Clay Codes: Moulding MDS Codes to Yield an MSR Code

Myna Vajha

ECE Student Seminar Series

December 5, 2018

38

Team

This is a joint work with:
@ Indian Institute of Science

> Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Birenjith Sasidharan, Vijay
Kumar P

@ University of Maryland
> Alexandar Barg, Min Ye

© NetApp ATG Bangalore
> Srinivasan Narayanamurthy, Syed Hussain, Siddhartha Nandi

38

Data Centers and Erasure Codes

3/38

Fault Tolerance

o Fault tolerance is key to
making data loss a very
remote possibility

38

Fault Tolerance

o Fault tolerance is key to
making data loss a very
remote possibility

@ A time-honored means of
achieving fault tolerance is
replication..

File or Object

Split it into
blocks

Triple replication

Stored in different nodes of the
storage network

Figure: Tripe Replication Code used in Google File System

38

Drawback of Triple Replication

@ But triple replication is poor in terms of storage overhead: 3x. Are there better ways ?

38

Drawback of Triple Replication

@ But triple replication is poor in terms of storage overhead: 3x. Are there better ways ?

@ A well-known alternative is to use Erasure Coding (EC)

38

Erasure Coding for Fault Tolerance

(n,k) erasure code
n=k+m
Split it into
ﬂ chunks
) EBEBE---
\ J \ |

| |
k data chunks m parity chunks

Store the n chunks in different
nodes of the storage network

The n chunks taken together, form a stripe.

/38

Erasure Coding for Fault Tolerance

Two Key Performance Measures

File or Object (n,k) erasure code © Storage Overhead

n=k+m)
ﬂ Split it into @ Fault Tolerance - at most m storage units
chunks

(Ja)- (] EIGD--
\) \]

| |
k data chunks m parity chunks

Store the n chunks in different
nodes of the storage network

The n chunks taken together, form a stripe.

/38

Erasure Coding for Fault Tolerance

Two Key Performance Measures

File or Object (n,k) erasure code © Storage Overhead
n=k+m

ﬂ Split it into @ Fault Tolerance - at most m storage units
chunks

(Ja)- (] EIGD--
\ J \)

y Y MDS Codes
k data chunks m parity chunks
ﬂ Store the n chunks in different @ For given (n, k), MDS erasure codes have the
nodes of the storage network maximum-possible fault tolerance

» Can tolerate m = n — k failures.
@ RAID 6 and Reed-Solomon(RS) codes are examples of MDS
codes.

Th hunks taken together, f tripe.
€ 1 chunies taken Together, form a stripe © HDFS EC, Ceph have implementations of RS codes.

An Example MDS Code - The RAID 6 Code

RAID 6

S -
Al w A3 A Aq
Bl m Bp hBa B3
a | o) o] e o
D» .ﬂ D1 | D2 (D3

- N~

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/RAID_6.svg/1280px-RAID_6.svg.png

/38

https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/RAID_6.svg/1280px-RAID_6.svg.png

Other RS Codes in Practice

Linux RAID-6 RS(10,8) Liw&
GO()gle Google File System Il (Colossus) RS(9,6)
Quantcast File System RS(9,6) Qua ntcast
@hadagp Intel & Cloudera’ HDFS-EC RS(9,6)
Yahoo Cloud Object Store RS(11,8) YaHoO!
.‘é BACKBLAZE Backblaze’s online backup RS(20,17)
o Facebook’s f4 BLOB storage system RS(14,10) [i
Bamb. Baidu’s Atlas Cloud Storage RS(12, 8)

H. Dau et al, “Repairing Reed-Solomon Codes with Single and Multiple Erasures,” ITA, 2017, San Diego.

/38

Evolution of HDFS to Incorporate EC = HDFS-EC

@ Typically, EC reduces the storage cost by 50% compared with 3x replication
@ Motivated by this, Cloudera and Intel initiated the HDFS-EC project

© Available in Hadoop 3.0.

© Employs a striped layout:

striping
DataModed DataModel DataModet DataMode& DataModes
. 0=1M T-2M E~GM
& s s “on e wen
g aen wee 127-128M
I data * ‘ parity '

© Possibility of incorporating more sophisticated EC schemes !

Zhe Zhang, Andrew Wang, Kai Zheng, Uma Maheswara G., and Vinayakumar, “Introduction to HDFS Erasure Coding in
Apache Hadoop,” September 23, 2015.

