Covariance Matching techniques for Sparsity Pattern Recovery using Compressive Measurements

Saurabh Khanna

Electrical Communication Engineering Dept. Indian Institute of Science, Bangalore

Outline

Overview of sparse signal recovery

- Least squares problem
- Stable solution for a linear system of equations
- Restricted Isometry Property
- Joint Sparse Signal Recovery
 - Motivation
 - Sparse Bayesian Learning new results
 - Covariance matching framework
 - Restricted isometry of Khatri-Rao matrices

PART I Sparse Signal Recovery - An Overview

Linear system of equations:

 $\mathbf{y} = \mathbf{A}\mathbf{x}$

 $\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}$, and $\mathbf{A} \in \mathbb{R}^{m \times n}$ Overdetermined (m > n) Unique or no solution

Linear system of equations:

 $\mathbf{y} = \mathbf{A}\mathbf{x}$

$$\mathbf{y} \in \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}$$
, and $\mathbf{A} \in \mathbb{R}^{m \times n}$
Overdetermined ($m > n$)
Unique or no solution

Linear system of equations:

An approximate solution minimizes the residual error, i.e.,

$$\hat{\mathbf{x}}_{LS} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg min}} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2$$

An approximate solution minimizes the residual error, i.e.,

$$\hat{\mathbf{x}}_{\text{LS}} = \underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg\min} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} \qquad \hat{\mathbf{x}}_{\text{LS}} = \underbrace{(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{y}}_{\text{least squares solution}}$$

10

Data

4 5

An approximate solution minimizes the residual error, i.e.,

$$\hat{\mathbf{x}}_{\text{LS}} = \underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg\min} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} \qquad \qquad \hat{\mathbf{x}}_{\text{LS}} = \underbrace{(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{y}}_{\text{least squares solution}}$$

Least squares solution is unique and exists if A has full column rank

Let \mathbf{x}^* be the ground truth, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}^*$

Let \mathbf{x}^* be the ground truth, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}^*$

Perturbed measurements: $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$

Let \mathbf{x}^* be the ground truth, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}^*$

Perturbed measurements: $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$

Least squares estimate: $\hat{x}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \tilde{y} = \mathbf{A}^{\dagger} \tilde{y}$

Let \mathbf{x}^* be the ground truth, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}^*$

Perturbed measurements: $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$

Least squares estimate: $\hat{x}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \tilde{y} = \mathbf{A}^{\dagger} \tilde{y}$

How far is $\hat{\mathbf{x}}_{LS}$ from \mathbf{x}^* ?

Let \mathbf{x}^* be the ground truth, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}^*$

Perturbed measurements: $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$

Least squares estimate: $\hat{\mathbf{x}}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \tilde{\mathbf{y}} = \mathbf{A}^{\dagger} \tilde{\mathbf{y}}$

How far is $\hat{\mathbf{x}}_{LS}$ from \mathbf{x}^* ?

$$\begin{aligned} ||\hat{\mathbf{x}}_{LS} - \mathbf{x}^*||_2 &= ||\mathbf{A}^{\dagger}\tilde{\mathbf{y}} - \mathbf{x}^*||_2 = \left| \left| (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T (\mathbf{A} \mathbf{x}^* + \mathbf{e}) - \mathbf{x}^* \right| \right|_2 \\ &= ||\mathbf{A}^{\dagger} \mathbf{e}||_2 \le |||\mathbf{A}^{\dagger}|||_2 ||\mathbf{e}||_2 \end{aligned}$$

$$|||\mathbf{A}^{\dagger}|||_{2} \leq \frac{1}{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})} \sqrt{\frac{\lambda_{\max}(\mathbf{A}^{T}\mathbf{A})}{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})}}$$

Let \mathbf{x}^* be the ground truth, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}^*$

Perturbed measurements: $\tilde{\mathbf{y}} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$

Least squares estimate: $\hat{\mathbf{x}}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \tilde{\mathbf{y}} = \mathbf{A}^{\dagger} \tilde{\mathbf{y}}$

How far is $\hat{\mathbf{x}}_{LS}$ from \mathbf{x}^* ?

