Rate-Optimal Streaming Codes for Channels with Burst and Isolated Erasures

M. Nikhil Krishnan (Advisor: P. Vijay Kumar)

ECE Student Seminar Series Indian Institute of Science, Bangalore, India

August 23, 2018

Receiver

- Delay at least 3x70 milli sec!
- Delay too large for interactive applications
- There is need for coding

- Delay at least 3x70 milli sec!
- Delay too large for interactive applications
- There is need for coding

Retransmission

Receiver

- Delay at least 3x70 milli sec!
- Delay too large¹ for interactive applications
- There is need for coding

Sender

 $^1 \rm International$ Telecommunication Union recommends the end-to-end latency in interactive voice/video applications to be <150 milli sec

Codes for Streaming: Overview

- A continuous stream of message packets s[0], s[1],... to be encoded and sent over an erasure channel².
- ► Each coded packet to be decoded with a delay of at most *T*.

²blue rectangles indicate erased packets

Why not traditional codes, say MDS?

- ► Assume there is a channel which introduces a burst erasure of length ≤ 3.
- Let us consider using a coding scheme which is based on a systematic [6, 3]-MDS code.
- ▶ [6,3]-MDS code:
 - 3 message symbols are encoded to obtain 6 code symbols (the 3 message symbols + 3 parity symbols),
 - ▶ any 3 out of 6 code symbols can give the 3 message symbols.

m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] p[3] p[4] p[5] p[6] p[7] p[8] p[9] p[10] **x**[3]

Time \rightarrow

m[0]	m[1]	m[2]		m[6]	m[7]	m[8]	m[9]	m[10]	
*	*	*		p[6]	p[7]	p[8]	p[9]	p[10]	

Packets x[3], x[4], x[5] erased (burst erasure of length 3)

Time \rightarrow

m[0]	m[1]	m[2]				m[6]	m[7]	m[8]	m[9]	m[10]	
•	*	*	p[3]	p[4]	p[5]	p[6]	p[7]	p[8]	p[9]	p[10]	

m[0]	m[1]	m[2]	m[3]	m[4]	m[5]	m[6]	m[7]	m[8]	m[9]	m[10]	
*	*	*	p[3]	p[4]	p[5]	p[6]	p[7]	p[8]	p[9]	p[10]	

worst-case delay is 5 time units!

Packets [4], [5], [6] erased (burst erasure of length 3)

m[0]	m[1]	m[2]	m[3]				m[7]	m[8]	m[9]	m[10]	
*	*	*	m[0]	m[1]	m[2]	m[3]	m[4]	m[5]	m[6]	m[7]	

m[0]	m[1]	m[2]	m[3]	m[4]	m[5]	m[6]	m[7]	m[8]	m[9]	m[10]	
*	*	*	m[0]	m[1]	m[2]	m[3]	m[4]	m[5]	m[6]	m[7]	

delay is 3 time units!

MDS Code vs Delayed Repetition Code

- Both codes have the same rate: $\frac{1}{2}$.
- MDS code is inferior with respect to the delay performance.
- ▶ However, we didn't consider arbitrary erasure patterns in the example.
- In this talk, we discuss "optimal" codes that can tolerate arbitrary erasures and burst erasures.

Codes for Streaming: Setting

- ▶ Introduced by Martinian and Sundberg [1].
- ► Message packets: s[0], s[1],... to be encoded and sent over the channel.

- We consider a systematic, causal encoder, i.e., $\mathbf{x}[t] = [\mathbf{s}[t]; \mathbf{p}[t]]$.
- ▶ $\mathbf{p}[t] \in \mathbb{F}_q^{n-k}$ is a function of message packets $\{\mathbf{s}[0], \mathbf{s}[1], \dots, \mathbf{s}[t]\}$.
- Rate is naturally defined as $\frac{k}{n}$.

[1] E. Martinian and C. W. Sundberg, "Burst erasure correction codes with low decoding delay," *IEEE Trans. Inf. Theory*, 2004.

Codes for Streaming: Setting

- Channel introduces erasures at (coded) packet level.
- Decoder with delay constraint T.
- ► Decoded message packet, $\hat{\mathbf{s}}[t]$ is a function of coded packets $\{\mathbf{y}[0], \mathbf{y}[1], \dots, \mathbf{y}[t + T]\}.$

Sliding-Window Channel Model: S(N, B, W)

- Consider any sliding window of width W.
- The channel [2] can only introduce one of the following 2 erasure patterns:
 - 1. \leq N erasures at arbitrary locations within sliding-window of width W,
 - 2. an erasure-burst of length at most B, $B \ge N$.
- Decoding delay constraint, T, $B \leq T$
- Example channel realization with N = 2, B = 3, W = 4:

[2] A. Badr, P. Patil, A. Khisti, W. Tan, and J. G. Apostolopoulos, "Layered Constructions for Low-Delay Streaming Codes," *IEEE Trans. Inf. Theory*, 2017.