38

Erasure Codes and Node Failures

w
wu
o

w
(=}
o

@ A median of 50 nodes are unavailable per day.

£
=
n
P
3250_ @ 98% of the failures are single node failures.
o
o @ A median of 180TB of network traffic per day is
52000 \'I‘ generated in order to reconstruct the RS coded
] | . . .
Z 1500 ‘\" A data corresponding to unavailable machines.
5 i I
0 [A
2 100 I [
| I [
3 ""‘ |‘ | ‘ I‘. »
£ -0 ‘1“\,, '\\ | P B A
#* _ |
% 5 10 15 20 25 30

10/38

Erasure Codes and Node Failures

w
wu
o

N w
wu (=}
o o

N
(=]
o

=
=)
=]

wn
o
!

machines unavailable for > 15min

@ A median of 50 nodes are unavailable per day.

98% of the failures are single node failures.

A median of 180TB of network traffic per day is
generated in order to reconstruct the RS coded
data corresponding to unavailable machines.

Thus there is a strong need for erasure codes
that can efficiently recover from single-node

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook

Warehouse Cluster,” USENIX Hotstorage, 2013.

10/38

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

11/38

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

1

12 13 14
>< 100 100 100
MB MB MB

B Data Chunk CJ Parity Chunk Erased Chunk

In the example (14,10) RS code,

11/38

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

1 2 3 4 5 6 7 8 9 10 1" 12 13 14
>< 100 100 100 100 100 100 100 100 100 100 100 100 100
MB MB MB MB MB MB MB MB MB MB MB MB MB

10 X 100MB

=SSN~
I\

B Data Chunk C} Parity Chunk Erased Chunk

In the example (14,10) RS code,
@ the amount of data downloaded to repair 100MB of data equals 1GB.

11/38

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

1 2 3 4 5 6 7 8 9 10 1" 12 13 14
>< 100 100 100 100 100 100 100 100 100 100 100 100 100
MB MB MB MB MB MB MB MB MB MB MB MB MB

S\ [7~
10 X 100MB \"’

B Data Chunk CJ Parity Chunk Erased Chunk

In the example (14,10) RS code,
@ the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

11/38

Coding Theory Responds

© Regenerating codes

> minimize the amount of data download
(repair bandwidth) needed for node repair

12/38

Coding Theory Responds

© Regenerating codes

> minimize the amount of data download
(repair bandwidth) needed for node repair

Regenerating Codes @ Locally recoverable codes

.) > minimize the number of helper nodes
“ Codes with Locality contacted for node repair, but also reduce
repair bandwidth

12/38

Coding Theory Responds

© Regenerating codes

> minimize the amount of data download
(repair bandwidth) needed for node repair

Regenerating Codes @ Locally recoverable codes

> minimize the number of helper nodes

“ Codes with Locality contacted for node repair, but also reduce
repair bandwidth

» Not MDS anymore

© Novel and efficient approaches to RS repair a
more recent development

@ A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network Coding for Distributed Storage Systems,” IEEE Trans. Inform.
Th., Sep. 2010.

@ P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.
@ V. Guruswami, M. Wootters, “Repairing Reed-Solomon Codes,” arXiv:1509.04764 [cs.IT] .

12/38

Regenerating Codes

@ We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration
(MSR) codes
@ MSR codes are MDS and have least possible repair bandwidth

© Repair bandwidth is defined as the total amount of data downloaded for repair of a single node

13/38

Regenerating Codes
@ We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration
(MSR) codes
@ MSR codes are MDS and have least possible repair bandwidth
© Repair bandwidth is defined as the total amount of data downloaded for repair of a single node

1 2 3
>< 100 100
MB MB

12 13 14

100 100

4 5 6 7 8 9 10 1
100 100 100 100 100 100

MB MB MB MB MB MB MB MB
—_ T~

13 X 25MB

[j Data Chunk B Parity Chunk Erased Chunk

@ Size of failed node's contents: 100MB
@ RS repair BW: 1 GB
© MSR Repair BW: 325 MB

13/38

Key to the Impressive, Low-Repair BW of MSR Codes

14 /38

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

14/38

k data chunks m parity chunks

e { () (OO OO OO OO E

n =k+m

k data chunks m parity chunks

&

n =k+m

k data chunks m parity chunks

&

sub-packetization level

k data chunks m parity chunks

&

n =k+m

Chunk {

sub-chur}kac{ %]

sub-packetization level f<a

k<d<n . -

k data chunks m parity chunks

k data chunks m parity chunks

5 &

n =k+m

sub-chunk{{

sub-packetization level f<a

p = al(d-k+1)
p is a fraction of a

Repair BW = dg
We consider d=n-1, then
Repair BW = (n-1)a/(n-k)

k data chunks m parity chunks

5 &

n =k+m

sub-chunk—

il

p = al(d-k+1)
p is a fraction of a

Repair BW = dg
We consider d=n-1, then
Repair BW = (n-1)a/(n-k)

Larger the m=n-k, larger the savings!!

Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

15/38

Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

15/38

Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

> sub-chunk size = %fﬁ'ze = N bytes.
> During repair, 8 sub-chunks are read.

15/38

Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

> sub-chunk size = %fﬁ'ze = N bytes.

> During repair, 8 sub-chunks are read.

> If sub-chunks are not contiguous, only N bytes are read sequentially.
> Smaller the o better the sequentiality!!

15/38

Additional Properties Desired of an MSR Code

© Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

@ Minimize sub-packetization level a

> sub-chunk size = %fﬁ'ze = N bytes.

> During repair, 8 sub-chunks are read.

> If sub-chunks are not contiguous, only N bytes are read sequentially.
> Smaller the o better the sequentiality!!

© Small field size, low-complexity implementation.

15/38

4-way Optimality of Clay code

[

Least possible storage overhead
(MDS Codes)

l

Least possible repair bandwidth
(MSR Codes)

l

Least possible disk read
(Optimal access MSR Codes)

]

Least possible sub-packetization
(Clay Codes)

}w;//

16/38

4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

l

Least possible repair bandwidth
(MSR Codes)

l

Least possible disk read
(Optimal access MSR Codes)

]

Least possible sub-packetization
(Clay Codes)

— N ()
-) o J

among the class of MSR codes, the Clay code is arguably a champion...

Image courtesy: denverpost.com

Placing the Clay Code in Perspective

Comparing the Clay code with repair-efficient codes that have undergone systems implementation

Least Least [Least Implemented
Code MDS Repair | Disk o Restrictions Distributed
BW Read Systems
Piggybacked RS (4 X X - None HDFS
(Sigcomm 2014)
Product Matrix v v v v Limited to Own System
(FAST 2015) Storage
Overhead > 2
Butterfly Code (4 v X X [Limited to the 2| HDFS, Ceph
(FAST 2016) parity nodes
HashTag Code (4 X X - Only HDFS
(Trans. on Big Data systematic node
2017) repair
Clay (4 4 v (4 None! Ceph
(FAST 2018)

@ The Butterfly, HashTag codes have least disk read for systematic node repair.

17 /38

Clay Code Construction

18/38

Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

19/38

Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

X

7

y

z=0

z=1
z=2

z=3

Layer four such units.

19/38

Moulding an MDS Code to Yield a (4,2) Clay Code

X/, =y*l z=(0,0) '] i
z=0 (i z=(1,0) 0 il
=1 i - 2=(0,1) H
2 iy z=(1.1) ’
scalar MDS code. z=3 J 0 Index each Iaye; z usingitwo bits
Layer four such units. (corresponding to the location of the two

red dots in that layer).

19/38

Moulding an MDS Code to Yield a (4,2) Clay Code .

X/, uyil z=(0,0) '] I
z=0 (i z=(1,0) 0 il
=1 h - z=(0,1)] b
2 z=(1,1) 1 i
z=3 J 0 Index each layer z using two bits
Layer four such units. (corresponding to the location of the two

red dots in that layer).

e B

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

19/38

Moulding an MDS Code to Yield a (4,2) Clay Code _

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

UM

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

y -
)f/, o o z=(0,0) '] I

z=0 (i z=(1,0) [il

z=1 F M - z=(0,1) || I

=2 U [

‘ i z=(1.1) i

z=3 [0 Index each layer z using two bits
Layer four such units. (corresponding to the location of the two

red dots in that layer).

Pairwise Forward
Transform (PFT)

U
U

& <A

[

*

Any two sub-chunks out of
{U, U*, C, C*} can be computed

from remaining two.

19/38

Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

UM

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

y

v
z=0 (
z=1 u
z=2 F o
z=3 r

Layer four such units.

