Covariance Matching techniques for Sparsity Pattern Recovery using Compressive Measurements

Saurabh Khanna

Electrical Communication Engineering Dept. Indian Institute of Science, Bangalore

Outline

- Overview of sparse signal recovery
- Least squares problem
- Stable solution for a linear system of equations
- Restricted Isometry Property
- Joint Sparse Signal Recovery
- Motivation
- Sparse Bayesian Learning - new results
- Covariance matching framework
- Restricted isometry of Khatri-Rao matrices

PART I
 Sparse Signal Recovery - An Overview

Least Squares

Linear system of equations:

$$
\mathbf{y}=\mathbf{A x}
$$

$\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}$, and $\mathbf{A} \in \mathbb{R}^{m \times n}$
Overdetermined $(m>n)$
Unique or no solution

Least Squares

Linear system of equations:

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

$$
\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}, \text { and } \mathbf{A} \in \mathbb{R}^{m \times n}
$$

Overdetermined $(m>n)$
Unique or no solution

Line fitting

Least Squares

Linear system of equations:

$$
\mathbf{y}=\mathbf{A x}
$$

$$
\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}, \text { and } \mathbf{A} \in \mathbb{R}^{m \times n}
$$

Overdetermined $(m>n)$
Unique or no solution

Line fitting

An approximate solution minimizes the residual error, i.e.,

$$
\hat{\mathbf{x}}_{\mathrm{LS}}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}
$$

Least Squares

Linear system of equations:

$$
\mathbf{y}=\mathbf{A x}
$$

$$
\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}, \text { and } \mathbf{A} \in \mathbb{R}^{m \times n}
$$

Overdetermined $(m>n)$
Unique or no solution

Line fitting

An approximate solution minimizes the residual error, i.e.,

$$
\hat{\mathbf{x}}_{\mathrm{LS}}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}
$$

$$
\hat{\mathbf{x}}_{\mathrm{LS}}=\underbrace{\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}}_{\text {least squares solution }}
$$

Least Squares

Linear system of equations:

$$
\mathbf{y}=\mathbf{A x}
$$

$$
\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}, \text { and } \mathbf{A} \in \mathbb{R}^{m \times n}
$$

Overdetermined $(m>n)$
Unique or no solution

Line fitting

An approximate solution minimizes the residual error, i.e.,

$$
\hat{\mathbf{x}}_{\mathrm{LS}}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \quad \hat{\mathbf{x}}_{\text {LS }}=\underbrace{\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}}_{\text {least squares solution }}
$$

Least squares solution is unique and exists if \mathbf{A} has full column rank

Least Squares using Perturbed Measurements

Let \mathbf{x}^{*} be the ground truth, i.e., $\mathbf{y}=\mathbf{A} \mathbf{x}^{*}$

Least Squares using Perturbed Measurements

Let \mathbf{x}^{*} be the ground truth, i.e., $\mathbf{y}=\mathbf{A} \mathbf{x}^{*}$
Perturbed measurements: $\tilde{\mathbf{y}}=\mathbf{A x} \mathbf{x}^{*}+\mathbf{e}$

Least Squares using Perturbed Measurements

Let \mathbf{x}^{*} be the ground truth, i.e., $\mathbf{y}=\mathbf{A} \mathbf{x}^{*}$
Perturbed measurements: $\tilde{\mathbf{y}}=\mathbf{A x}{ }^{*}+\mathbf{e}$
Least squares estimate: $\hat{\mathbf{x}}_{\text {LS }}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \tilde{\mathbf{y}}=\mathbf{A}^{\dagger} \tilde{\mathbf{y}}$

Least Squares using Perturbed Measurements

Let \mathbf{x}^{*} be the ground truth, i.e., $\mathbf{y}=\mathbf{A} \mathbf{x}^{*}$
Perturbed measurements: $\tilde{\mathbf{y}}=\mathbf{A x}{ }^{*}+\mathbf{e}$
Least squares estimate: $\hat{\mathbf{x}}_{\text {LS }}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \tilde{\mathbf{y}}=\mathbf{A}^{\dagger} \tilde{\mathbf{y}}$
How far is $\hat{\mathbf{x}}_{\text {LS }}$ from \mathbf{x}^{*} ?

