Optimal Lossless Source Codes for Timely Updates

Prathamesh Mayekar

Joint work with Parimal Parag and Himanshu Tyagi

> Department of ECE, Indian Institute of Science

Source - The Hindu

Source - The Hindu

Timely Updates are critical.

Source - The Hindu

Timely Updates are critical.

Age of Information¹ - metric to capture timeliness.

¹Kaul, S., Yates, R., and Gruteser, M. (2011, December). On piggybacking in vehicular networks. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE (pp. 1-5). IEEE.

► AOI: Time lag between the latest information at the RX w.r.t. that at TX.

 AOI: Time lag between the latest information at the RX w.r.t. that at TX.

► AOI: Time lag between the latest information at the RX w.r.t. that at TX.

► AOI: Time lag between the latest information at the RX w.r.t. that at TX.

 AOI: Time lag between the latest information at the RX w.r.t. that at TX.

A(t) = t - U(t).

 AOI: Time lag between the latest information at the RX w.r.t. that at TX.

A(t) = t - U(t).

We are interested in minimizing the average age

$$\bar{A} \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t).$$

 AOI: Time lag between the latest information at the RX w.r.t. that at TX.

A(t) = t - U(t).

We are interested in minimizing the average age

$$\bar{A} \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t).$$

We restrict to Memoryless Update Schemes.

$$A(t) = t - U(t)$$

$$A(t) = t - U(t)$$

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq$ code-length for a symbol x, $L \triangleq \ell(X)$.

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

- 7

 $\ell(x) \triangleq$ code-length for a symbol x, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}[L] + \frac{\mathbb{E}[L^2]}{2\mathbb{E}[L]} - \frac{1}{2}$ a.s..

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq$ code-length for a symbol x, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}[L] + \frac{\mathbb{E}[L^2]}{2\mathbb{E}[L]} - \frac{1}{2}$ a.s..

Proof Idea:

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq$ code-length for a symbol x, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Proof Idea:

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

 $\ell(x) \triangleq$ code-length for a symbol x, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2}$ a.s..

Proof Idea:

$$\bar{A}(e) \triangleq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} A(t)$$

- 7

 $\ell(x) \triangleq$ code-length for a symbol x, $L \triangleq \ell(X)$.

Theorem

For a prefix-free code
$$e$$
, $\bar{A}(e) = \mathbb{E}[L] + \frac{\mathbb{E}[L^2]}{2\mathbb{E}[L]} - \frac{1}{2}$ a.s..

Which source coding scheme is optimal?

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x.$

Shannon code for $P: \ell(x) = \lceil -\log P(x) \rceil \quad \forall x.$

Lemma

Given a pmf P on \mathcal{X} , a Shannon code e for P has average age at most $O(\log |\mathcal{X}|)$.

But Shannon codes can be far from optimal!

But Shannon codes can be far from optimal!

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

But Shannon codes can be far from optimal!

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.
Are Shannon Codes Optimal?

But Shannon codes can be far from optimal!

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.

Instead, use Shannon codes for pmf P'(x), where

$$P'(x) = \begin{cases} \frac{1}{2\sqrt{n}}, & x = 0\\ \frac{1-2^{-\sqrt{n}}}{2^n}, & x \in \{1, \dots, 2^n\} \end{cases}$$

Are Shannon Codes Optimal?

But Shannon codes can be far from optimal!

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.

Instead, use Shannon codes for pmf P'(x), where

$$P'(x) = \begin{cases} \frac{1}{2\sqrt{n}}, & x = 0\\ \frac{1-2^{-\sqrt{n}}}{2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P' have an average age of $O(\sqrt{\log |\mathcal{X}|})$.

Are Shannon Codes Optimal?

But Shannon codes can be far from optimal!

Example: Consider $\mathcal{X} = \{0, ..., 2^n\}$ and a pmf P on \mathcal{X} given by

$$P(x) = \begin{cases} 1 - \frac{1}{n}, & x = 0\\ \frac{1}{n2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P have an average age of $\Omega(\log |\mathcal{X}|)$.

Instead, use Shannon codes for pmf P'(x), where

$$P'(x) = \begin{cases} \frac{1}{2\sqrt{n}}, & x = 0\\ \frac{1-2^{-\sqrt{n}}}{2^n}, & x \in \{1, \dots, 2^n\}. \end{cases}$$

Shannon codes for P' have an average age of $O(\sqrt{\log |\mathcal{X}|})$. Shannon codes are order-wise suboptimal!

