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Data Centers and Erasure Codes
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Fault Tolerance

o Fault tolerance is key to
making data loss a very
remote possibility
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Fault Tolerance

o Fault tolerance is key to
making data loss a very
remote possibility

@ A time-honored means of
achieving fault tolerance is
replication..

File or Object

Split it into
blocks

Triple replication

Stored in different nodes of the
storage network

Figure: Tripe Replication Code used in Google File System
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Drawback of Triple Replication

@ But triple replication is poor in terms of storage overhead: 3x. Are there better ways ?
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Drawback of Triple Replication

@ But triple replication is poor in terms of storage overhead: 3x. Are there better ways ?

@ A well-known alternative is to use Erasure Coding (EC)
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Erasure Coding for Fault Tolerance

(n,k) erasure code
n=k+m
Split it into
ﬂ chunks
) EBEBE---
\ J \ |

| |
k data chunks m parity chunks

Store the n chunks in different
nodes of the storage network

The n chunks taken together, form a stripe.
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Erasure Coding for Fault Tolerance

Two Key Performance Measures

File or Object (n,k) erasure code © Storage Overhead

n=k+m )
ﬂ Split it into @ Fault Tolerance - at most m storage units
chunks

(Ja)- (] EIGD--
\ ) \ ]

| |
k data chunks m parity chunks

Store the n chunks in different
nodes of the storage network

The n chunks taken together, form a stripe.
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Erasure Coding for Fault Tolerance

Two Key Performance Measures

File or Object (n,k) erasure code © Storage Overhead
n=k+m

ﬂ Split it into @ Fault Tolerance - at most m storage units
chunks

(Ja)- (] EIGD--
\ J \ )

y Y MDS Codes
k data chunks m parity chunks
ﬂ Store the n chunks in different @ For given (n, k), MDS erasure codes have the
nodes of the storage network maximum-possible fault tolerance

» Can tolerate m = n — k failures.
@ RAID 6 and Reed-Solomon(RS) codes are examples of MDS
codes.

Th hunks taken together, f tripe.
€ 1 chunies taken Together, form a stripe © HDFS EC, Ceph have implementations of RS codes.



An Example MDS Code - The RAID 6 Code

RAID 6

S -
Al w A3 A Aq
Bl m Bp hBa B3
a | o) o] e o
D» .ﬂ D1 | D2 ( D3

- N~

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/RAID_6.svg/1280px-RAID_6.svg.png

/38


https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/RAID_6.svg/1280px-RAID_6.svg.png

Other RS Codes in Practice

Linux RAID-6 RS(10,8) Liw&
GO()gle Google File System Il (Colossus) RS(9,6)
Quantcast File System RS(9,6) Qua ntcast
@hadagp Intel & Cloudera’ HDFS-EC RS(9,6)
Yahoo Cloud Object Store RS(11,8) YaHoO!
.‘é BACKBLAZE Backblaze’s online backup RS(20,17)
o Facebook’s f4 BLOB storage system  RS(14,10) [i
Bamb. Baidu’s Atlas Cloud Storage RS(12, 8)

H. Dau et al, “Repairing Reed-Solomon Codes with Single and Multiple Erasures,” ITA, 2017, San Diego.
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Evolution of HDFS to Incorporate EC = HDFS-EC

@ Typically, EC reduces the storage cost by 50% compared with 3x replication
@ Motivated by this, Cloudera and Intel initiated the HDFS-EC project

© Available in Hadoop 3.0.

© Employs a striped layout:

striping
DataModed DataModel DataModet DataMode& DataModes
. 0=1M T-2M E~GM
& s s “on e wen
g aen wee 127-128M
I data * ‘ parity '

© Possibility of incorporating more sophisticated EC schemes !

Zhe Zhang, Andrew Wang, Kai Zheng, Uma Maheswara G., and Vinayakumar, “Introduction to HDFS Erasure Coding in
Apache Hadoop,” September 23, 2015.
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Erasure Codes and Node Failures
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@ A median of 50 nodes are unavailable per day.