Least Squares using Perturbed Measurements

Let \mathbf{x}^{*} be the ground truth, i.e., $\mathbf{y}=\mathbf{A x}$ *
Perturbed measurements: $\tilde{\mathbf{y}}=\mathbf{A x} \mathbf{x}^{*}+\mathbf{e}$
Least squares estimate: $\hat{\mathbf{x}}_{\text {LS }}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \tilde{\mathbf{y}}=\mathbf{A}^{\dagger} \tilde{\mathbf{y}}$
How far is $\hat{\mathbf{x}}_{\text {LS }}$ from \mathbf{x}^{*} ?

$$
\left.\begin{array}{rl}
\left\|\hat{\mathbf{x}}_{\mathrm{LS}}-\mathbf{x}^{*}\right\|_{2} & =\left\|\mathbf{A}^{\dagger} \tilde{\mathbf{y}}-\mathbf{x}^{*}\right\|_{2}=\left\|\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}^{*}+\mathbf{e}\right)-\mathbf{x}^{*}\right\|_{2} \\
& =\left\|\mathbf{A}^{\dagger} \mathbf{e}\right\|_{2} \leq\left\|\mathbf{A}^{\dagger}\right\|\left\|_{2}\right\| \mathbf{e} \|_{2}
\end{array}\right\} \begin{aligned}
& \left\|\mathbf{A}^{\dagger}\right\| \|_{2} \leq \frac{1}{\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)} \sqrt{\frac{\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)}{\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)}}
\end{aligned}
$$

Least Squares using Perturbed Measurements

Let \mathbf{x}^{*} be the ground truth, i.e., $\mathbf{y}=\mathbf{A} \mathbf{x}^{*}$
Perturbed measurements: $\tilde{\mathbf{y}}=\mathbf{A x}{ }^{*}+\mathbf{e}$
Least squares estimate: $\hat{\mathbf{x}}_{\text {LS }}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \tilde{\mathbf{y}}=\mathbf{A}^{\dagger} \tilde{\mathbf{y}}$
How far is $\hat{\mathbf{x}}_{\text {LS }}$ from \mathbf{x}^{*} ?

$$
\left.\begin{array}{rl}
\left\|\hat{\mathbf{x}}_{\mathrm{LS}}-\mathbf{x}^{*}\right\|_{2} & =\left\|\mathbf{A}^{\dagger} \tilde{\mathbf{y}}-\mathbf{x}^{*}\right\|_{2}=\left\|\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}^{*}+\mathbf{e}\right)-\mathbf{x}^{*}\right\|_{2} \\
& =\left\|\mathbf{A}^{\dagger} \mathbf{e}\right\|_{2} \leq\left\|\mathbf{A}^{\dagger}\right\|\left\|_{2}\right\| \mathbf{e} \|_{2}
\end{array}\right\} \begin{aligned}
& \left\|\mathbf{A}^{\dagger}\right\| \|_{2} \leq \frac{1}{\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)} \sqrt{\frac{\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)}{\lambda_{\min }\left(\mathbf{A}^{\top} \mathbf{A}\right)}} \longrightarrow \text { condition no. of } \mathbf{A}^{T} \mathbf{A}
\end{aligned}
$$

Smaller condition number of $\mathbf{A}^{T} \mathbf{A}$ implies lesser sensitivity to perturbations

Sparse Signal Recovery

Goal: Recover unknown k-sparse vector \mathbf{x} from \mathbf{y}

Sparse Signal Recovery

Goal: Recover unknown k-sparse vector \mathbf{x} from \mathbf{y}
Two step recovery:
(i) Recover support \mathcal{S} (indices of nonzero entries in \mathbf{x})
(ii) Recover $\mathbf{x}_{\mathcal{S}}$ using least squares on the reduced system:

$$
\mathbf{y}=\mathbf{A}_{\mathcal{S}} \mathbf{x}_{\mathcal{S}}+\mathbf{w} \quad \text { overdetermined if } k>m
$$

