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Age of Information! - metric to capture timeliness.

Kaul, S., Yates, R., and Gruteser, M. (2011, December). On piggybacking
in vehicular networks. In Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE (pp. 1-5). IEEE.
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» AOI: Time lag between the latest information at the RX w.r.t.
that at TX.
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Alt) =t —U(1).

» We are interested in minimizing the average age
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» We restrict to Memoryless Update Schemes.
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Which source coding scheme is optimal?
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Are Shannon Codes Optimal?
But Shannon codes can be far from optimal!

Example: Consider X = {0, ...,2"} and a pmf P on X given by

1-41 z=0
P(.%'):{ 1 " n
o $€{17,2 }

Shannon codes for P have an average age of Q(log |X]).

Instead, use Shannon codes for pmf P’(z), where

1
— z=0
Pl(z)={2"""
=) {1—;”, ze{l,... 2"}

Shannon codes for P’ have an average age of O(y/log|X|).

Shannon codes are order-wise suboptimal!
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Reduction to a simpler problem

Need to solve IP; Instead solve RP;
minE [L] + E L] minE [L] + E |17
2R [L] 2E [L]
st. l¢ Z‘f', st. (€ R‘f',
Z 2~ lx) < 1 Z 2—x) < 1
zeX TeX

and use {(x) = [(*(x)] Vre X

Cost using this approach will be atmost 2.5 bits away from the
optimal cost.
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How does the tilted distribution look like?
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Linearizing the Average Age Cost
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Variational Formula for p-norm of a Random Variable

For a random variable X with distribution P and p > 1 such that

| X||p, < oo, we have
dQ\ 7
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where p' = p/(p — 1) is the Hélder conjugate of p.

X, = E
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Application:

14



Linearizing the Average Age Cost
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Linearizing the Average Age Cost

2
E (] + fE[H = s 3 000,00
» Note that,
2 2
E[L]+ ISIFEI[/L% = max (1 — ) E[L] + zvE[L?].

» Using variational formula for \/IE [L?], average age equals

= max max 9(z,Q,x)l(x).
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Almost optimal recipe for minimizing average age

» Solve the maximization problem
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Almost optimal recipe for minimizing average age

» Solve the maximization problem
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Average Delay Average Age
AE[L? 2
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