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Coding for Communication with Delay Constraints 
(Codes for Streaming)

………..
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Streaming Applications: Need for CodingNeed for Coding

Sender Receiver

Packet dropped

• Delay at least 3x70 milli sec!
• Delay too large* for interactive applications.
• We need coding.

*International Telecommunication Union recommends the end-to-end latency in interactive voice/video applications to be be <150 milli sec !!
Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

I Delay at least 3x70 milli sec!

I Delay too large for interactive applications

I There is need for coding
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Streaming Applications: Need for CodingNeed for Coding

Sender Receiver

Feedback

• Delay at least 3x70 milli sec!
• Delay too large* for interactive applications.
• We need coding.

*International Telecommunication Union recommends the end-to-end latency in interactive voice/video applications to be be <150 milli sec !!
Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

I Delay at least 3x70 milli sec!

I Delay too large for interactive applications

I There is need for coding
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Streaming Applications: Need for CodingNeed for Coding

Sender Receiver

Retransmission

• Delay at least 3x70 milli sec!
• Delay too large* for interactive applications.
• We need coding.

*International Telecommunication Union recommends the end-to-end latency in interactive voice/video applications to be be <150 milli sec !!
Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

I Delay at least 3x70 milli sec!
I Delay too large1 for interactive applications
I There is need for coding
1International Telecommunication Union recommends the end-to-end latency in

interactive voice/video applications to be < 150 milli sec
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Codes for Streaming: Overview
I A continuous stream of message packets s[0], s[1], . . . to be encoded

and sent over an erasure channel2.
I Each coded packet to be decoded with a delay of at most T .

51 2 3 4 6 7 8 9 ….

51 2 3 4 6 7 8 9

51 2 3 4 6 7 8 9

51 2 3 4 6 7 8 9Network

….

….

….

Streaming Server

2blue rectangles indicate erased packets
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Why not traditional codes, say MDS?

I Assume there is a channel which introduces a burst erasure of length
≤ 3.

I Let us consider using a coding scheme which is based on a systematic
[6, 3]-MDS code.

I [6, 3]-MDS code:
I 3 message symbols are encoded to obtain 6 code symbols (the 3

message symbols + 3 parity symbols),
I any 3 out of 6 code symbols can give the 3 message symbols.

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[0] m[1] m[2] p[3] p[4] p[5]
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An MDS-based Scheme for Burst Erasures

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[3] m[6] m[7]

p[3] p[8]

m[4] m[5] m[8] m[9] m[10]

p[4] p[5] p[6] p[7] p[9] p[10]* * *

………

x[3]

Time →
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An MDS-based Scheme for Burst Erasures

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[6] m[7]

p[8]

m[8] m[9] m[10]

p[6] p[7] p[9] p[10]* * *

………

Time →

Packets  x[3], x[4], x[5] erased (burst erasure of length 3) 
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An MDS-based Scheme for Burst Erasures

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[6] m[7]

p[8]

m[8] m[9] m[10]

p[6] p[7] p[9] p[10]* * *

………

Time →

m[0] m[1] m[2]

p[3] p[4] p[5]
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An MDS-based Scheme for Burst Erasures

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[6] m[7]

p[3]

m[8] m[9] m[10]

p[4] p[5] p[9] p[10]* * *

………

Time →

worst-case delay is 5 time units!

m[3]

p[8]

m[4] m[5]

p[6] p[7]
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A Delayed Repetition Code

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[3] m[6] m[7]

m[0] m[5]

m[4] m[5] m[8] m[9] m[10]

m[1] m[2] m[3] m[4] m[6] m[7]* * *

………

Time →
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A Delayed Repetition Code

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[3] m[7]

m[0] m[5]

m[8] m[9] m[10]

m[4] m[6] m[7]* * *

………

Time →

     Packets Ȅ[4], Ȅ[5], Ȅ[6] erased (burst erasure of length 3) 
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A Delayed Repetition Code

m[0]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[7]

m[0] m[5]

m[8] m[9] m[10]

m[4] m[6] m[7]* * *

………

Time →

m[1] m[2] m[3]

m[1] m[2] m[3]
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A Delayed Repetition Code

m[0] m[1]

Ref: Badr et al. “Perfecting Protection for Interactive Multimedia: A survey of forward error correction for low-delay interactive applications”, SP-MAG 2017

m[2] m[3] m[7]

m[0]

m[8] m[9] m[10]

m[1] m[2] m[3] m[7]* * *

………

Time →

m[6]

m[5]

m[4] m[5]

m[4] m[6]

delay is 3 time units!
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MDS Code vs Delayed Repetition Code

I Both codes have the same rate: 1
2 .