Sparse Signal Recovery

Goal: Recover unknown k-sparse vector \mathbf{x} from \mathbf{y}
Two step recovery:
(i) Recover support \mathcal{S} (indices of nonzero entries in \mathbf{x})
(ii) Recover $\mathbf{x}_{\mathcal{S}}$ using least squares on the reduced system:

$$
\mathbf{y}=\mathbf{A}_{\mathcal{S}} \mathbf{x}_{\mathcal{S}}+\mathbf{w} \quad \text { overdetermined if } k>m
$$

Stable recovery of $\mathbf{x}_{\mathcal{S}}$ if condition no. of

$$
\mathbf{A}_{\mathcal{S}}^{T} \mathbf{A}_{\mathcal{S}} \approx 1
$$

Restricted Isometry Property

Candes and Tao, 2004

A matrix A is said to satisfy the Restricted Isometry Property (RIP) of order k, if there exists a constant $\delta \in(0,1)$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|\mathbf{A} \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2}
$$

for all k-sparse vectors $\mathbf{z} \in \mathbb{R}^{n}$.
The smallest δ is the $k^{\text {th }}$ order restricted isometry constant (k-RIC) of \mathbf{A}.

Restricted Isometry Property

Candes and Tao, 2004

A matrix A is said to satisfy the Restricted Isometry Property (RIP) of order k, if there exists a constant $\delta \in(0,1)$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|\mathbf{A} \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2}
$$

for all k-sparse vectors $\mathbf{z} \in \mathbb{R}^{n}$.
The smallest δ is the $k^{\text {th }}$ order restricted isometry constant (k-RIC) of \mathbf{A}.

Alternate interpretations:

- $1-\delta_{k}^{\mathbf{A}} \leq \frac{\mathbf{z}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{Z}}{\mathbf{z}^{\top} \mathbf{Z}} \leq 1+\delta_{k}^{\mathbf{A}} \quad \forall k$-sparse \mathbf{z}
- Eigenvalues of $\mathbf{A}_{\mathcal{S}}^{\top} \mathbf{A}_{\mathcal{S}}$ lie in $\left[1-\delta_{k}^{\mathbf{A}}, 1+\delta_{k}^{\mathbf{A}}\right]$ for all supports $\mathcal{S},|\mathcal{S}| \leq k$
- Condition no. of $\mathbf{A}_{\mathcal{S}}^{\top} \mathbf{A}_{\mathcal{S}}$ is at most $\frac{1+\delta_{k}^{\mathbf{A}}}{1-\delta_{k}^{\mathbf{A}}}$ for all supports $\mathcal{S},|\mathcal{S}| \leq k$

Sparse Signal Recovery

Goal: Recover unknown k-sparse vector \mathbf{x} from \mathbf{y}
Two step recovery:
(i) Recover support \mathcal{S} (indices of nonzero entries in \mathbf{x})
(ii) Recover $\mathbf{x}_{\mathcal{S}}$ using least squares on the reduced system:

$$
\mathbf{y}=\mathbf{A}_{\mathcal{S}} \mathbf{x}_{\mathcal{S}}+\mathbf{w} \quad \text { overdetermined if } k>m
$$

Condition no. of $\mathbf{A}_{\mathcal{S}}^{T} \mathbf{A}_{\mathcal{S}} \approx 1$ guarantees stable recovery of $\mathbf{x}_{\mathcal{S}}$

Sparse Signal Recovery

Goal: Recover unknown k-sparse vector \mathbf{x} from \mathbf{y}
Two step recovery:
(i) Recover support \mathcal{S} (indices of nonzero entries in \mathbf{x})
(ii) Recover $\mathbf{x}_{\mathcal{S}}$ using least squares on the reduced system:

Uniqueness under noiseless measurements

RIP based guarantee for unique solution
If \mathbf{A} satisfies $\delta_{2 k}^{\mathbf{A}}<1$, then the noiseless sparse signal recovery problem has a unique k-sparse solution.

Uniqueness under noiseless measurements

RIP based guarantee for unique solution
If \mathbf{A} satisfies $\delta_{2 k}^{\mathbf{A}}<1$, then the noiseless sparse signal recovery problem has a unique k-sparse solution.