Streaming Capacity

- A rate R is achievable over S(N, B, W) with decoding delay constraint T ⇒ there exists a streaming code with rate R that can recover from all the erasure patterns permitted by S(N, B, W) with decoding delay ≤ T for each message packet.
- ▶ The following upper bound for an achievable rate *R* is known [2]:

$$R \le \frac{T_{\rm eff} - N + 1}{B + T_{\rm eff} - N + 1},\tag{1}$$

where $T_{\text{eff}} \triangleq \min\{T, W - 1\}.$

[2] A. Badr, P. Patil, A. Khisti, W. Tan, and J. G. Apostolopoulos, "Layered Constructions for Low-Delay Streaming Codes," *IEEE Trans. Inf. Theory*, 2017.

Streaming Capacity

- Achievability of the bound not known in general.
- ▶ In this work, we provide codes that meet the bound for all feasible parameters of *N*, *B*, *W*, *T*.
- A concurrent work by Fong et al. [3] also proves the achievability of the rate upper-bound.

[3] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos, "Optimal Streaming Codes for Channels with Burst and Arbitrary Erasures," in *Proc. ISIT*, 2018.

- ► Consider a streaming code C_{str} which permits recovery of any packet $\mathbf{x}[t]$ with a delay of $T_{eff} \triangleq \min\{T, W 1\}$ even in presence of
 - ▶ a burst erasure of length at most *B*, or
 - ▶ at most *N* isolated erasures.

This design constraint is

- stricter in terms of delay constraint,
- seems to deal with a more relaxed erasure model (only one burst of length B over all time or only N random erasures over all time)
 - \blacktriangleright but can actually handle a burst of length B or N random erasures in any window of width W
- ▶ We illustrate with an example: let

$$W = 4, T = 4 \implies T_{eff} = 3; N = 2, B = 3.$$

$$T_{eff} = 3, N = 2, B = 3$$

 $\boldsymbol{x}[t]$	x [t+1]		x [t+5]	x [t+6]	x [t+8]	

- Consider a streaming code C_{str} which permits recovery of any packet $\mathbf{x}[t]$ with a delay of $T_{eff} \triangleq \min\{T, W-1\}$ even in presence of
 - a burst erasure of length at most B, or
 - at most N isolated erasures.

• Let
$$W = 4$$
, $T = 4 \implies T_{eff} = 3$; $N = 2$, $B = 3$.

$$T_{eff} = 3, N = 2, B = 3$$

- ▶ Consider a streaming code C_{str} which permits recovery of any packet $\mathbf{x}[t]$ with a delay of $T_{eff} \triangleq \min\{T, W 1\}$ even in presence of
 - a burst erasure of length at most B, or
 - at most N isolated erasures.

• Let W = 4, $T = 4 \implies T_{eff} = 3$; N = 2, B = 3.

- ▶ Consider a streaming code C_{str} which permits recovery of any packet $\mathbf{x}[t]$ with a delay of $T_{eff} \triangleq \min\{T, W 1\}$ even in presence of
 - a burst erasure of length at most B, or
 - at most N isolated erasures.

• Let $W = 4, T = 4 \implies T_{eff} = 3; N = 2, B = 3.$

The Simplified Code-Design Criteria is Sufficient

Hence, to design a streaming code for S(N, B, W) with a delay-constraint T, it suffices to design a streaming code C_{str} which permits recovery of packet $\mathbf{x}[t]$ with delay of $T_{eff} \triangleq \min\{T, W-1\}$ even in the presence of

- a burst erasure of length at most B, or
- ▶ at most *N* isolated erasures.

Diagonal Coding

- ► A known technique that enables one to convert a *canonical* [n, k] block code C into a convolutional code.
- ► Example: Let the canonical code C be a systematic [5,3] code. Use C to code across diagonals:

Rate of the convolutional code remains as ^k/_n.

Desired Properties on the Canonical Block Code $\ensuremath{\mathcal{C}}$

- ► We intend to code across diagonals using the canonical code to obtain the desired streaming code C_{str} for the S(N, B, W) channel.
- Requirements on canonical [n, k] linear block code C:
- ► $\mathbf{c} = (c_0, c_1, \ldots, c_{n-1}) \in \mathcal{C}, \ \Delta_i \triangleq \min\{i + T_{\text{eff}}, n-1\}.$
- Let c_i be recoverable from {c_j : j ∈ [0, Δ_i]} even in presence of one of the following:
 - $\leq N$ arbitrary erasures among the symbols $\{c_i : j \in [0, \Delta_i]\},\$
 - ▶ a burst of length $\leq B$ affecting the symbols $\{c_j : j \in [0, \Delta_i]\}$.
- ▶ Goal: Construct a canonical code C with dimension $k = (T_{eff} N + 1)$ and code-length $n = (B + T_{eff} - N + 1)$, which will then give rise to an C_{str} that meets the rate upper-bound (1).