$$\begin{aligned} ||\hat{\mathbf{x}}_{LS} - \mathbf{x}^*||_2 &= ||\mathbf{A}^{\dagger} \tilde{\mathbf{y}} - \mathbf{x}^*||_2 = \left| \left| (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T (\mathbf{A} \mathbf{x}^* + \mathbf{e}) - \mathbf{x}^* \right| \right|_2 \\ &= ||\mathbf{A}^{\dagger} \mathbf{e}||_2 \le |||\mathbf{A}^{\dagger}|||_2 ||\mathbf{e}||_2 \end{aligned}$$

$$|||\mathbf{A}^{\dagger}|||_{2} \leq \frac{1}{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})} \sqrt{\frac{\lambda_{\max}(\mathbf{A}^{T}\mathbf{A})}{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})}} \longrightarrow \text{condition no. of } \mathbf{A}^{T}\mathbf{A}$$

Smaller condition number of A^TA implies lesser sensitivity to perturbations

Saurabh Khanna

Goal: Recover unknown k-sparse vector x from y

Goal: Recover unknown k-sparse vector x from y

Two step recovery:

(i) Recover support \mathcal{S} (indices of nonzero entries in \mathbf{x})

(ii) Recover $\boldsymbol{x}_{\mathcal{S}}$ using least squares on the reduced system:

 $\mathbf{y} = \mathbf{A}_{\mathcal{S}} \mathbf{x}_{\mathcal{S}} + \mathbf{w}$ overdetermined if k > m

Goal: Recover unknown k-sparse vector x from y

Two step recovery:

(i) Recover support \mathcal{S} (indices of nonzero entries in \mathbf{x})

(ii) Recover $\boldsymbol{x}_{\mathcal{S}}$ using least squares on the reduced system:

 $\mathbf{y} = \mathbf{A}_{\mathcal{S}}\mathbf{x}_{\mathcal{S}} + \mathbf{w}$ overdetermined if k > m

. Stable recovery of $\bm{x}_{\mathcal{S}}$ if condition no. of $\bm{A}_{\mathcal{S}}^{\mathsf{T}}\bm{A}_{\mathcal{S}}\approx 1$

Restricted Isometry Property

Candes and Tao, 2004

A matrix **A** is said to satisfy the *Restricted Isometry Property* (RIP) of order *k*, if there exists a constant $\delta \in (0, 1)$ such that

$$(1 - \delta) ||\mathbf{z}||_2^2 \le ||\mathbf{A}\mathbf{z}||_2^2 \le (1 + \delta) ||\mathbf{z}||_2^2$$

for all *k*-sparse vectors $\mathbf{z} \in \mathbb{R}^n$.

The smallest δ is the k^{th} order restricted isometry constant (k-RIC) of **A**.

Restricted Isometry Property

Candes and Tao, 2004

A matrix **A** is said to satisfy the *Restricted Isometry Property* (RIP) of order k, if there exists a constant $\delta \in (0, 1)$ such that

$$(1 - \delta) ||\mathbf{z}||_2^2 \le ||\mathbf{A}\mathbf{z}||_2^2 \le (1 + \delta) ||\mathbf{z}||_2^2$$

for all *k*-sparse vectors $\mathbf{z} \in \mathbb{R}^n$.

The smallest δ is the k^{th} order restricted isometry constant (k-RIC) of **A**.

Alternate interpretations:

►
$$1 - \delta_k^{\mathbf{A}} \leq \frac{\mathbf{z}^T \mathbf{A}^T \mathbf{A} \mathbf{z}}{\mathbf{z}^T \mathbf{z}} \leq 1 + \delta_k^{\mathbf{A}} \quad \forall k$$
-sparse \mathbf{z}

► Eigenvalues of $\mathbf{A}_{S}^{T}\mathbf{A}_{S}$ lie in $[1 - \delta_{k}^{\mathbf{A}}, 1 + \delta_{k}^{\mathbf{A}}]$ for all supports $S, |S| \leq k$

• Condition no. of
$$\mathbf{A}_{\mathcal{S}}^{\mathsf{T}}\mathbf{A}_{\mathcal{S}}$$
 is at most $\frac{1+\delta_{k}^{\mathsf{A}}}{1-\delta_{k}^{\mathsf{A}}}$ for all supports $\mathcal{S}, |\mathcal{S}| \leq k$