Uniqueness under noiseless measurements

RIP based guarantee for unique solution

If \mathbf{A} satisfies $\delta_{2 k}^{\mathbf{A}}<1$, then the noiseless sparse signal recovery problem has a unique k-sparse solution.

- $\mathbf{z}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{z} \geq\left(1-\delta_{2 k}^{\mathbf{A}}\right)\|\mathbf{z}\|_{2}^{2}>0$ for all $2 k$-sparse $\mathbf{z},(\Longrightarrow 2 k$ sparse vectors NOT allowed in $\operatorname{Null(A)!~)~}$

Uniqueness under noiseless measurements

RIP based guarantee for unique solution

If \mathbf{A} satisfies $\delta_{2 k}^{\mathbf{A}}<1$, then the noiseless sparse signal recovery problem has a unique k-sparse solution.

- $\mathbf{z}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{z} \geq\left(1-\delta_{2 k}^{\mathbf{A}}\right)\|\mathbf{z}\|_{2}^{2}>0$ for all $2 k$-sparse $\mathbf{z},(\Longrightarrow 2 k$ sparse vectors NOT allowed in $\operatorname{Null}(A)!$)
- Let $\mathbf{x}_{1}, \mathbf{x}_{2}$ be distinct k-sparse solutions, then $\mathbf{y}=\mathbf{A} \mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{2}$. Thus, $\mathbf{A}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0$. Contradiction!.

RIP based recovery guarantees

Recovery algorithm	RIP based sufficient conditions for successful signal reconstruction
ℓ_{1}-norm minimization	$\delta_{k}(\mathbf{A}) \leq 0.307$
OMP	$\delta_{k+1}(\mathbf{A}) \leq \frac{\sqrt{4 k+1}-1}{2 k}$
Co-SAMP	$\delta_{4 k}(\mathbf{A}) \leq 0.1$
IHT	$\delta_{3 k}(\mathbf{A}) \leq \frac{1}{\sqrt{32}}$
Basis Pursuit	$\delta_{2 k}(\mathbf{A})+3 \delta_{3 k} \leq 1$
Subspace Pursuit	$\delta_{3 k} \leq 0.139$

Finding exact k-RIC is NP hard

For any \mathbf{A}, k-RIC of \mathbf{A} is the smallest $\delta \in(0,1)$ such that

$$
1-\delta \leq \lambda_{i}\left(\mathbf{A}_{S}^{T} \mathbf{A}_{\mathcal{S}}\right) \leq 1+\delta
$$

for all supports $\mathcal{S},|\mathcal{S}| \leq k$.

Unfortunately, finding the exact k-RIC of a matrix is NP hard! [Tillman \& Pfetsch, 2013]

Hence, we look for upper bounds for k-RIC of \mathbf{A}

Restricted Isometry of Gaussian matrices

Gaussian RIP condition by Candès and Tao, 2005

Let \mathbf{A} be an $m \times n$ random matrix with i.i.d. $\mathcal{N}(0,1)$ entries. Then,

$$
\mathbb{P}\left(\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}}\right) \geq \delta\right) \leq \frac{2}{(e n / k)^{k}}
$$

provided $m \geq c\left(\frac{k \log \frac{e n}{k}}{\delta^{2}}\right)$, where $c>0$ is an absolute numerical constant.

Restricted Isometry of Gaussian matrices

Gaussian RIP condition by Candès and Tao, 2005

Let \mathbf{A} be an $m \times n$ random matrix with i.i.d. $\mathcal{N}(0,1)$ entries. Then,

$$
\mathbb{P}\left(\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}}\right) \geq \delta\right) \leq \frac{2}{(e n / k)^{k}}
$$

provided $m \geq c\left(\frac{k \log \frac{e n}{k}}{\delta^{2}}\right)$, where $c>0$ is an absolute numerical constant.

Result extends to subgaussian random matrices as well

Recap - sparse signal recovery

Restricted Isometry Property (RIP) of the measurement matrix guarantees

- Stability of sparse solution in noisy measurement case

Gaussian random matrices of size $m \times n$ satisfy k-RIP with high probability if $m \geq \mathcal{O}\left(k \log \frac{n}{k}\right)$.