£
=
n
P
3250_ @ 98% of the failures are single node failures.
o
o @ A median of 180TB of network traffic per day is
52000 \'I‘ generated in order to reconstruct the RS coded
] | . . .
Z 1500 ‘\" A data corresponding to unavailable machines.
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Erasure Codes and Node Failures
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# machines unavailable for > 15min

@ A median of 50 nodes are unavailable per day.

98% of the failures are single node failures.

A median of 180TB of network traffic per day is
generated in order to reconstruct the RS coded
data corresponding to unavailable machines.

Thus there is a strong need for erasure codes
that can efficiently recover from single-node

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook

Warehouse Cluster,” USENIX Hotstorage, 2013.
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Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient
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Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

1

12 13 14
>< 100 100 100
MB MB MB

B Data Chunk CJ Parity Chunk Erased Chunk

In the example (14,10) RS code,
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Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

1 2 3 4 5 6 7 8 9 10 1" 12 13 14
>< 100 100 100 100 100 100 100 100 100 100 100 100 100
MB MB MB MB MB MB MB MB MB MB MB MB MB

10 X 100MB

=SSN~
I\

B Data Chunk C} Parity Chunk Erased Chunk

In the example (14,10) RS code,
@ the amount of data downloaded to repair 100MB of data equals 1GB.
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Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

1 2 3 4 5 6 7 8 9 10 1" 12 13 14
>< 100 100 100 100 100 100 100 100 100 100 100 100 100
MB MB MB MB MB MB MB MB MB MB MB MB MB

S\ [ 7~
10 X 100MB \"’

B Data Chunk CJ Parity Chunk Erased Chunk

In the example (14,10) RS code,
@ the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...
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Coding Theory Responds

© Regenerating codes

> minimize the amount of data download
(repair bandwidth) needed for node repair
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Coding Theory Responds

© Regenerating codes

> minimize the amount of data download
(repair bandwidth) needed for node repair

Regenerating Codes @ Locally recoverable codes

. ) > minimize the number of helper nodes
“ Codes with Locality contacted for node repair, but also reduce
repair bandwidth
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Coding Theory Responds

© Regenerating codes

> minimize the amount of data download
(repair bandwidth) needed for node repair

Regenerating Codes @ Locally recoverable codes

> minimize the number of helper nodes

“ Codes with Locality contacted for node repair, but also reduce
repair bandwidth

» Not MDS anymore

© Novel and efficient approaches to RS repair a
more recent development

@ A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network Coding for Distributed Storage Systems,” IEEE Trans. Inform.
Th., Sep. 2010.

@ P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.
@ V. Guruswami, M. Wootters, “Repairing Reed-Solomon Codes,” arXiv:1509.04764 [cs.IT] .
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Regenerating Codes

@ We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration
(MSR) codes
@ MSR codes are MDS and have least possible repair bandwidth

© Repair bandwidth is defined as the total amount of data downloaded for repair of a single node
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Regenerating Codes
@ We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration
(MSR) codes
@ MSR codes are MDS and have least possible repair bandwidth
© Repair bandwidth is defined as the total amount of data downloaded for repair of a single node

1 2 3
>< 100 100
MB MB

12 13 14

100 100

4 5 6 7 8 9 10 1
100 100 100 100 100 100

MB MB MB MB MB MB MB MB
—_ T~

13 X 25MB

[j Data Chunk B Parity Chunk Erased Chunk

@ Size of failed node's contents: 100MB
@ RS repair BW: 1 GB
© MSR Repair BW: 325 MB
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Key to the Impressive, Low-Repair BW of MSR Codes
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Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...
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k data chunks m parity chunks
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k data chunks m parity chunks
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k data chunks m parity chunks

&

sub-packetization level



k data chunks m parity chunks

&

n =k+m

Chunk {

sub-chur}kac{ %]

sub-packetization level f<a

k<d<n . -



k data chunks m parity chunks




k data chunks m parity chunks

5 &

n =k+m

sub-chunk{{

sub-packetization level f<a

p = al(d-k+1)
p is a fraction of a

Repair BW = dg
We consider d=n-1, then
Repair BW = (n-1)a/(n-k)



k data chunks m parity chunks

5 &

n =k+m

sub-chunk—

il

p = al(d-k+1)
p is a fraction of a

Repair BW = dg
We consider d=n-1, then
Repair BW = (n-1)a/(n-k)

Larger the m=n-k, larger the savings!!



Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred
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Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a
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Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

> sub-chunk size = %fﬁ'ze = N bytes.
> During repair, 8 sub-chunks are read.
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Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

> sub-chunk size = %fﬁ'ze = N bytes.

> During repair, 8 sub-chunks are read.

> If sub-chunks are not contiguous, only N bytes are read sequentially.
> Smaller the o better the sequentiality!!
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Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

> sub-chunk size = %fﬁ'ze = N bytes.

> During repair, 8 sub-chunks are read.

> If sub-chunks are not contiguous, only N bytes are read sequentially.
> Smaller the o better the sequentiality!!

© Small field size, low-complexity implementation.
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4-way Optimality of Clay code

[

Least possible storage overhead
(MDS Codes)

l

Least possible repair bandwidth
(MSR Codes)

l

Least possible disk read
(Optimal access MSR Codes)

]

Least possible sub-packetization
(Clay Codes)

_}w;/_/
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4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

l

Least possible repair bandwidth
(MSR Codes)

l

Least possible disk read
(Optimal access MSR Codes)

]

Least possible sub-packetization
(Clay Codes)

— N ()
- ) o J

among the class of MSR codes, the Clay code is arguably a champion...

Image courtesy: denverpost.com



Placing the Clay Code in Perspective

Comparing the Clay code with repair-efficient codes that have undergone systems implementation

Least Least [Least Implemented
Code MDS Repair | Disk o Restrictions Distributed
BW Read Systems
Piggybacked RS (4 X X - None HDFS
(Sigcomm 2014)
Product Matrix v v v v Limited to Own System
(FAST 2015) Storage
Overhead > 2
Butterfly Code (4 v X X [Limited to the 2| HDFS, Ceph
(FAST 2016) parity nodes
HashTag Code (4 X X - Only HDFS
(Trans. on Big Data systematic node
2017) repair
Clay (4 4 v (4 None! Ceph
(FAST 2018)

@ The Butterfly, HashTag codes have least disk read for systematic node repair.
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Clay Code Construction
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Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.
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Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

X

7

y

z=0

z=1
z=2

z=3

Layer four such units.
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Moulding an MDS Code to Yield a (4,2) Clay Code

X/, =y*l z=(0,0) '] i
z=0 ( i z=(1,0) 0 il
=1 i - 2=(0,1) H
2 iy z=(1.1) ’
scalar MDS code. z=3 J 0 Index each Iaye; z usingitwo bits
Layer four such units. (corresponding to the location of the two

red dots in that layer).
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Moulding an MDS Code to Yield a (4,2) Clay Code .

X/, uyil z=(0,0) '] I
z=0 ( i z=(1,0) 0 il
=1 h - z=(0,1) ] b
2 z=(1,1) 1 i
z=3 J 0 Index each layer z using two bits
Layer four such units. (corresponding to the location of the two

red dots in that layer).

e B

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).
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Moulding an MDS Code to Yield a (4,2) Clay Code _

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

UM

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

y -
)f/, o o z=(0,0) '] I

z=0 ( i z=(1,0) [ il

z=1 F M - z=(0,1) || I

=2 U [

‘ i z=(1.1) i

z=3 [ 0 Index each layer z using two bits
Layer four such units. (corresponding to the location of the two

red dots in that layer).

Pairwise Forward
Transform (PFT)

U
U

& <A

[

*

Any two sub-chunks out of
{U, U*, C, C*} can be computed

from remaining two.
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Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

UM

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

y

v
z=0 (
z=1 u
z=2 F o
z=3 r

Layer four such units.

