First Order Induced Current Imaging and Electrical Properties Tomography in MRI

Patrick S. Fuchs

Circuits and Systems Delft University of Technology, The Netherlands

09-05-2018

Outline

1 Introduction

- 2 Current imaging
- 3 Electrical Properties Tomography

4 Results Simulation In-vivo

Introduction

Images of the human head with different forms of contrast: (left) a spin density-weighted image, (middle) a T_2 -weighted image, and (right) a T_1 -weighted image. Images taken from Brown, Cheng, Haacke, *et al.* [1]

ŤUDelft

Introduction

Qualitative imaging:

- Fast;
- Weighting is possible.

Quantitative imaging:

- Relaxation parameters;
- Proton density;
- Electrical properties;
- Spectroscopy;
- fMRI.

Introduction

Electrical properties and fields

- Electrical Properties
 - Conductivity (σ)
 - Permittivity (ε)
- Electric field (E)
- Induced currents (J^{ind})

Why do we want to know?

- Specific Absorption Rate (SAR)
- Oncology biomarkers¹
- Stroke imaging

¹K K. Tha, U. Katscher, S. Yamaguchi, et al., "Noninvasive electrical conductivity measurement by mri: A test of its validity and the electrical conductivity characteristics of glioma", *European radiology*, vol. 28, no. 1, pp. 348–355, 2018

Current imaging

Current imaging

Measured field²

$$\hat{\beta}_{1}^{+} = \frac{\hat{B}_{x} + j\hat{B}_{y}}{2}.$$
 (1)

Maxwell's equations of the magnetic field

$$\begin{aligned} &-\partial_x \hat{B}_y + \partial_y \hat{B}_x + \mu_0 \hat{J}_z^{\text{ind}} = 0\\ &-\partial_y \hat{B}_z + \partial_z \hat{B}_y + \mu_0 \hat{J}_x^{\text{ind}} = 0\\ &-\partial_z \hat{B}_x + \partial_x \hat{B}_z + \mu_0 \hat{J}_y^{\text{ind}} = 0\end{aligned}$$

²D. Hoult, "The principle of reciprocity in signal strength calculations-a mathematical guide", *Concepts in Magnetic Resonance Part A*, vol. 12, no. 4, pp. 173–187, 2000

Current imaging

Measured field³

$$\hat{B}_{1}^{+} = \frac{\hat{B}_{x} + j\hat{B}_{y}}{2}.$$
 (1)

Maxwell's equations of the magnetic field in 2D⁴

$$-\partial_x \hat{B}_y + \partial_y \hat{B}_x + \mu_0 \hat{J}_z^{\text{ind}} = 0$$
⁽²⁾

Combining measurement with Maxwell's equation

$$\frac{2(\partial_x + \mathrm{j}\partial_y)}{\mathrm{j}\mu_0}\hat{B}_1^+ = \hat{J}_z^{\text{ind}}$$

(3)

³D. Hoult, "The principle of reciprocity in signal strength calculations-a mathematical guide", *Concepts in Magnetic Resonance Part A*, vol. 12, no. 4, pp. 173–187, 2000

⁴B. Van Den Bergen, C. C. Stolk, J. B. van den Berg, et al., "Ultra fast electromagnetic field computations for rf multi-transmit techniques in high field mri", *Physics in medicine and biology*, vol. 54, no. 5, p. 1253, 2009

ŤUDelft

Electrical Properties Tomography

Electrical Properties Tomography

Scattering formalism⁵

$$\hat{E}_z = \hat{E}_z^{\mathrm{inc}} + \hat{E}_z^{\mathrm{sc}}$$

Substitute known fields & currents

$$\begin{split} \hat{E}_z^{\rm sc} &= G^{EJ} \big\{ \hat{J}_z^{\rm ind} \big\} - G^{EE} \big\{ \hat{E}_z \big\} \\ \hat{E}_z &= \hat{E}_z^{\rm inc} + G^{EJ} \big\{ \hat{J}_z^{\rm ind} \big\} - G^{EE} \big\{ \hat{E}_z \big\} \\ \hat{E}_z + G^{EE} \big\{ \hat{E}_z \big\} &= \hat{E}_z^{\rm inc} + G^{EJ} \big\{ \hat{J}_z^{\rm ind} \big\} \end{split}$$

