Matthias Hein. "Sparse Recovery by Thresholded Nonnegative Least Squares". In: Advances in Neural Information Processing Systems. 2011.
 ${ }^{4}$ Simon Foucart and David Koslicki. "Sparse Recovery by means of Nonnegative Least Squares". In: IEEE Signal Proc. Letters 21 (2014), pp. 498-502.

