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Motivation

Source - The Hindu

Sensor Center

Timely Updates are critical.

Age of Information1 - metric to capture timeliness.

1Kaul, S., Yates, R., and Gruteser, M. (2011, December). On piggybacking
in vehicular networks. In Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE (pp. 1-5). IEEE. 1



Age of Information (AOI) - Metric for Timeliness

I AOI: Time lag between the latest information at the RX w.r.t.
that at TX.

Sensor Center

Xt XU(t)

A(t) = t− U(t).

I We are interested in minimizing the average age

Ā , lim sup
T→∞

1

T

T∑
t=1

A(t).

I We restrict to Memoryless Update Schemes.
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Ā , lim sup
T→∞

1

T

T∑
t=1

A(t).

I We restrict to Memoryless Update Schemes.

2



Age of Information (AOI) - Metric for Timeliness

I AOI: Time lag between the latest information at the RX w.r.t.
that at TX.

Sensor CenterXt XU(t)

A(t) = t− U(t).

I We are interested in minimizing the average age
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Memoryless Update Schemes

Source Encoder Channel Decoder

T
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X1 e(X1)
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X3 e(X3) X1
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X5 X3
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Illustration of Instantaneous Age
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Characterization of Average Age

Ā(e) , lim sup
T→∞

1

T

T∑
t=1

A(t)

`(x) , code-length for a symbol x, L , `(X).

Theorem

For a prefix-free code e, Ā(e) = E [L] +
E[L2]
2E[L] −

1
2 a.s..
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Characterization of Average Age

Ā(e) , lim sup
T→∞

1

T

T∑
t=1

A(t)

`(x) , code-length for a symbol x, L , `(X).

Theorem

For a prefix-free code e, Ā(e) = E [L] +
E[L2]
2E[L] −

1
2 a.s..

Which source coding scheme is optimal?
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Are Shannon Codes Optimal?

Shannon code for P : `(x) = d− logP (x)e ∀x.

Lemma
Given a pmf P on X , a Shannon code e for P has average age at
most O(log |X |).
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Are Shannon Codes Optimal?

But Shannon codes can be far from optimal!

Example: Consider X = {0, ..., 2n} and a pmf P on X given by

P (x) =

{
1− 1

n , x = 0
1
n2n , x ∈ {1, . . . , 2n}.

Shannon codes for P have an average age of Ω(log |X |).

Instead, use Shannon codes for pmf P ′(x), where

P ′(x) =

{
1

2
√
n , x = 0

1−2−
√
n

2n , x ∈ {1, . . . , 2n}.

Shannon codes for P ′ have an average age of O(
√

log |X |).

Shannon codes are order-wise suboptimal!
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Our Approach
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Reduction to a simpler problem

Need to solve IP;

minE [L] +
E
[
L2
]

2E [L]

s.t. ` ∈ Z|X |+ ,∑
x∈X

2−`(x) ≤ 1

Instead solve RP;

minE [L] +
E
[
L2
]

2E [L]

s.t. ` ∈ R|X |+ ,∑
x∈X

2−`(x) ≤ 1

and use `(x) = d`∗(x)e ∀x ∈ X

Proposition

Cost using this approach will be atmost 2.5 bits away from the
optimal cost.
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Structural Result for RP

Main Theorem
Optimal solution for RP is unique, and is given by

`∗(x) = − logP ∗P (X) ∀x ∈ X ,

where P ∗P is a tilting of source distribution P .

Furthermore,

P ∗P (x) =
g(y∗, x)∑
x∈X g(y∗, x)

,

where

y∗ = max
y∈Y,

g(y,·)≥0

∑
x∈X

g(y, x) log

∑
x∈X g(y, x)

g(y, x)

How does the tilted distribution look like?
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Illustration of Optimal Tilting
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Proof sketch of Main theorem

I Linear form for the average age cost in terms of code-lengths

E [L] +
E
[
L2
]

2E [L]
= max

y∈Y

∑
x∈X

g(y, x)`(x)

I Saddle point claim

∆∗(P ) = max
y∈Y

min
`∈Λ

∑
x∈X

g(y, x)`(x)

I Optimal lengths for RP

`∗(x) = log

∑
x∈X g(y∗, x)

g(y∗, x)

I Reduction of max-min to max problem

∆∗(P ) = max
y∈Y,

g(y,·)≥0

∑
x∈X

g(y, x) log

∑
x∈X g(y, x)

g(y, x)
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Linearizing the Average Age Cost
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E
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2E [L]
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∑
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g(y, x)`(x)

I Note that,

E [L] +
E
[
L2
]

2E [L]
= max

z≥0

(
1− z2

2

)
E [L] + z

√
E [L2].

How to linearize
√
E [L2] ?
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Variational Formula for p-norm of a Random Variable

Theorem
For a random variable X with distribution P and p ≥ 1 such that
‖X‖p <∞, we have

‖X‖p = max
Q�P

E

[(
dQ

dP

) 1
p′

|X|

]
,

where p′ = p/(p− 1) is the Hölder conjugate of p.
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Almost optimal recipe for minimizing average age

I Solve the maximization problem

∆∗(P ) = max
z≥0,Q�P,
g(y,·)≥0

∑
x∈X

g(z,Q, x) log

∑
x∈X g(z,Q, x)

g(z,Q, x)
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z≥0,Q�P,
g(y,·)≥0

∑
x∈X

g(z,Q, x) log

∑
x∈X g(z,Q, x)

g(z,Q, x)

I Use

`(x) =

⌈
log

∑
x∈X g(z∗, Q∗, x)

g(z∗, Q∗, x)

⌉
∀x
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Simulation Results

Zipf(s,N) is given by P (i) = i−s∑N
j=1 j

−s , 1 ≤ i ≤ N .
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Conclusion

I Structural property for the optimal solution for RP.
I A recipe for minimizing the average age cost.
I Extensions:

I Randomized Memoryless Update Schemes.
I Our Recipe for the Minimum Delay Problem2 3

Average Delay

D̄(e) =

{
E [L] +

λE[L2]
2(1−λE[L])

, λE [L] < 1,

∞, λE [L] ≥ 1.

Average Age

Ā(e) = E [L] +
E
[
L2
]

2E [L]
− 1

2
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