Pairwise Forward
Transform (PFT)

Any two sub-chunks out of
{U, U*, C, C*} can be computed

from remaining two.

z=(0,0) ||
z=(1,0)]
z=(0,1) |TT
z=(1,1) [

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

[0 =4
c*

T

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

19/38

Moulding an MDS Code to Yield a (4,2) Clay Code

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

UM

sub-chunks such as (U, U*) are paired
(yellow rectangles connected by a dotted
line).

y

v
z=0 (
z=1 u
z=2 F o
z=3 r

Layer four such units.

Pairwise Forward
Transform (PFT)

Any two sub-chunks out of
{U, U*, C, C*} can be computed

from remaining two.

z=(0,0) ||
z=(1,0)]
z=(0,1) |TT
z=(1,1) [

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

[0 =4
c*

T

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k, d)!!

19/38

Generic Construction: 3D Representation of a Codeword

.y .
X t
R S
z,
s=4,t=5
y=0 1 2 3
x=0
1
2
3

z2=(3,2,3,1,0)

(n=st, k, d), (a =5, B=s"1 Fg), s=d—k+1

There are na = s x t x s* code symbols in F,.
They can be indexed by 3-tuple (x, y; z) where x € Zs, y € Z:, z € Z!.
(x, y) tuple indicates node, z index the symbols index within « symbols.

Pair symbol to C(x,y, z) is obtained by simply replacing x with z,
C*(X7y7£) = C(Zy,y72(y,X))
where z, 7 X, Z(y7 X) = (207 s Zy=1, X, Zy4l, 7zf*1)
PFT is performed to get U(x, y, z) where
Uxy,z) | _ |1 v C(x,y,2)
For every z € Z!, the collection of symbols {U(x,y,z) | x € Zs,y € Z¢}

20/38

Encoding the Clay Code

@ The previous slide did not explain how encoding takes place as the code was not in
systematic form.

@ We will now explain encoding data under the Clay Code.

21/38

Consider a file of size 64MB

64MB

e We show encoding of the file using (n =4, k = 2) Clay code.

Break the file into k = 2 data chunks each of 32MB.

3D cube representation of Clay Code

32MB) (32MB

y

The cube has:

X

¥
7 = (0,0) e 4 columns, which corre§pond to
the 4 chunks (each of size 32MB,
stored in a different disk/node).

7 e 4 horizontal planes.

e Each column has 4 points that
correspond to sub-chunks of size
g 8MB

[R5

z=(1,1)

|

€=

Place two 32MB chunks in two data nodes

(32MB

y

Pg —
z=(0,0)
—>

I

A

—
2= (11) <0 -

1]

Place two 32MB chunks in two data nodes

2% y
z=(0,0) c’
ﬁ

I

1]

1]

J <
7

z=(1,1) =

We now have the data nodes

I

1]

1]

D

| W

I

I

NN

UL

I
4

We will now compute the parity nodes

D

I

[\

| W

N

I

N

X

Will get there through an intermediate “Uncoupled data cube”

yan J P4) pan
1 e o7 %
— :> = = :> =
4/ - / ’/_, ; P4
nZ Iz % 5/: N4 _

Start filling the Uncoupled data cube on the right as follows

f/% L
1 v S
) L7
1 < < 7

Certain pairs of points in the cube are “coupled”

(?ﬁ el
Y m— —
N / L7
% g < 7

PRT is a 2x2 matrix transform, It is reverse of PFT

/jﬁ C @8 S
g o
&N 4 1 L7
% Z 9% s 7

Place the sub-chunks obtained in the uncoupled data cube

NN NN

Place the sub-chunks obtained in the uncoupled data cube

NN NN

Place the sub-chunks obtained in the uncoupled data cube

I e
I 7 [l 7
< 7

I:IC*
o

NN N TN

Place the sub-chunks obtained in the uncoupled data cube

o O
L / cpe \
T PRT S
% 4 U el
N C* O O
A i u u < 7

Place the sub-chunks obtained in the uncoupled data cube

/-4 0y

} —
an s L7
~ o O O =

7 U < S 7

Place the sub-chunks obtained in the uncoupled data cube

[
j

{
cC
C
*
[

C*

NN N TN

Place the sub-chunks obtained in the uncoupled data cube

—

|

NN N TN

7
e
7

|

Red dotted sub-chunks are not paired, they are simply carried over

N\ {\ (\n AN
Il
@@E
I

T ’\U/

Red dotted sub-chunks are not paired, they are simply carried over

[T

NN N TN

We now have data-part of the uncoupled data cube

UL

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

=

z=(0,0)