Our Approach

Need to solve IP;

$$\begin{split} \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]}\\ \text{s.t.} \quad \ell \in \mathbb{Z}_+^{|\mathcal{X}|},\\ \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{split}$$

Need to solve $\mathsf{IP};$

$$\min \mathbb{E} [L] + \frac{\mathbb{E} [L^2]}{2\mathbb{E} [L]}$$

s.t. $\ell \in \mathbb{Z}_+^{|\mathcal{X}|},$
 $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$

Instead solve RP;

$$\min \mathbb{E} [L] + \frac{\mathbb{E} [L^2]}{2\mathbb{E} [L]}$$

s.t. $\ell \in \mathbb{R}^{|\mathcal{X}|}_+,$
 $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$

Need to solve IP;

$$\begin{split} \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]}\\ \text{s.t.} \quad \ell \in \mathbb{Z}_+^{|\mathcal{X}|},\\ \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{split}$$

Instead solve RP;

$$\begin{split} \min \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} \\ \text{s.t.} \quad \ell \in \mathbb{R}_+^{|\mathcal{X}|}, \\ \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1 \end{split}$$

and use $\ell(x) = \lceil \ell^*(x) \rceil \quad \forall x \in \mathcal{X}$

Need to solve IP;Instead solve RP; $\min \mathbb{E}[L] + \frac{\mathbb{E}[L^2]}{2\mathbb{E}[L]}$ $\min \mathbb{E}[L] + \frac{\mathbb{E}[L^2]}{2\mathbb{E}[L]}$ s.t. $\ell \in \mathbb{Z}_+^{|\mathcal{X}|}$, $s.t. \ \ell \in \mathbb{R}_+^{|\mathcal{X}|}$, $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$ $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$

and use $\ell(x) = \lceil \ell^*(x) \rceil \quad \forall x \in \mathcal{X}$

Proposition

Cost using this approach will be atmost 2.5 bits away from the optimal cost.

Structural Result for RP

Main Theorem

Optimal solution for RP is unique, and is given by

$$\ell^*(x) = -\log P_P^*(X) \quad \forall x \in \mathcal{X},$$

where P_P^* is a tilting of source distribution P.

Structural Result for RP

Main Theorem

Optimal solution for RP is unique, and is given by

$$\ell^*(x) = -\log P_P^*(X) \quad \forall x \in \mathcal{X},$$

where P_{P}^{\ast} is a tilting of source distribution $P. \label{eq:product}$ Furthermore,

$$P_P^*(x) = \frac{g(y^*, x)}{\sum_{x \in \mathcal{X}} g(y^*, x)},$$

where

$$y^* = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(y, x) \log \frac{\sum_{x \in \mathcal{X}} g(y, x)}{g(y, x)}$$

Structural Result for RP

Main Theorem

Optimal solution for RP is unique, and is given by

$$\ell^*(x) = -\log P_P^*(X) \quad \forall x \in \mathcal{X},$$

where P_P^* is a tilting of source distribution P. Furthermore,

$$P_P^*(x) = \frac{g(y^*, x)}{\sum_{x \in \mathcal{X}} g(y^*, x)},$$

where

$$y^* = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(y, x) \log \frac{\sum_{x \in \mathcal{X}} g(y, x)}{g(y, x)}$$

How does the tilted distribution look like?

Illustration of Optimal Tilting

Illustration of Optimal Tilting

Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^{*}(P) \triangleq \min_{\ell \in \Lambda} \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^{2}\right]}{2\mathbb{E}\left[L\right]}$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \min_{\ell \in \Lambda} \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$y^* := \arg \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$\ell^* = \arg\min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y^*, x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$\ell^*(x) = \log \frac{\sum_{x \in \mathcal{X}} g(y^*, x)}{g(y^*, x)}$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$\ell^*(x) = \log \frac{\sum_{x \in \mathcal{X}} g(y^*, x)}{g(y^*, x)}$$

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$\ell^*(x) = \log \frac{\sum_{x \in \mathcal{X}} g(y^*, x)}{g(y^*, x)}$$

$$\Delta^*(P) = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \ge 0}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$\ell^*(x) = \log \frac{\sum_{x \in \mathcal{X}} g(y^*, x)}{g(y^*, x)}$$

$$\Delta^*(P) = \max_{\substack{y \in \mathcal{Y}, \\ g(y,\cdot) \geq 0}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y,x) \ell(x)$$

► Linear form for the average age cost in terms of code-lengths

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Saddle point claim

$$\Delta^*(P) = \max_{y \in \mathcal{Y}} \min_{\ell \in \Lambda} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Optimal lengths for RP

$$\ell^*(x) = \log \frac{\sum_{x \in \mathcal{X}} g(y^*, x)}{g(y^*, x)}$$

$$\Delta^*(P) = \max_{\substack{y \in \mathcal{Y}, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(y, x) \log \frac{\sum_{x \in \mathcal{X}} g(y, x)}{g(y, x)}$$

Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

Note that,

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}.$$
 How to linearize $\sqrt{\mathbb{E}\left[L^2\right]}$?

13

Variational Formula for *p*-norm of a Random Variable

Theorem

For a random variable X with distribution P and $p\geq 1$ such that $\|X\|_p<\infty,$ we have

$$\|X\|_p = \max_{Q \ll P} \mathbb{E}\left[\left(\frac{dQ}{dP}\right)^{\frac{1}{p'}} |X|\right]$$

where p' = p/(p-1) is the Hölder conjugate of p.

