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PART I
Sparse Signal Recovery - An Overview
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Least Squares

Linear system of equations:

y = Ax

y ∈ Rm, x ∈ Rn, and A ∈ Rm×n

Overdetermined (m > n)

Unique or no solution

Line fitting

An approximate solution minimizes the residual error, i.e.,

x̂LS = arg min
x∈Rn

||y− Ax||22 x̂LS = (AT A)−1AT y︸ ︷︷ ︸
least squares solution

Least squares solution is unique and exists if A has full column rank
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Least Squares using Perturbed Measurements
Let x∗ be the ground truth, i.e., y = Ax∗

Perturbed measurements: ỹ = Ax∗ + e

Least squares estimate: x̂LS = (AT A)−1AT ỹ = A†ỹ

How far is x̂LS from x∗?

||x̂LS − x∗||2 =
∣∣∣∣A†ỹ− x∗

∣∣∣∣
2 =

∣∣∣∣∣∣(AT A)−1AT (Ax∗ + e)− x∗
∣∣∣∣∣∣

2

=
∣∣∣∣A†e∣∣∣∣2 ≤ ∣∣∣∣∣∣A†∣∣∣∣∣∣2 ||e||2

∣∣∣∣∣∣A†∣∣∣∣∣∣2 ≤ 1
λmin(AT A)

√
λmax(AT A)

λmin(AT A)
condition no. of AT A

Smaller condition number of AT A implies lesser sensitivity to
perturbations
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Sparse Signal Recovery

= +
measurement

vector
measurement

matrix

k-sparse
vector

noise

y A x w

(m × 1) (m × n)

(n × 1)

(m × 1)

Goal: Recover unknown k -sparse vector x from y

Two step recovery:
(i) Recover support S (indices of nonzero entries in x)
(ii) Recover xS using least squares on the reduced system:

y = ASxS + w overdetermined if k > m

Stable recovery of xS if condition no. of
AT
SAS ≈ 1
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Restricted Isometry Property

Candes and Tao, 2004
A matrix A is said to satisfy the Restricted Isometry Property (RIP) of order k ,
if there exists a constant δ ∈ (0,1) such that

(1− δ) ||z||22 ≤ ||Az||22 ≤ (1 + δ) ||z||22

for all k -sparse vectors z ∈ Rn.

The smallest δ is the k th order restricted isometry constant (k -RIC) of A.

Alternate interpretations:

I 1− δA
k ≤

zT AT Az
zT z

≤ 1 + δA
k ∀ k-sparse z

I Eigenvalues of AT
SAS lie in [1− δA

k , 1 + δA
k ] for all supports S, |S| ≤ k

I Condition no. of AT
SAS is at most

1 + δA
k

1− δA
k

for all supports S, |S| ≤ k
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Uniqueness under noiseless measurements

=
measurement

vector
measurement

matrix

k-sparse
vector

y A x

(m × 1) (m × n)

(n × 1)

RIP based guarantee for unique solution
If A satisfies δA

2k < 1, then the noiseless sparse signal recovery problem has a
unique k -sparse solution.

zT AT Az ≥ (1− δA
2k )||z||22 > 0 for all 2k -sparse z, ( =⇒ 2k sparse

vectors NOT allowed in Null(A)! )

Let x1,x2 be distinct k -sparse solutions, then y = Ax1 = Ax2. Thus,
A(x1 − x2) = 0. Contradiction!.
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RIP based recovery guarantees

Recovery algorithm RIP based sufficient conditions for
successful signal reconstruction

`1-norm minimization δk (A) ≤ 0.307

OMP δk+1(A) ≤
√

4k + 1− 1
2k

Co-SAMP δ4k (A) ≤ 0.1

IHT δ3k (A) ≤ 1√
32

Basis Pursuit δ2k (A) + 3δ3k ≤ 1

Subspace Pursuit δ3k ≤ 0.139
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Finding exact k -RIC is NP hard

For any A, k -RIC of A is the smallest δ ∈ (0,1) such that

1− δ ≤ λi

(
AT
SAS

)
≤ 1 + δ,

for all supports S, |S| ≤ k .

Unfortunately, finding the exact k -RIC of a matrix is NP hard! [Tillman &
Pfetsch, 2013]

Hence, we look for upper bounds for k -RIC of A
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Restricted Isometry of Gaussian matrices

Gaussian RIP condition by Candès and Tao, 2005
Let A be an m × n random matrix with i.i.d. N (0,1) entries. Then,

P
(
δk

(
A√
m

)
≥ δ
)
≤ 2

(en/k)k ,

provided m ≥ c
(

k log en
k

δ2

)
, where c > 0 is an absolute numerical constant.