PART II

Joint Sparse Signal Recovery

Joint Sparse Support Recovery

- Measurement model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

- No inter/intra vector correlations in \mathbf{X}

Joint Sparse Support Recovery

- Measurement model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

- No inter/intra vector correlations in \mathbf{X}

Joint Sparse Support Recovery

- Measurement model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

- No inter/intra vector correlations in \mathbf{X}

Multiple Measurement Vector (MMV) problem \mid Joint Sparse Support Recovery (JSSR)
Recover entire \mathbf{X} from $\left\{\mathbf{Y}, \mathbf{A}, \sigma^{2}\right\}$
Recover support(\mathbf{X}) from $\left\{\mathbf{Y}, \mathbf{A}, \sigma^{2}\right\}$

Applications

Joint sparse signals frequently arise in multi-sensor signal processing

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \boldsymbol{\Gamma}), \boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \boldsymbol{\Gamma}), \boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$
- Support $(\gamma)=\operatorname{support}\left(\mathbf{x}_{j}\right)$
- Common covariance induces joint sparsity in $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}$

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \boldsymbol{\Gamma}), \boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$
- Support $(\gamma)=\operatorname{support}\left(\mathbf{x}_{j}\right)$
- Common covariance induces joint sparsity in $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}+\mathbf{A} \mathbf{A}^{T}\right)$

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \stackrel{i . i . d .}{\sim} \mathcal{N}(0, \boldsymbol{\Gamma}), \boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$
- Support $(\gamma)=\operatorname{support}\left(\mathbf{x}_{j}\right)$
- Common covariance induces joint sparsity in $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}+\mathbf{A} \mathbf{A}^{T}\right)$
- MSBL algorithm:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\operatorname{argmax}} \log p(\mathbf{Y} ; \gamma)
$$

- $\hat{\gamma}$ found using Expectation Maximization (EM) procedure

Support Recovery via Sparse Bayesian Learning

- $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \boldsymbol{\Gamma}), \boldsymbol{\Gamma}=\operatorname{diag}(\gamma)$
- Support $(\gamma)=\operatorname{support}\left(\mathbf{x}_{j}\right)$
- Common covariance induces joint sparsity in $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}+\mathbf{A} \mathbf{A}^{T}\right)$
- MSBL algorithm:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\operatorname{argmax}} \log p(\mathbf{Y} ; \gamma)
$$

- $\hat{\gamma}$ found using Expectation Maximization (EM) procedure

SOMP support recovery phase transition

MSBL support recovery phase transition

Recoverable support size k grows as $\mathcal{O}\left(m^{2}\right)$ in MSBL!

Support Recovery via Sparse Bayesian Learning

Sufficient conditions for support recovery

Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}$ are i.i.d. zero mean Gaussian vectors with common support $\mathcal{S}^{*},\left|\mathcal{S}^{*}\right| \leq k$, and with variances of the nonzero entries in $\left[\gamma_{\text {min }}, \gamma_{\text {max }}\right]$. Then,

$$
\mathbb{P}\left(\text { support }(\hat{\gamma}) \neq \mathcal{S}^{*}\right) \leq \exp \left(-\frac{\eta}{8} L\right), \text { if }
$$

Condition 1: Self Khatri-Rao product $\mathbf{A} \odot \mathbf{A}$ satisfies $2 k$-RIP, i.e.,

$$
\left(1-\delta_{2 k}^{\odot}\right)\|\mathbf{z}\|_{2}^{2} \leq\|(\mathbf{A} \odot \mathbf{A}) \mathbf{z}\|_{2}^{2} \leq\left(1+\delta_{2 k}^{\odot}\right)\|\mathbf{z}\|_{2}^{2}
$$

holds for all $2 k$ or less sparse vectors \mathbf{z}, for some $\delta_{2 k}^{\odot} \in(0,1)$.

Condition 2: $L \geq \frac{c_{1} k \log n}{\eta}$, where $\eta=\frac{m}{8 k}\left(\frac{\gamma_{\min }}{\sigma^{2}+\gamma_{\max }}\right)^{2} \frac{\left(1-\delta_{\mathcal{S}:|\mathcal{S}|=2 k}^{\odot}\right)}{\sup _{2 k}\left\|\mid \mathbf{A}_{\mathcal{S}}^{T} \mathbf{A}_{\mathcal{S}}\right\| \|_{2}}$, and c_{1} is an absolute positive constants.