Variational Formula for *p*-norm of a Random Variable

Theorem

For a random variable X with distribution P and $p\geq 1$ such that $\|X\|_p<\infty,$ we have

$$|X||_{p} = \max_{Q \ll P} \mathbb{E}\left[\left(\frac{dQ}{dP}\right)^{\frac{1}{p'}} |X|\right]$$

where p' = p/(p-1) is the Hölder conjugate of p.

Proof Idea: For $Q \ll P$, $\alpha = p'$, $D_{\alpha}(P_P, Q) = \frac{1}{\alpha - 1} \log \mathbb{E}_P \left[\left(\frac{dQ}{dP} \right)^{\alpha} \left(\frac{dP_p}{dP} \right)^{1 - \alpha} \right] \ge 0$, where $\frac{dP_p}{dP} = \frac{1}{\|X\|_p^p} \cdot |X|^p$.

Variational Formula for *p*-norm of a Random Variable

Theorem

For a random variable X with distribution P and $p\geq 1$ such that $\|X\|_p<\infty,$ we have

$$|X||_{p} = \max_{Q \ll P} \mathbb{E}\left[\left(\frac{dQ}{dP}\right)^{\frac{1}{p'}} |X|\right]$$

where p' = p/(p-1) is the Hölder conjugate of p.

Application:

$$\sqrt{\mathbb{E}[L^2]} = \max_{Q \ll P} \sum_{x \in \mathcal{X}} \sqrt{Q(x)P(x)}\ell(x)$$

Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x) \ell(x)$$

Note that,

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}.$$

Linearizing the Average Age Cost

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} g(y, x)\ell(x)$$

Note that,

$$\mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^2\right]}{2\mathbb{E}\left[L\right]} = \max_{z \ge 0} \left(1 - \frac{z^2}{2}\right) \mathbb{E}\left[L\right] + z\sqrt{\mathbb{E}\left[L^2\right]}.$$

• Using variational formula for $\sqrt{\mathbb{E}[L^2]}$, average age equals

$$\begin{split} &= \max_{z \ge 0} \left(1 - \frac{z^2}{2} \right) \mathbb{E}\left[L \right] + z \max_{Q \ll P} \sum_{x \in \mathcal{X}} \sqrt{Q(x)P(x)}\ell(x), \\ &= \max_{z \ge 0} \max_{Q \ll P} \sum_{x \in \mathcal{X}} g(z,Q,x)\ell(x). \end{split}$$

Almost optimal recipe for minimizing average age

Solve the maximization problem

$$\Delta^*(P) = \max_{\substack{z \ge 0, Q \ll P, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(z, Q, x) \log \frac{\sum_{x \in \mathcal{X}} g(z, Q, x)}{g(z, Q, x)}$$

Almost optimal recipe for minimizing average age

Solve the maximization problem

$$\Delta^*(P) = \max_{\substack{z \ge 0, Q \ll P, \\ g(y, \cdot) \ge 0}} \sum_{x \in \mathcal{X}} g(z, Q, x) \log \frac{\sum_{x \in \mathcal{X}} g(z, Q, x)}{g(z, Q, x)}$$

$$\ell(x) = \left\lceil \log \frac{\sum_{x \in \mathcal{X}} g(z^*, Q^*, x)}{g(z^*, Q^*, x)} \right\rceil \quad \forall x$$

Simulation Results

$$\text{Zipf}(s,N) \text{ is given by } P(i) = \frac{i^{-s}}{\sum_{j=1}^N j^{-s}}, \quad 1 \leq i \leq N.$$

Simulation Results

$$\mathrm{Zipf}(s,N) \text{ is given by } P(i) = \frac{i^{-s}}{\sum_{j=1}^N j^{-s}}, \quad 1 \leq i \leq N.$$

Comparison of proposed codes and Shannon codes for $\mathtt{Zipf}(s, 256)$ w.r.t. s.
► Structural property for the optimal solution for RP.

- ► Structural property for the optimal solution for RP.
- A recipe for minimizing the average age cost.

- Structural property for the optimal solution for RP.
- A recipe for minimizing the average age cost.
- Extensions:
 - Randomized Memoryless Update Schemes.

- Structural property for the optimal solution for RP.
- A recipe for minimizing the average age cost.
- Extensions:
 - Randomized Memoryless Update Schemes.
 - Our Recipe for the Minimum Delay Problem^{2 3}

- Structural property for the optimal solution for RP.
- A recipe for minimizing the average age cost.
- Extensions:
 - Randomized Memoryless Update Schemes.
 - Our Recipe for the Minimum Delay Problem^{2 3}

Average Delay

Average Age

$$\bar{D}(e) = \begin{cases} \mathbb{E}\left[L\right] + \frac{\lambda \mathbb{E}\left[L^{2}\right]}{2(1-\lambda \mathbb{E}\left[L\right])}, & \lambda \mathbb{E}\left[L\right] < 1, \\ \infty, & \lambda \mathbb{E}\left[L\right] \ge 1. \end{cases} \qquad \quad \bar{A}(e) = \mathbb{E}\left[L\right] + \frac{\mathbb{E}\left[L^{2}\right]}{2\mathbb{E}\left[L\right]} - \frac{1}{2} \end{cases}$$