Result extends to subgaussian random matrices as well
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Recap - sparse signal recovery

Restricted Isometry Property (RIP) of the measurement matrix
guarantees

I Stability of sparse solution in noisy measurement case

Gaussian random matrices of size m × n satisfy k -RIP with high
probability if m ≥ O

(
k log

n
k

)
.
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PART II
Joint Sparse Signal Recovery
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Joint Sparse Support Recovery

Measurement model: Y = AX + W

︸ ︷︷ ︸
n

A

︸ ︷︷ ︸
L

Y︸
︷︷

︸

m

X W

︸ ︷︷ ︸

︸ ︷︷ ︸

L

L

︸
︷︷

︸
n

Columns of X are jointly sparse (same
nonzero support).

k = no. of nonzero rows in X
No inter/intra vector correlations in X

Multiple Measurement Vector (MMV) problem Joint Sparse Support Recovery (JSSR)

Recover entire X from
{

Y,A, σ2} Recover support(X) from
{

Y,A, σ2}
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Applications

Joint sparse signals frequently arise in multi-sensor signal processing

Joint sparse vectors

x1 x2 x3 . . . xL︸ ︷︷ ︸
Signals from L sensors

common
support

Multi-sensor signal processing

Sparse event
localization

Cooperative
spectrum sensing

Sparse 2D field
reconstruction
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Support Recovery via Sparse Bayesian Learning
Y = AX + W

I xj
i.i.d.∼ N (0,Γ), Γ = diag(γ)

I Support(γ) = support(xj )

I Common covariance induces joint
sparsity in x1, x2, . . . , xL

I yj ∼ N (0, σ2I + AΓAT )

MSBL algorithm:

γ̂ = argmax
γ∈Rn

+

log p(Y;γ)

I γ̂ found using Expectation Maximization
(EM) procedure

SOMP support recovery phase transition
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Recoverable support size k grows

as O(m2) in MSBL!
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Support Recovery via Sparse Bayesian Learning

Sufficient conditions for support recovery
Suppose x1,x2, . . . ,xL are i.i.d. zero mean Gaussian vectors with common
support S∗, |S∗| ≤ k , and with variances of the nonzero entries in [γmin,γmax].
Then,

P (support(γ̂) 6= S∗) ≤ exp
(
−η

8
L
)
, if

Condition 1: Self Khatri-Rao product A� A satisfies 2k -RIP, i.e.,(
1− δ�2k

)
||z||22 ≤ ||(A� A)z||22 ≤

(
1 + δ�2k

)
||z||22

holds for all 2k or less sparse vectors z, for some δ�2k ∈ (0,1).

Condition 2: L ≥ c1k log n
η

, where η=
m
8k

(
γmin

σ2 + γmax

)2 (1− δ�2k )

sup
S:|S|=2k

∣∣∣∣∣∣AT
SAS

∣∣∣∣∣∣
2

,

and c1 is an absolute positive constants.

* The above result holds for column normalized A.
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New interpretation of MSBL cost function
MSBL’s log-likelihood cost:

− log p(Y;γ) = −
L∑

j=1

logN
(

yj ;0, σ2Im + AΓAT
)

∝ log |σ2Im + AΓAT | + trace
((

σ2Im + AΓAT
)−1

(
1
L

YYT
))

∝ DBregman
− log det

(
1
L

YYT , σ2Im + AΓAT
)

︸ ︷︷ ︸
Log Det Bregman Matrix Div.

+ constant terms

MSBL optimization minimizes DBregman
− log det

 1
L

YYT︸ ︷︷ ︸
emp. cov mat

, σ2Im + AΓAT︸ ︷︷ ︸
param. cov mat


Can we use some other matrix divergence?
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Covariance Matching Framework for Support Recovery

MMV model: Y = AX + W

I xj ∼ N (0, diag(γ))

I yj ∼ N (0, σ2Im + AΓAT )

Covariance matrices:

I Empirical RY =
1
L

YYT

I Parameterized Σγ = σ2Im + AΓAT

Covariance Matching Principle:

γ̂ = arg min
γ∈Rn

+

distance
(

RY︸︷︷︸
empirical

MMV covariance

, σ2I + AΓAT︸ ︷︷ ︸
parameterized

MMV covariance

)

support(X) = support(γ̂)
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Examples of covariance matching algorithms

Frobenius matrix norm based covariance matching (Co-LASSO)