TRKR
NANN N

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z=(0,0)

ol e |
oL @ | o

U

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

U

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

=

z=(0,0)

NN

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

=

NN

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

=

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

=

Now we have the complete Uncoupled data cube

=

Parity sub-chunks of Coupled data cube can now be computed

f?ﬁ c,)j]

X

I

DN AN AN AN

/
¥ 7
/|

NONN

—

I

DN DN AN AN

NONN

Perform PFT

Ao

f
\
| "

I

I

DN DN AN AN

Perform PFT

v

f
\
| "

I

I

DN DN AN AN

Perform PFT

ay —

) T
C* =

I

Perform PFT

I

10

f/L}?
-} >
i]
/ JU
% e

Perform PFT

I

v
\
U*

Perform PFT

I

10

I

DN DN AN AN
\

\

Perform PFT

-

Red dotted sub-chunks are simply carried over

|— y

®
U

I

DN AN AN AN
\

|

AN AN AN

\
I

Red dotted sub-chunks are simply carried over

|— y

®
U

I

DN AN AN AN

|

AN AN AN

The encoding is now complete!

I

Recovery from single node failure

22/38

Node Repair: One node fails

(:I{ii‘::“\fi{:I{\:I{:U:

P —
©-

Only half of planes participate in repair

e Total Helper Data = 8MB X 3 X 2 = 48MB
e As opposed to RS code =8MB X2 X4 =64MB

e Much larger savings seen form > 2

Perform PRT to get possible uncoupled sub-chunks

Run RS decoding on each of the selected planes

)

=

PRT

NN

RS
Decode
—

<

<L

N N

Run RS decoding on each of the selected planes

)

=

PRT

NN

—

. o
Decode
U

<L

N N

Run RS decoding on each of the selected planes

)

=

PRT

NN

RS
Decode

.

<L

N N

Run RS decoding on each of the selected planes

)

=

PRT

NN

RS
Decode

)

.
“

We now have the following sub-chunks available

N
L\ I
N

Half the number of required sub-chunks are now already computed

ﬁ oo ? /E
— —

N
N

D —
i

cHl

0
L=

N

[:%0:

Compute C* from C and U

0
L=

N

[:%0:;:

Compute C* from C and U

N

[:%0:;:

Compute C* from C and U

)
D

N

[:%0:;::

Compute C* from C and U

)
D

E/ I —

0

I

I

I

Content of failed node is now completely recovered

(I

A

(I

I

J

Replacement

node

MDS Property of Clay Code

@ Any n — k node failures can be recovered from.
@ The decoding algorithm recovers the lost symbols layer by layer sequentially.
@ It uses functions scalar MDS decode, PFT, PRT and the function that computes U from {U*, C}.

@ Decoding algorithm involves « scalar MDS decode operations along with 2n3 Galois field scalar
multiplications and ng Galois XOR operations.

@ RS decode for the same amount of data involves « scalar MDS decode operations.

23/38

Implementation and Evaluation of Clay Code

24/38

Ceph: Architecture

Object Storage Daemon (OSD): process of Ceph, associated with a storage unit.
Pool: Logical partitions, associated with an erasure-code profile.
Placement Group(PG): Collection of n OSDs.

Each pool can have a single or multiple PGs associated with it.

OBJECT

Erasure Code Profile —» | POOL

PG1

OBJECT PGZ P TSN OBJECT

v
osps| [osp4| [osp3| [osp7]| [osp1

p-OSD p-OSD

0SD1 0SD5 0SD6 0SD4 0SD3

25/38

Recovery Code Flow in Ceph

minimum_to_decode(): query for helper node indices
helper node indices

ECSubRead: query for helper information

helper information

call decode() for repairing

recovered data

sending recovered data to replacement OSD
ECSubWrite: acknowledgement from replacement OSD

| ~>» Network Traffic

NN B W=

Helper
08D 1

Recovery Code Flow in Ceph

26 /38

Ceph: Contributions

@ We introduced the notion of sub-chunking to enable use of vector erasure codes with
Ceph.

osd: introduce sub-chunks to erasure code plugin interface

LU EGESE tchaikov merged 3 commits into cephimaster from mynaramana:arraycode on Nov 1, 2017

e Clay code is available as an erasure code plugin in Ceph for all parameters (n, k, d)
erasure-code: add clay codes ./

[V EGESE tchaikov merged 2 commits into ceph:master from tchaikov:wip-23962 on Oct 2

@ Both these features are currently available in master codebase of ceph.