I MDS code is inferior with respect to the delay performance.

I However, we didn’t consider arbitrary erasure patterns in the example.

I In this talk, we discuss “optimal” codes that can tolerate arbitrary
erasures and burst erasures.
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Codes for Streaming: Setting

I Introduced by Martinian and Sundberg [1].

I Message packets: s[0], s[1], . . . to be encoded and sent over the
channel.

𝒔[0], 𝒔[1], … . . , 𝒔[𝑡] Encoder 𝒙[𝑡]

𝑘

(𝑛 − 𝑘)
𝑛

time 𝑡

message packets coded packet

𝑘
𝒔[𝑡]

𝒑[𝑡]

I We consider a systematic, causal encoder, i.e., x[t] = [s[t];p[t]].

I p[t] ∈ Fn−k
q is a function of message packets {s[0], s[1], . . . , s[t]}.

I Rate is naturally defined as k
n .

[1] E. Martinian and C. W. Sundberg, “Burst erasure correction codes with low decoding delay,”

IEEE Trans. Inf. Theory, 2004.
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Codes for Streaming: Setting

I Channel introduces erasures at (coded) packet level.

I Decoder with delay constraint T .

I Decoded message packet, ŝ[t] is a function of coded packets
{y[0], y[1], . . . , y[t + T ]}.

𝒚 0 , 𝒚 1 , 𝒚 2 ,…… , 𝒚[𝑡 + 𝑇] Decoder ො𝒔[𝑡]

(𝑛 − 𝑘)
𝑛

Delay at most 𝑇

received coded packets decoded message packet
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Sliding-Window Channel Model: S(N ,B ,W )
I Consider any sliding window of width W .
I The channel [2] can only introduce one of the following 2 erasure

patterns:
1. ≤ N erasures at arbitrary locations within sliding-window of width W ,
2. an erasure-burst of length at most B, B ≥ N.

I Decoding delay constraint, T , B ≤ T
I Example channel realization with N = 2,B = 3,W = 4:

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 8]…. ….

𝑊 = 4, 𝐵 = 3

𝑊 = 4,𝑁 = 2

[2] A. Badr, P. Patil, A. Khisti, W. Tan, and J. G. Apostolopoulos, “Layered Constructions for

Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017.
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Streaming Capacity

I A rate R is achievable over S(N,B,W ) with decoding delay constraint
T =⇒ there exists a streaming code with rate R that can recover
from all the erasure patterns permitted by S(N,B,W ) with decoding
delay ≤ T for each message packet.

I The following upper bound for an achievable rate R is known [2]:

R ≤ Teff − N + 1

B + Teff − N + 1
, (1)

where Teff , min{T ,W − 1}.

[2] A. Badr, P. Patil, A. Khisti, W. Tan, and J. G. Apostolopoulos, “Layered Constructions for

Low-Delay Streaming Codes,” IEEE Trans. Inf. Theory, 2017.
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Streaming Capacity

I Achievability of the bound not known in general.

I In this work, we provide codes that meet the bound for all feasible
parameters of N,B,W ,T .

I A concurrent work by Fong et al. [3] also proves the achievability of
the rate upper-bound.

[3] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos, “Optimal Streaming

Codes for Channels with Burst and Arbitrary Erasures,” in Proc. ISIT, 2018.
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A Simplified Code-Design Criteria
I Consider a streaming code Cstr which permits recovery of any packet

x[t] with a delay of Teff , min{T ,W − 1} even in presence of
I a burst erasure of length at most B, or
I at most N isolated erasures.

This design constraint is
I stricter in terms of delay constraint,
I seems to deal with a more relaxed erasure model (only one burst of

length B over all time or only N random erasures over all time)
I but can actually handle a burst of length B or N random erasures in any

window of width W

I We illustrate with an example: let
W = 4,T = 4 =⇒ Teff = 3;N = 2,B = 3.