γ̂ = arg min
γ∈Rn

+

∣∣∣∣∣∣∣∣∣∣∣∣1LYYT − (σ2I + AΓAT )

∣∣∣∣∣∣∣∣∣∣∣∣2
F
+ λ ||γ||1

Main features of the Co-LASSO [Pal & Vaidyanathan, 2013]

I `1 norm penalty promotes recovery of sparse γ

I Convex objective

I Very high memory requirements

Saurabh Khanna Covariance Matching Techniques for Sparsity Pattern Recovery 21 / 29



Examples of covariance matching algorithms

Log-Det Bregman matrix divergence based covariance matching
(MSBL)

γ̂ = arg min
γ∈Rn

+

log
∣∣∣σ2I + AΓAT

∣∣∣+ tr
((

σ2I + AΓAT
)−1

(
1
L

YYT
))

Main features of MSBL [Wipf & Rao, 2007]

I Non-convex objective

I Expectation Maximization based implementation (slow!)

I Good performance
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Examples of covariance matching algorithms
α-Rényi divergence based covariance matching (RD-CMP)

γ̂ = arg min
S⊆[n]

Dα
(
N
(

0,
1
L

YYT
)
, N

(
0, σ2I + γASAT

S

))
xj ∼ N (0,γdiag(1S))

RD-CMP objective is a difference of two submodular functions

Ŝ = argmin
S⊆[n]

log
∣∣∣(1− α)RY + α

(
σ2Im + γASAT

S

)∣∣∣︸ ︷︷ ︸
f (S), submodular in S

−α log
∣∣∣σ2Im + γASAT

S

∣∣∣︸ ︷︷ ︸
g(S), submodular in S

Main features of RD-CMP algorithm [Khanna & Murthy, 2017]

I Generalizes the MSBL cost function

I Objective is difference of two submodular set functions (optimized via
Majorization-Minimization)

I Very low computational complexity
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Performance
Support recovery phase transition for n = 200,L = 400 and SNR = 10 dB

Co-LASSO
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Covariance Matching Framework for Support Recovery

Covariance Matching Principle:

γ̂ = arg min
γ∈Rn

+

distance
(

RY︸︷︷︸
empirical

MMV covariance

, σ2I + AΓAT︸ ︷︷ ︸
parameterized

MMV covariance

)

A closer look at covariance matching constraint: RY ≈ σ2Im + AΓAT

vec
(
RY − σ2Im

)
≈ (A� A)γ

Khatri-Rao product

For stable recovery of a k -sparse γ, A� A must behave as an isometry
for the restricted class of all k -sparse vectors [When is this true?]
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Columnwise Khatri-Rao product

Columnwise Khatri-Rao product | | |
a1 a2 . . . ap
| | |


︸ ︷︷ ︸

�

 | | |
b1 b2 . . . bp
| | |


︸ ︷︷ ︸

=

 | | |
a1 ⊗ b1 a2 ⊗ b2 . . . ap ⊗ bp
| | |


︸ ︷︷ ︸

A B A� B(m × p) (m × p) (m2 × p)
⊗ denotes Kronecker product

Khatri-Rao product arises naturally in
I Sparsity pattern recovery (via covariance matching)
I Direction of arrival estimation
I Tensor decomposition

When does A� B satisfy the Restricted Isometry Property?
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Restricted Isometry of Khatri-Rao Product

Suppose A and B are m × n matrices with real i.i.d. N (0,1) entries. Then,

P
(
δk

(
A√
m
� B√

m

)
≥ δ
)
≤ 4e

n2(β−1)

provided that m ≥
(

c1β
3/2

δ

)√
k (log n)3/2. The results holds for all β ≥ 1, and

c1 is an absolute positive numerical constant.

For m ≥ O

(√
k log3/2 n

δ

)
, we have δk

(
A√
m
� B√

m

)
≤ δ w.h.p.

In MSBL, δ2k

(
A√
m
� A√

m

)
< 1 can guarantee perfect support recovery

w.h.p., if m ≥ O(
√

k)!
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Conventional Support Recovery

Type-I estimation of X
I X = unknown deterministic

Work with Y directly

RIP of A plays a role

No. of meas: m ≥ O(k)
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Examples: SOMP, row-LASSO,
M-FOCUSS

Covariance Matching

Type-II estimation of X

I xj
i.i.d.∼ N (0, diag(γ))

Work with
1
L

YYT (sample covariance)

RIP of A� A plays a role

No. of meas: m ≥ O(
√

k)
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Examples: Co-LASSO, MSBL,
RD-CMP
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