@ Clay code will be available in Ceph’s next release nautilus.

27 /38

Evaluation of the Clay Code

Evaluated on a 26 node (m4.xlarge) AWS cluster.
One node hosts Monitor (MON) process of Ceph.
Remaining 25 nodes host one OSD each.

Each node has 500GB SSD type volume attached.

Two workloads

> Workload W1: fixed size 64MB objects — stripe size 64MB
» Workload W2: mixture of 1IMB, 32MB, and 64MB size objects, — stripe size 1IMB

@ Both single PG and multiple PG (512 PG) experiments.
@ Codes evaluated: (6, 4, 5), (12, 9, 11) and (20, 16, 19).

28 /38

Network Traffic and Disk Read : W1 Workload, 1 PG

—.600 600
E 100 o 7 ? 2o I 7 7 v
ot e iy e
% Clay (d=n-1) Theoretical # RS Theoretical % Clay (d=n-1) Theoretical % RS Theoretical
@ Network traffic reduced to 75%, 48%, 34% of @ Repair disk read reduced to 62%, 41%, 29% of
that of RS as predicted by theory. that of RS as predicted by theory.

29/38

Network Traffic and Disk Read : W2 Workload, 1 PG

_500 __600
p P 2) N N
8400 7 2 2 £ 400 % \ % \ %
2 » - - 3 1 1
o v - 2 W W il
2 . o 2 g, \UM77 A7 W47
a R F °
g % VD % (64) (12,9) (20,16)
(6,4) (12,9) (20,16) = Clay (d=n-1), worst case M Clay (d=n-1), best case
M Clay (d=n-1) W RS mRS # Clay (d=n-1) Theoretical
7% Clay (d=n-1) Theoretical % RS Theoretical % RS Theoretical
@ Network traffic reduced to 75%, 48%, 34% of @ Disk read for (6, 4, 5) code is optimal
that of RS matching the theoretical values. @ For (12, 9, 11) and (20, 16, 19) codes effect of
@ Reductions same as that for W1. fragmented read is observed.

30/38

Fragmented Read

@ During repair of a chunk only 5 < a sub-chunks

22 are read from each helper nodes.
@.20 @ During worst case failures, the sub-chunks needed
515 in repair are not located contiguously.
o
%10 @ sub-chunk size = stripe size/ka
A v L
0 % 0 1024, k-
o % % @ For (20,16,19) code o = 1024, k = 16. Therefore,
1MB Stripe Size (W2) 64MB Stripe Size (W1) for stripe sizes 64MB and 1MB, the sub-chunk
Worst case M Best case % Theoretical sizes are 4KB, 64B respeCt'VeIY-
Best and worst case, disk read during repair of @ If sub-chunk size is aligned to 4kB (SSD page
(20,16,19) code for stripe sizes IMB, 64MB granularity), the fragmented-read problem can be
avoided.

31/38

Repair Time and Encoding Time: W1 Workload, 1 PG

N) 3
o o o
o o o

Avg Repair Time (ms)
]
3

(6,4) (12,9) (20,16)
W Clay (d=n-1) ®RS

@ Repair time reduced by 1.49x, 2.34x, 3x of that of
RS.

Avg Encode
Computation Time

(mS)

@
=}
©
N
o

5

Avg Encoding Time
m
00
[}
S

. 880
M
I I o II I I
820

(64) (12,9 (20,16) (6,4) (12,9) (20,16)
M Clay (d=n-1) ®RS M Clay (d=n-1) ®mRS

The total encoding time remains almost same as
that of RS.

While, encode computation time of Clay code is
higher than that of RS code by 70%.

This is due to the additional PFT and PRT
operations.

32/38

Normal and Degraded 1/0 : W1 workload, 1 PG

MB/s
(R

V- A

VA

VAL AAAAZ,
DN
LTI
Lo
NN

NN

DN

(12,9,11) (20,16) (20,
R Clay RS Clay RS Clay
B Normal Write # Degraded Write = Normal Read @ Degraded Read

P
S

o NN

= [
A

]
NN
9 [

s
o
v & [Immm

=)
Kl
il
=
‘_I\-J
Y=}
=
=

@ Better degraded read 16.24%,9.9%, 27.17% and write throughput increased by 4.52%, 13.58%, 106.68%
of that of RS.