⁵A T. de Hoop, Handbook of radiation and scattering of waves, academic press, 1995

TUDelft

(4)

Electrical Properties Tomography

Scattering formalism⁶

$$\hat{E}_z = \hat{E}_z^{\rm inc} + \hat{E}_z^{\rm sc} \tag{4}$$

Substitute known fields & currents

$$\hat{E}_z + G^{EE}\{\hat{E}_z\} = \hat{E}_z^{\text{inc}} + G^{EJ}\{\hat{J}_z^{\text{ind}}\}$$
(5)

This equation can be solved for \hat{E}_z iteratively.

Induced current

$$\hat{J}_{z}^{\text{ind}} = (\sigma + j\omega\varepsilon)\hat{E}_{z} \tag{6}$$

⁶A. T. de Hoop, Handbook of radiation and scattering of waves, academic press, 1995

Results Simulation – Original properties

Results Simulation – Original fields / currents

Original currents (\hat{J}_z^{ind})

Original Electric field (\hat{E}_z)

Results Simulation – Reconstructed fields / currents

Reconstructed currents (\hat{J}_z^{ind})

Reconstruced Electric field (\hat{E}_z)

Results Simulation – Reconstructed electrical properties

Results Simulation – Reconstructed electrical properties

Original permittivity (ε)

Reconstructed permittivity (ε)

Results

In-vivo

Measured field – Magnitude

Measured field – Phase

Results

In-vivo

Original phantom

Reconstructed currents $(\hat{J}_z^{\mathsf{ind}})$

Results

In-vivo

First Order EPT (σ)

Helmholtz EPT (σ)

Conclusions

Conclusions

1 Real time current imaging.

- 2 Robust to noise (in the presence of a sufficiently high E-field)
- 3 Accurate reconstruction of Electrical Properties
- 4 No boundary effects as seen in conventional methods.

Future work

- Expanding the method to three-dimensions;
- Investigating 2D assumption impact on reconstructions outside the centre of a birdcage with real measurements.

Acknowledgements

I would like to thank my collaborators

- Dr.ir. Rob Remis,⁷
- Dr.ir. Nico van den Berg,⁸
- Dr.ir. Wyger Brink,⁹
- Dr.ir. Stefano Mandija,⁷
- ir. Peter Stijnman,⁷

for their input and help with the experimental results.

⁷Delft University of Technology – Circuits and Systems

⁸Utrecht University Medical Centre – Center for Image Sciences

⁹Leiden University Medical Centre – C.J. Gorter Centre for High Field MRI

Thank you for your attention Any questions?

p.s.fuchs@tudelft.nl

References

- R. W. Brown, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging - Physical Principles and Sequence Design, second edition. John Wiley & Sons, Inc., 2014.
- K K Tha, U. Katscher, S. Yamaguchi, C. Stehning, S. Terasaka, N. Fujima, K. Kudo, K. Kazumata, T. Yamamoto, M. Van Cauteren, et al., "Noninvasive electrical conductivity measurement by mri: A test of its validity and the electrical conductivity characteristics of glioma", *European radiology*, vol. 28, no. 1, pp. 348–355, 2018.
- D. Hoult, "The principle of reciprocity in signal strength calculationsa mathematical guide", *Concepts in Magnetic Resonance Part A*, vol. 12, no. 4, pp. 173–187, 2000.
- B. Van Den Bergen, C. C. Stolk, J. B. van den Berg, J. J. W. Lagendijk, and C. A. T. Van Den Berg, "Ultra fast electromagnetic field computations for rf multi-transmit techniques in high field mri", *Physics in medicine and biology*, vol. 54, no. 5, p. 1253, 2009.

A T, de Hoop, Handbook of radiation and scattering of waves, academic press, 1995.