			r	
c ₀	<i>c</i> ₁	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄

$$T_{eff} = 3, N = 2, B = 3$$

Designing C: Construction-A

- ► For given parameters N, B, W, T_{eff} : $R \leq \frac{T_{eff} N + 1}{B + T_{eff} N + 1}$.
- We shall construct a rate-optimal code C with k = (T_{eff} − N + 1), n = (B + T_{eff} − N + 1).
- For c ∈ C, c_i can be recovered from coordinates
 [0, min{i + T_{eff}, n − 1}] even in presence of length-B burst or N
 isolated erasures.
- Let $T = aB + \delta$, where $a \ge 0$ and $1 \le \delta \le B$.
- Constraint: $\delta \ge (B N)$ (can be removed)
- ► Basic idea: Use an N-erasure correcting [k + N, k] MDS code + (B - N) low-weight check-sums.

Designing C: Construction-A

- Consider a systematic [n_{MDS} = T + 1, k_{MDS} = k, d_{min} = N + 1] MDS code C_{MDS} over F_q ⊆ F_{q²}.
- Let $\mathbf{c} \triangleq (c_0, c_1, \dots, c_{n-1}) \in \mathcal{C}$.
- $(c_0, c_1, c_2, \ldots, c_{T-1}, c_{n-1}) \in C_{MDS}.$
- ► For $0 \le j \le (N T 2)$ }, $c_{T+j} = \alpha c_j + c_{j+B} + \ldots + c_{j+aB}$, where $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.
- Field-size requirement $O(T^2)$.

Example: Construction-A

▶
$$N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$$

- ▶ [11, 9, 3] MDS code: C_{MDS}.
- $(c_0, c_1, ..., c_9, c_{12}) \in C_{MDS}$

c ₀	c ₁	с ₂	¢3	¢4	с ₅	¢ ₆	с ₇	¢8	c ₉	ac_0^{+} $c_4^{+}c_8^{-}$	αc ₁ + c ₅ + c ₉	с ₁₂
										c ₁₀	c ₁₁	

►
$$N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$$

- ▶ [11,9,3] MDS code: C_{MDS}.
- ▶ $(c_0, c_1, ..., c_9, c_{12}) \in C_{MDS}$

c _o	c ₁	c ₂	c ₃	¢4	с ₅	¢ ₆	с ₇	¢8	c ₉	$ac_{0}^{+}+c_{4}^{+}+c_{8}^{-}$	αc ₁ + c ₅ + c ₉	c ₁₂
										c ₁₀	c ₁₁	

▶
$$N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$$

▶ [11, 9, 3] MDS code: C_{MDS}.

►
$$(c_0, c_1, \ldots, c_9, c_{12}) \in \mathcal{C}_{\mathsf{MDS}}$$

delay = T_{eff} =10

- ▶ $N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$
- ▶ [11,9,3] MDS code: C_{MDS}.
- $(c_0, c_1, ..., c_9, c_{12}) \in C_{MDS}$

c ₀	c ₁	с ₂	¢3	¢4	c ₅	¢ ₆	с ₇	¢8	c ₉	ac_0^+ $c_4^+ c_8^-$	$ac_1 + c_5 + c_9$	с ₁₂
										c ₁₀	с ₁₁	

•
$$N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$$

- ▶ [11,9,3] MDS code: C_{MDS}.
- $(c_0, c_1, ..., c_9, c_{12}) \in C_{MDS}$

Example: Construction-A: Isolated Erasures

- $N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$
- [11, 9, 3] MDS code: C_{MDS} .
- $(c_0, c_1, \ldots, c_9, c_{12}) \in C_{MDS}$.
- ➤ C can recover from any N erasures because of the embedded MDS code C_{MDS}.
- Delay constraints need to be checked for isolated erasures involving at least one among the coordinates {c₀, c₁}.

c _o	¢1	с ₂	¢3	¢4	¢5	¢ ₆	с ₇	¢8	с ₉	$ac_{0}^{+}+c_{4}^{+}+c_{8}^{-}$	αc ₁ + c ₅ + c ₉	с ₁₂
										C ₁₀	c,1	

Example: Construction-A: Isolated Erasures

- $N = 2, B = 4, T_{eff} = 10, k = 9, n = 13.$
- ▶ [11,9,3] MDS code: C_{MDS}.
- $(c_0, c_1, \ldots, c_9, c_{12}) \in C_{MDS}$.
- ➤ C can recover from any N erasures because of the embedded MDS code C_{MDS}.
- Delay constraints need to be checked for isolated erasures involving at least one among the coordinates {c₀, c₁}.

Remark

- There is a Construction-*B* which removes the constraint $\delta \ge (B N)$.
- ► Uses linearized polynomials and require a field-size, which is exponential in *T*.

Thank You!