@ Normal read and write throughput same as that of RS.

33/38

Network Traffic and Disk Read : W1 workload, 512 PG

(6,4) (12,9)
M Clay (d=n-1) ®ERS

(20,16)

500
[=a]
G 400
< 300
@
& 200

4 100
&

0

@ Assignment of OSDs and objects to PGs is dynamic.

» Number of objects affected by failure of an OSD can vary across different runs of multiple-PG
experiment.

(6,4) (12,9)
M Clay (d=n-1) ®ERS

(20,16)

@ Sometimes an OSD that is already part of the PG can get reassigned as replacement for the failed OSD.

> Number of failures are treated as two resulting in inferior network-traffic performance in multiple-PG

setting.

34/38

Multiple Node Failures

80 ® Clay:(14,10,13)

m x Clay: (14,10,11) g 800

E 0 * . . ® L Clay:(141012) < 600

= ® RS: (1410) &

g E 400 o

g 40 T 200

25 Wl

g 20 2 One failure Two failures Three failures Four failures

2 m(14,10,11)Clay #(14,10,12)Clay 1(14,10,13)Clay ®(14,10)RS
0

1 2 3 4

@ Workload W1, 512 PG

No of erasures L. . . .
@ Network traffic increases with increase in number

Average theoretical network traffic during repair of of failed chunks.

64MB object.

35/38

Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.

36/38

Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.

@ The theoretical promise of the Clay code is reflected in the
evaluation presented here

36/38

Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.

@ The theoretical promise of the Clay code is reflected in the
evaluation presented here

@ Specifically, for Workloads with large sized objects, the Clay
code (20,16, 19):

> resulted in repair time reduction by 3x.

» Improved degraded read and write performance by 27.17%

and 10668% respectively.

36/38

Conclusions

@ We provide an open-source implementation of Clay code for any (n, k, d) parameters.

@ The theoretical promise of the Clay code is reflected in the
evaluation presented here

In summary, Clay

Specifically, for Workl ith | i i he Cl Codes are well
° ng;:l(gg {6 (15) orkloads with large sized objects, the Clay poised to make the
> resulted in repair time reduction by 3x. leap from theory to

practice!!!
» Improved degraded read and write performance by 27.17%

and 10668% respectively.

36/38

Thank You!

37/38

Backup Slides!

38/38

Decode: Two nodes fail

Assign Intersection Score to each plane

A
" %

Intersection score is given by the number of hole-dot pairs

Assign Intersection Score to each plane

A
" %

Intersection score is given by the number of hole-dot pairs

For non erased nodes, get the uncoupled sub-chunks for planes with 1S=0

H
o
L
f— q
?\
i
[
—_ F=a
e
i
N
L
—
A
Lo
*—— \ b3 =
[b
[\: :
Lol I
£ —\ I
e —
i i
i G m—t /
e \ =g
HEN Y
. [V
tes W
=4 P—1 y
i
o

RS decode to get the remaining uncoupled-subchunks

4

RS
Decode
—

V4
U

We now have following sub-chunks

D\\-D\ I\

Known sub-chunks

For non erased nodes, get the uncoupled sub-chunks for planes with 1S=1

20 g
i | Y,
< N
= | u,*
I:/~ \\‘;:;‘ U *D/ /g "=
SN O L ’ U U Uzﬂ
nd a U 7

Known sub-chunks
Get U, from U,* and C,

Get U1 from U1* and C1

RS decode to get the remaining uncoupled-subchunks

Known sub-chunks

RS
Decode

S

%
i

We now have the following sub-chunks

7 0 i

Known sub-chunks

For non erased nodes, get the uncoupled sub-chunks for planes with 1S=2

%

NN

I U

Known sub-chunks

Get U, from U,* and C,

Get U1 from U1* and C1

Get the uncoupled sub-chunks for planes with 1S=2

~ 7

[’z Rs

|
N

Decode

NN

: D\\-D\ I\

I U

Known sub-chunks

Get U, from U,* and C,

Get U1 from U1* and C1

We now have all the uncoupled sub chunks

o

X

The coupled sub chunks can now be computed using PFT

L o

PFT

X

I

DN AN AN AN

/
¥ 7
/|

The decoding is now complete

I