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 8]…. ….

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3
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A Simplified Code-Design Criteria

I Consider a streaming code Cstr which permits recovery of any packet
x[t] with a delay of Teff , min{T ,W − 1} even in presence of

I a burst erasure of length at most B, or
I at most N isolated erasures.

I Let W = 4,T = 4 =⇒ Teff = 3;N = 2,B = 3.

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 8]…. ….

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3

𝒙[𝑡 + 2]
must be decoded with delay 3

(part of a burst of length 𝐵 = 3)
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A Simplified Code-Design Criteria

I Consider a streaming code Cstr which permits recovery of any packet
x[t] with a delay of Teff , min{T ,W − 1} even in presence of

I a burst erasure of length at most B, or
I at most N isolated erasures.

I Let W = 4,T = 4 =⇒ Teff = 3;N = 2,B = 3.

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 8]…. ….

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3

𝒙[𝑡 + 3]
must be decoded with delay 3

(part of burst of length 2 < 𝐵)

decoded
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A Simplified Code-Design Criteria

I Consider a streaming code Cstr which permits recovery of any packet
x[t] with a delay of Teff , min{T ,W − 1} even in presence of

I a burst erasure of length at most B, or
I at most N isolated erasures.

I Let W = 4,T = 4 =⇒ Teff = 3;N = 2,B = 3.

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 8]…. ….

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3

𝒙[𝑡 + 4]
must be decoded with delay 3

(part of 𝑁 = 2 isolated erasures)

𝒙[𝑡 + 2] 𝒙[𝑡 + 3]

decoded decoded
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The Simplified Code-Design Criteria is Sufficient

Hence, to design a streaming code for S(N,B,W ) with a delay-constraint
T , it suffices to design a streaming code Cstr which permits recovery of
packet x[t] with delay of Teff , min{T ,W − 1} even in the presence of

I a burst erasure of length at most B, or

I at most N isolated erasures.

17/28



Diagonal Coding

I A known technique that enables one to convert a canonical [n, k] block
code C into a convolutional code.

I Example: Let the canonical code C be a systematic [5, 3] code. Use C
to code across diagonals:

. . . . . . . 

I Rate of the convolutional code remains as k
n .
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Desired Properties on the Canonical Block Code C

I We intend to code across diagonals using the canonical code to obtain
the desired streaming code Cstr for the S(N,B,W ) channel.

I Requirements on canonical [n, k] linear block code C:

I c = (c0, c1, . . . , cn−1) ∈ C, ∆i , min{i + Teff, n − 1}.
I Let ci be recoverable from {cj : j ∈ [0,∆i ]} even in presence of one of

the following:
I ≤ N arbitrary erasures among the symbols {cj : j ∈ [0,∆i ]},
I a burst of length ≤ B affecting the symbols {cj : j ∈ [0,∆i ]}.

I Goal: Construct a canonical code C with dimension k = (Teff − N + 1)
and code-length n = (B + Teff−N + 1), which will then give rise to an
Cstr that meets the rate upper-bound (1).
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An Example Canonical Code C with the Desired Properties

I Consider a [5, 2] linear block code C, with parameters
N = 2,B = 3,W = 4,Teff = 3.

𝑐0 𝑐1

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3

𝑐2 𝑐3 𝑐4
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An Example Canonical Code C with the Desired Properties

I Consider a [5, 2] linear block code C, with parameters
N = 2,B = 3,W = 4,Teff = 3.

𝑐1

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3; 𝑖 = 0

𝑐2 𝑐3 𝑐4

[0,3] 𝑐0 must be 

decoded
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An Example Canonical Code C with the Desired Properties

I Consider a [5, 2] linear block code C, with parameters
N = 2,B = 3,W = 4,Teff = 3.

𝑐1

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3; 𝑖 = 1

𝑐2 𝑐3 𝑐4

𝑐1 must be 

decoded

[0,4]
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An Example Canonical Code C with the Desired Properties

I Consider a [5, 2] linear block code C, with parameters
N = 2,B = 3,W = 4,Teff = 3.