Pairwise Forward
Transform (PFT)

Any two sub-chunks out of
{U, U*, C, C*} can be computed

from remaining two.

z=(0,0) ||
z=(1,0) ]
z=(0,1) |TT
z=(1,1) [

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

[0 =4
c*

T

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.
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Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

UM

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

y

v
z=0 (
z=1 u
z=2 F o
z=3 r

Layer four such units.

Pairwise Forward
Transform (PFT)

Any two sub-chunks out of
{U, U*, C, C*} can be computed

from remaining two.

z=(0,0) ||
z=(1,0) ]
z=(0,1) |TT
z=(1,1) [

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

[0 =4
c*

T

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k, d)!!
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Generic Construction: 3D Representation of a Codeword

.y .
X t
R S
z,
s=4,t=5
y=0 1 2 3
x=0
1
2
3

z2=(3,2,3,1,0)

(n=st, k, d), (a =5, B=s"1 Fg), s=d—k+1

There are na = s x t x s* code symbols in F,.
They can be indexed by 3-tuple (x, y; z) where x € Zs, y € Z:, z € Z!.
(x, y) tuple indicates node, z index the symbols index within « symbols.

Pair symbol to C(x,y, z) is obtained by simply replacing x with z,
C*(X7y7£) = C(Zy,y72(y,X))
where z, 7 X, Z(y7 X) = (207 s Zy=1, X, Zy4l, 7zf*1)
PFT is performed to get U(x, y, z) where
Uxy,z) | _ |1 v C(x,y,2)
For every z € Z!, the collection of symbols {U(x,y,z) | x € Zs,y € Z¢}
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Encoding the Clay Code

@ The previous slide did not explain how encoding takes place as the code was not in
systematic form.

@ We will now explain encoding data under the Clay Code.
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Consider a file of size 64MB

64MB

e We show encoding of the file using (n =4, k = 2) Clay code.



Break the file into k = 2 data chunks each of 32MB.




3D cube representation of Clay Code

32MB ) ( 32MB

y

The cube has:

X

¥
7 = (0,0) e 4 columns, which corre§pond to
the 4 chunks (each of size 32MB,
stored in a different disk/node).

7 e 4 horizontal planes.

e Each column has 4 points that
correspond to sub-chunks of size
g 8MB

[R5

z=(1,1)

|

€=



Place two 32MB chunks in two data nodes

( 32MB

y

Pg —
z=(0,0)
—>

I
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—
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Place two 32MB chunks in two data nodes
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We now have the data nodes
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We will now compute the parity nodes
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Will get there through an intermediate “Uncoupled data cube”
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Start filling the Uncoupled data cube on the right as follows

f/% L
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Certain pairs of points in the cube are “coupled”

(?ﬁ el
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PRT is a 2x2 matrix transform, It is reverse of PFT
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Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube
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Red dotted sub-chunks are not paired, they are simply carried over
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Red dotted sub-chunks are not paired, they are simply carried over
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We now have data-part of the uncoupled data cube

UL




Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z=(0,0)
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Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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Now we have the complete Uncoupled data cube

=




Parity sub-chunks of Coupled data cube can now be computed
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Perform PFT
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Perform PFT
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Red dotted sub-chunks are simply carried over
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Red dotted sub-chunks are simply carried over
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The encoding is now complete!
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Recovery from single node failure
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Node Repair: One node fails
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Only half of planes participate in repair

e Total Helper Data = 8MB X 3 X 2 = 48MB
e As opposed to RS code =8MB X2 X4 =64MB

e Much larger savings seen form > 2



Perform PRT to get possible uncoupled sub-chunks




Run RS decoding on each of the selected planes
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Run RS decoding on each of the selected planes
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Run RS decoding on each of the selected planes
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Run RS decoding on each of the selected planes
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We now have the following sub-chunks available
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Half the number of required sub-chunks are now already computed
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Compute C* from C and U
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Content of failed node is now completely recovered

(I

A

(I

I

J

Replacement

node



MDS Property of Clay Code

@ Any n — k node failures can be recovered from.
@ The decoding algorithm recovers the lost symbols layer by layer sequentially.
@ It uses functions scalar MDS decode, PFT, PRT and the function that computes U from {U*, C}.