[^0]New interpretation of MSBL cost function

- MSBL's log-likelihood cost:

$$
-\log p(\mathbf{Y} ; \gamma)=-\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j} ; 0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma}^{T}\right)
$$

New interpretation of MSBL cost function

- MSBL’s log-likelihood cost:

$$
\begin{aligned}
-\log p(\mathbf{Y} ; \gamma) & =-\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j} ; 0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right) \\
& \propto \log \left|\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right|+\operatorname{trace}\left(\left(\sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)^{-1}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right)\right)
\end{aligned}
$$

New interpretation of MSBL cost function

- MSBL's log-likelihood cost:

$$
\begin{aligned}
-\log p(\mathbf{Y} ; \gamma) & =-\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j} ; 0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right) \\
& \propto \log \left|\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right|+\operatorname{trace}\left(\left(\sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)^{-1}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right)\right)
\end{aligned}
$$

Log Det Bregman matrix divergence between matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{S}_{++}^{m}$ is defined as

$$
\mathcal{D}_{\phi}(\mathbf{X}, \mathbf{Y}) \triangleq \operatorname{trace}\left(\mathbf{X} \mathbf{Y}^{-1}\right)-\log \left|\mathbf{X} \mathbf{Y}^{-1}\right|-m
$$

New interpretation of MSBL cost function

- MSBL’s log-likelihood cost:

$$
\begin{aligned}
-\log p(\mathbf{Y} ; \gamma) & =-\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j} ; 0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right) \\
& \propto \log \left|\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \Gamma \mathbf{A}^{T}\right|+\operatorname{trace}\left(\left(\sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)^{-1}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right)\right) \\
& \propto \underbrace{\mathcal{D}_{-\log \operatorname{det}}^{\text {Bregman }}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)}_{\text {Log Det Bregman Matrix Div. }}+\text { constant terms }
\end{aligned}
$$

New interpretation of MSBL cost function

- MSBL's log-likelihood cost:

$$
\begin{aligned}
-\log p(\mathbf{Y} ; \gamma) & =-\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j} ; 0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right) \\
& \propto \log \left|\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \Gamma \mathbf{A}^{T}\right|+\operatorname{trace}\left(\left(\sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)^{-1}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right)\right) \\
& \propto \underbrace{\mathcal{D}_{-\log \operatorname{det}}^{\text {Bregman }}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)}_{\text {Log Det Bregman Matrix Div. }}+\text { constant terms }
\end{aligned}
$$

- MSBL optimization minimizes $\mathcal{D}_{-\log \text { det }}^{\text {Bregman }}(\underbrace{\frac{1}{L} \mathbf{Y Y}^{T}}_{\text {emp. cov mat }}, \underbrace{\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \boldsymbol{A ^ { T }}}_{\text {param. cov mat }})$
- Can we use some other matrix divergence?

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma}^{T}\right)$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{\top}$
- Parameterized $\boldsymbol{\Sigma}_{\gamma}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A A}^{T}$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R Y}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{\top}$
- Parameterized $\boldsymbol{\Sigma}_{\gamma}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A A}^{T}$
- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \operatorname{distance}(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
\text { MMV covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

$$
\operatorname{support}(\mathbf{X})=\operatorname{support}(\hat{\gamma})
$$

Examples of covariance matching algorithms

- Frobenius matrix norm based covariance matching (Co-LASSO)

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min }\| \| \frac{1}{L} \mathbf{Y}^{T}-\left(\sigma^{2} \mathbf{I}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)\| \|_{F}^{2}+\lambda\|\gamma\|_{1}
$$

- Main features of the Co-LASSO [Pal \& Vaidyanathan, 2013]
- ℓ_{1} norm penalty promotes recovery of sparse γ
- Convex objective
- Very high memory requirements

Examples of covariance matching algorithms

- Log-Det Bregman matrix divergence based covariance matching (MSBL)