𝑐0 𝑐1

𝑇𝑒𝑓𝑓 = 3,𝑁 = 2,𝐵 = 3; 𝑖 = 2

𝑐2 𝑐3 𝑐4

𝑐2 must be 

decoded

[0,4]
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An Example Canonical Code C with the Desired Properties

I Consider a [5, 2] linear block code C, with parameters
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1 𝑐2 𝑐3𝑐0

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1 𝑐2 𝑐3

[0,4] 𝑐4 is decoded

𝑐0 𝑐4

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1 𝑐2𝑐0

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1 𝑐2 𝑐3

[0,4] 𝑐3, 𝑐4 is decoded

𝑐0 𝑐4

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1𝑐0

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1 𝑐2 𝑐3

[0,4] 𝑐2, 𝑐3, 𝑐4 is decoded

𝑐0 𝑐4

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]

21/28



Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐0 𝑐4
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐1 𝑐2 𝑐3

[0,4] 𝑐1, 𝑐2, 𝑐3 is decoded

𝑐0 𝑐4

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….
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Streaming Code from C using Diagonal Coding
I Consider parameters N = 2,B = 3,W = 4,Teff = 3

…. ….

𝑐3

[0,3] 𝑐0 is decoded

𝑐0 𝑐4

𝒙[𝑡] 𝒙[𝑡 + 1] 𝒙[𝑡 + 2] 𝒙[𝑡 + 3] 𝒙[𝑡 + 4] 𝒙[𝑡 + 5] 𝒙[𝑡 + 6] 𝒙[𝑡 + 7] 𝒙[𝑡 + 8] 𝒙[𝑡 + 9]

coded packet 𝒙 𝑡 + 2 is 

decoded with delay 3!!

21/28



Designing C: Construction-A

I For given parameters N,B,W ,Teff : R ≤ Teff −N+1
B+Teff −N+1 .

I We shall construct a rate-optimal code C with k = (Teff − N + 1),
n = (B + Teff − N + 1).

I For c ∈ C, ci can be recovered from coordinates
[0,min{i + Teff , n − 1}] even in presence of length-B burst or N
isolated erasures.

I Let T = aB + δ, where a ≥ 0 and 1 ≤ δ ≤ B.

I Constraint: δ ≥ (B − N) (can be removed)

I Basic idea: Use an N-erasure correcting [k + N, k] MDS code +
(B − N) low-weight check-sums.
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Designing C: Construction-A

I Consider a systematic [nMDS = T + 1, kMDS = k , dmin = N + 1] MDS
code CMDS over Fq ⊆ Fq2 .

I Let c , (c0, c1, . . . , cn−1) ∈ C.

I (c0, c1, c2, . . . , cT−1, cn−1) ∈ CMDS.

I For 0 ≤ j ≤ (N − T − 2)}, cT +j = αcj + cj+B + . . .+ cj+aB , where
α ∈ Fq2 \ Fq.

I Field-size requirement O(T 2).
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Example: Construction-A

I N = 2,B = 4,Teff = 10, k = 9, n = 13.

I [11, 9, 3] MDS code: CMDS.

I (c0, c1, . . . , c9, c12) ∈ CMDS
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Example: Construction-A: Burst Erasure Correction

I N = 2,B = 4,Teff = 10, k = 9, n = 13.

I [11, 9, 3] MDS code: CMDS.

I (c0, c1, . . . , c9, c12) ∈ CMDS

    c
0

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

αc
0
+

c
4
+ c

8

αc
1
+

c
5
+ c

9
c

12

c
10

c
11

25/28
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I [11, 9, 3] MDS code: CMDS.

I (c0, c1, . . . , c9, c12) ∈ CMDS
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Example: Construction-A: Isolated Erasures

I N = 2,B = 4,Teff = 10, k = 9, n = 13.

I [11, 9, 3] MDS code: CMDS.

I (c0, c1, . . . , c9, c12) ∈ CMDS.

I C can recover from any N erasures because of the embedded MDS
code CMDS.

I Delay constraints need to be checked for isolated erasures involving at
least one among the coordinates {c0, c1}.

α α

[10,9,2] MDS code
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Remark

I There is a Construction-B which removes the constraint δ ≥ (B − N).

I Uses linearized polynomials and require a field-size, which is
exponential in T .
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Thank You!
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