@ Decoding algorithm involves « scalar MDS decode operations along with 2n3 Galois field scalar
multiplications and ng Galois XOR operations.

@ RS decode for the same amount of data involves « scalar MDS decode operations.
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Implementation and Evaluation of Clay Code
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Ceph: Architecture

Object Storage Daemon (OSD): process of Ceph, associated with a storage unit.
Pool: Logical partitions, associated with an erasure-code profile.
Placement Group(PG): Collection of n OSDs.

Each pool can have a single or multiple PGs associated with it.

OBJECT

Erasure Code Profile —» | POOL

PG1

OBJECT PGZ P TSN OBJECT

v
osps| [osp4| [osp3| [osp7]| [osp1

p-OSD p-OSD

0SD1 0SD5 0SD6 0SD4 0SD3
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Recovery Code Flow in Ceph

minimum_to_decode(): query for helper node indices
helper node indices

ECSubRead: query for helper information

helper information

call decode() for repairing

recovered data

sending recovered data to replacement OSD
ECSubWrite: acknowledgement from replacement OSD

| ~>» Network Traffic

NN B W=

Helper
08D 1

Recovery Code Flow in Ceph
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Ceph: Contributions

@ We introduced the notion of sub-chunking to enable use of vector erasure codes with
Ceph.

osd: introduce sub-chunks to erasure code plugin interface

LU EGESE tchaikov merged 3 commits into cephimaster from mynaramana:arraycode on Nov 1, 2017

e Clay code is available as an erasure code plugin in Ceph for all parameters (n, k, d)
erasure-code: add clay codes ./

[V EGESE tchaikov merged 2 commits into ceph:master from tchaikov:wip-23962 on Oct 2

@ Both these features are currently available in master codebase of ceph.

@ Clay code will be available in Ceph’s next release nautilus.
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Evaluation of the Clay Code

Evaluated on a 26 node (m4.xlarge) AWS cluster.
One node hosts Monitor (MON) process of Ceph.
Remaining 25 nodes host one OSD each.

Each node has 500GB SSD type volume attached.

Two workloads

> Workload W1: fixed size 64MB objects — stripe size 64MB
» Workload W2: mixture of 1IMB, 32MB, and 64MB size objects, — stripe size 1IMB

@ Both single PG and multiple PG (512 PG) experiments.
@ Codes evaluated: (6, 4, 5), (12, 9, 11) and (20, 16, 19).
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Network Traffic and Disk Read : W1 Workload, 1 PG

—.600 600
E 100 o 7 ? 2o I 7 7 v
ot e iy e
% Clay (d=n-1) Theoretical # RS Theoretical % Clay (d=n-1) Theoretical % RS Theoretical
@ Network traffic reduced to 75%, 48%, 34% of @ Repair disk read reduced to 62%, 41%, 29% of
that of RS as predicted by theory. that of RS as predicted by theory.
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Network Traffic and Disk Read : W2 Workload, 1 PG

_500 __600
p P 2 ) N N
8400 7 2 2 £ 400 % \ % \ %
2 » - - 3 1 1
o v - 2 W W il
2 . o 2 g, \UM77 A7 W47
a R F °
g % VD % (64) (12,9) (20,16)
(6,4) (12,9) (20,16) = Clay (d=n-1), worst case M Clay (d=n-1), best case
M Clay (d=n-1) W RS mRS # Clay (d=n-1) Theoretical
7% Clay (d=n-1) Theoretical % RS Theoretical % RS Theoretical
@ Network traffic reduced to 75%, 48%, 34% of @ Disk read for (6, 4, 5) code is optimal
that of RS matching the theoretical values. @ For (12, 9, 11) and (20, 16, 19) codes effect of
@ Reductions same as that for W1. fragmented read is observed.
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Fragmented Read