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \log \left|\sigma^{2} \mathbf{I}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right|+\operatorname{tr}\left(\left(\sigma^{2} \mathbf{I}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right)^{-1}\left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right)\right)
$$

- Main features of MSBL [Wipf \& Rao, 2007]
- Non-convex objective
- Expectation Maximization based implementation (slow!)
- Good performance

Examples of covariance matching algorithms

- α-Rényi divergence based covariance matching (RD-CMP)

$$
\begin{aligned}
\hat{\gamma}=\underset{\mathcal{S} \subseteq[n]}{\arg \min } \mathcal{D}_{\alpha}\left(\mathcal{N}\left(0, \frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}\right), \mathcal{N}\left(0, \sigma^{2} \mathbf{I}+\right.\right. & \left.\left.\gamma \mathbf{A}_{\mathcal{S}} \mathbf{A}_{\mathcal{S}}^{T}\right)\right) \\
& \searrow \\
\mathbf{x}_{j} & \sim \mathcal{N}\left(0, \gamma \operatorname{diag}\left(\mathbf{1}_{\mathcal{S}}\right)\right)
\end{aligned}
$$

- RD-CMP objective is a difference of two submodular functions

$$
\hat{\mathcal{S}}=\underset{\mathcal{S} \subseteq[n]}{\operatorname{argmin}} \underbrace{\log \left|(1-\alpha) \mathbf{R}_{\mathbf{Y}}+\alpha\left(\sigma^{2} \mathbf{I}_{m}+\gamma \mathbf{A}_{\mathcal{S}} \mathbf{A}_{\mathcal{S}}^{T}\right)\right|}_{f(\mathcal{S}), \text { submodular in } \mathcal{S}}-\underbrace{\alpha \log \left|\sigma^{2} \mathbf{I}_{m}+\gamma \mathbf{A}_{\mathcal{S}} \mathbf{A}_{\mathcal{S}}^{T}\right|}_{g(\mathcal{S}), \text { submodular in } \mathcal{S}}
$$

- Main features of RD-CMP algorithm [Khanna \& Murthy, 2017]
- Generalizes the MSBL cost function
- Objective is difference of two submodular set functions (optimized via Majorization-Minimization)
- Very low computational complexity

Performance

- Support recovery phase transition for $n=200, L=400$ and SNR $=10 \mathrm{~dB}$

MSBL

RD-CMP

- $\mathrm{SNR}=10 \mathrm{~dB}$
- $k=\left\lceil 50 \log _{10} n\right\rceil$
- $m=\lceil 0.75 \mathrm{k}\rceil$
- $m L=\left\lceil 50 k \log _{10} n\right\rceil$

Covariance Matching Framework for Support Recovery

- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \text { distance }(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
M M V \text { covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

Covariance Matching Framework for Support Recovery

- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \text { distance }(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
M M V \text { covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

- A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}$

$$
\operatorname{vec}\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}_{m}\right) \approx(\mathbf{A} \odot \mathbf{A}) \gamma
$$

Covariance Matching Framework for Support Recovery

- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \text { distance }(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
M M V \text { covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

- A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A A}^{T}$

$$
\operatorname{vec}\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}_{m}\right) \approx(\underbrace{\left.\mathbf{A} \odot \mathbf{A}^{\mathbf{A}}\right) \gamma}_{\text {Khatri-Rao product }}
$$

Covariance Matching Framework for Support Recovery

- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \text { distance }(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
M M V \text { covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

- A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}$

$$
\operatorname{vec}\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}_{m}\right) \approx(\underbrace{\mathbf{A} \odot \mathbf{A}) \gamma}_{\text {Khatri-Rao product }}
$$

- For stable recovery of a k-sparse $\gamma, \mathbf{A} \odot \mathbf{A}$ must behave as an isometry for the restricted class of all k-sparse vectors

Covariance Matching Framework for Support Recovery

- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \text { distance }(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
M M V \text { covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

- A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}$

$$
\operatorname{vec}\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}_{m}\right) \approx(\underbrace{\mathbf{A} \odot \mathbf{A}) \gamma}_{\text {Khatri-Rao product }}
$$

- For stable recovery of a k-sparse $\gamma, \mathbf{A} \odot \mathbf{A}$ must behave as an isometry for the restricted class of all k-sparse vectors [When is this true?]