@ During repair of a chunk only 5 < a sub-chunks

22 are read from each helper nodes.
@.20 @ During worst case failures, the sub-chunks needed
515 in repair are not located contiguously.
o
%10 @ sub-chunk size = stripe size/ka
A v L
0 % 0 1024, k-
o % % @ For (20,16,19) code o = 1024, k = 16. Therefore,
1MB Stripe Size (W2)  64MB Stripe Size (W1) for stripe sizes 64MB and 1MB, the sub-chunk
Worst case M Best case % Theoretical sizes are 4KB, 64B respeCt'VeIY-
Best and worst case, disk read during repair of @ If sub-chunk size is aligned to 4kB (SSD page
(20,16,19) code for stripe sizes IMB, 64MB granularity), the fragmented-read problem can be
avoided.
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Repair Time and Encoding Time: W1 Workload, 1 PG

N ) 3
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o o o

Avg Repair Time (ms)
]
3

(6,4) (12,9) (20,16)
W Clay (d=n-1) ®RS

@ Repair time reduced by 1.49x, 2.34x, 3x of that of
RS.
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(64) (12,9 (20,16) (6,4) (12,9)  (20,16)
M Clay (d=n-1) ®RS M Clay (d=n-1) ®mRS

The total encoding time remains almost same as
that of RS.

While, encode computation time of Clay code is
higher than that of RS code by 70%.

This is due to the additional PFT and PRT
operations.
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Normal and Degraded 1/0 : W1 workload, 1 PG
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@ Better degraded read 16.24%,9.9%, 27.17% and write throughput increased by 4.52%, 13.58%, 106.68%
of that of RS.

@ Normal read and write throughput same as that of RS.
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Network Traffic and Disk Read : W1 workload, 512 PG

(6,4) (12,9)
M Clay (d=n-1) ®ERS

(20,16)

500
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G 400
< 300
@
& 200
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0

@ Assignment of OSDs and objects to PGs is dynamic.

» Number of objects affected by failure of an OSD can vary across different runs of multiple-PG
experiment.

(6,4) (12,9)
M Clay (d=n-1) ®ERS

(20,16)

@ Sometimes an OSD that is already part of the PG can get reassigned as replacement for the failed OSD.

> Number of failures are treated as two resulting in inferior network-traffic performance in multiple-PG

setting.
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Multiple Node Failures

80 ® Clay:(14,10,13)

m x Clay: (14,10,11) g 800

E 0 * . . ® L Clay:(141012) < 600

= ® RS: (1410) &

g E 400 o

g 40 T 200

25 Wl

g 20 2 One failure Two failures Three failures Four failures

2 m(14,10,11)Clay #(14,10,12)Clay 1(14,10,13)Clay ®(14,10)RS
0

1 2 3 4

@ Workload W1, 512 PG

No of erasures L. . . .
@ Network traffic increases with increase in number

Average theoretical network traffic during repair of of failed chunks.

64MB object.
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Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.
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Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.

@ The theoretical promise of the Clay code is reflected in the
evaluation presented here

@ Specifically, for Workloads with large sized objects, the Clay
code (20,16, 19):

> resulted in repair time reduction by 3x.

» Improved degraded read and write performance by 27.17%

and 10668% respectively.
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Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.

@ The theoretical promise of the Clay code is reflected in the
evaluation presented here

In summary, Clay

Specifically, for Workl ith | i i he Cl Codes are well
° ng;:l(gg {6 (15) orkloads with large sized objects, the Clay poised to make the
> resulted in repair time reduction by 3x. leap from theory to

practice!!!
» Improved degraded read and write performance by 27.17%

and 10668% respectively.
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Thank You!
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Backup Slides!
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Decode: Two nodes fail




Assign Intersection Score to each plane
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For non erased nodes, get the uncoupled sub-chunks for planes with 1S=0
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RS decode to get the remaining uncoupled-subchunks
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We now have following sub-chunks
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For non erased nodes, get the uncoupled sub-chunks for planes with 1S=1
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RS decode to get the remaining uncoupled-subchunks
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We now have the following sub-chunks
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For non erased nodes, get the uncoupled sub-chunks for planes with 1S=2
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Get the uncoupled sub-chunks for planes with 1S=2
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We now have all the uncoupled sub chunks
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The coupled sub chunks can now be computed using PFT
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The decoding is now complete
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