Columnwise Khatri-Rao product

- Columnwise Khatri-Rao product

\otimes denotes Kronecker product
- Khatri-Rao product arises naturally in
- Sparsity pattern recovery (via covariance matching)
- Direction of arrival estimation
- Tensor decomposition
- When does $\mathbf{A} \odot \mathbf{B}$ satisfy the Restricted Isometry Property?

Restricted Isometry of Khatri-Rao Product

Suppose \mathbf{A} and \mathbf{B} are $m \times n$ matrices with real i.i.d. $\mathcal{N}(0,1)$ entries. Then,

$$
\mathbb{P}\left(\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}} \odot \frac{\mathbf{B}}{\sqrt{m}}\right) \geq \delta\right) \leq \frac{4 e}{n^{2(\beta-1)}}
$$

provided that $m \geq\left(\frac{c_{1} \beta^{3 / 2}}{\delta}\right) \sqrt{k}(\log n)^{3 / 2}$. The results holds for all $\beta \geq 1$, and c_{1} is an absolute positive numerical constant.

- For $m \geq \mathcal{O}\left(\frac{\sqrt{k} \log ^{3 / 2} n}{\delta}\right)$, we have $\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}} \odot \frac{\mathbf{B}}{\sqrt{m}}\right) \leq \delta$ w.h.p.

Restricted Isometry of Khatri-Rao Product

Suppose \mathbf{A} and \mathbf{B} are $m \times n$ matrices with real i.i.d. $\mathcal{N}(0,1)$ entries. Then,

$$
\mathbb{P}\left(\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}} \odot \frac{\mathbf{B}}{\sqrt{m}}\right) \geq \delta\right) \leq \frac{4 e}{n^{2(\beta-1)}}
$$

provided that $m \geq\left(\frac{c_{1} \beta^{3 / 2}}{\delta}\right) \sqrt{k}(\log n)^{3 / 2}$. The results holds for all $\beta \geq 1$, and c_{1} is an absolute positive numerical constant.

- For $m \geq \mathcal{O}\left(\frac{\sqrt{k} \log ^{3 / 2} n}{\delta}\right)$, we have $\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}} \odot \frac{\mathbf{B}}{\sqrt{m}}\right) \leq \delta$ w.h.p.
- In MSBL, $\delta_{2 k}\left(\frac{\mathbf{A}}{\sqrt{m}} \odot \frac{\mathbf{A}}{\sqrt{m}}\right)<1$ can guarantee perfect support recovery w.h.p., if $m \geq \mathcal{O}(\sqrt{k})$!

Conventional Support Recovery

- Type-I estimation of \mathbf{X}
- $\mathbf{X}=$ unknown deterministic
- Work with Y directly
- RIP of A plays a role
- No. of meas: $m \geq \mathcal{O}(k)$

- Examples: SOMP, row-LASSO, M-FOCUSS

Covariance Matching

- Type-II estimation of \mathbf{X}
- $\mathbf{x}_{j} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \operatorname{diag}(\gamma))$
- Work with $\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}$ (sample covariance)
- RIP of $\mathbf{A} \odot \mathbf{A}$ plays a role
- No. of meas: $m \geq \mathcal{O}(\sqrt{k})$

- Examples: Co-LASSO, MSBL, RD-CMP

Related Publications

- S. Khanna and C. R. Murthy, "On the Support Recovery of Jointly Sparse Gaussian Sources using Sparse Bayesian Learning," (arXiV preprint: arXiv:1703.04930).
- S. Khanna and C. R. Murthy, "On the Restricted Isometry of the Columnwise Khatri-Rao Product," (submitted to IEEE Trans. Signal Process.).
- S. Khanna and C. R. Murthy, "Rényi Divergence based Covariance Matching Pursuit of Joint Sparse Support," IEEE Workshop on Signal Processing SPAWC-17), Sapporo, Japan, 2017, pp. 1-6.

[^0]: * The above result holds for column normalized \mathbf{A}.