Goal: Recover unknown k-sparse vector x from y

Two step recovery:

(i) Recover support ${\mathcal S}$ (indices of nonzero entries in ${\boldsymbol x})$

(ii) Recover $\boldsymbol{x}_{\mathcal{S}}$ using least squares on the reduced system:

 $\mathbf{y} = \mathbf{A}_{\mathcal{S}} \mathbf{x}_{\mathcal{S}} + \mathbf{w} \qquad \text{overdetermined if } k > m$ Condition no. of $\mathbf{A}_{\mathcal{S}}^T \mathbf{A}_{\mathcal{S}} \approx 1$ guarantees stable recovery of $\mathbf{x}_{\mathcal{S}}$

Goal: Recover unknown k-sparse vector x from y

Two step recovery:

(i) Recover support ${\mathcal S}$ (indices of nonzero entries in ${\boldsymbol x})$

(ii) Recover $\boldsymbol{x}_{\mathcal{S}}$ using least squares on the reduced system:

RIP based guarantee for unique solution

If **A** satisfies $\delta_{2k}^{\mathbf{A}} < 1$, then the noiseless sparse signal recovery problem has a unique *k*-sparse solution.

RIP based guarantee for unique solution

If **A** satisfies $\delta_{2k}^{\mathbf{A}} < 1$, then the noiseless sparse signal recovery problem has a unique *k*-sparse solution.

RIP based guarantee for unique solution

If **A** satisfies $\delta_{2k}^{\mathbf{A}} < 1$, then the noiseless sparse signal recovery problem has a unique *k*-sparse solution.

• $z^T A^T A z \ge (1 - \delta_{2k}^A) ||z||_2^2 > 0$ for all 2k-sparse z, ($\implies 2k$ sparse vectors NOT allowed in Null(A)!)

RIP based guarantee for unique solution

If **A** satisfies $\delta_{2k}^{\mathbf{A}} < 1$, then the noiseless sparse signal recovery problem has a unique *k*-sparse solution.

• $z^T A^T A z \ge (1 - \delta_{2k}^A) ||z||_2^2 > 0$ for all 2k-sparse z, ($\implies 2k$ sparse vectors NOT allowed in Null(A)!)

• Let $\mathbf{x}_1, \mathbf{x}_2$ be distinct *k*-sparse solutions, then $\mathbf{y} = \mathbf{A}\mathbf{x}_1 = \mathbf{A}\mathbf{x}_2$. Thus, $\mathbf{A}(\mathbf{x}_1 - \mathbf{x}_2) = 0$. Contradiction!.

RIP based recovery guarantees

Recovery algorithm	RIP based sufficient conditions for successful signal reconstruction
ℓ_1 -norm minimization	$\delta_k(\mathbf{A}) \leq 0.307$
OMP	$\delta_{k+1}(\mathbf{A}) \leq \frac{\sqrt{4k+1}-1}{2k}$
Co-SAMP	$\delta_{4k}(\mathbf{A}) \leq 0.1$
IHT	$\delta_{3k}(\mathbf{A}) \leq rac{1}{\sqrt{32}}$
Basis Pursuit	$\delta_{2k}(\mathbf{A}) + 3\delta_{3k} \leq 1$
Subspace Pursuit	$\delta_{\mathbf{3k}} \leq 0.139$

Finding exact k-RIC is NP hard

For any **A**, *k*-RIC of **A** is the smallest $\delta \in (0, 1)$ such that

$$1-\delta \leq \lambda_i \left(\mathbf{A}_{\mathcal{S}}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}}\right) \leq 1+\delta,$$

for all supports S, $|S| \leq k$.

Unfortunately, finding the exact *k*-RIC of a matrix is NP hard! [Tillman & Pfetsch, 2013]

Hence, we look for upper bounds for k-RIC of A

Restricted Isometry of Gaussian matrices

Gaussian RIP condition by Candès and Tao, 2005

Let **A** be an $m \times n$ random matrix with i.i.d. $\mathcal{N}(0, 1)$ entries. Then,

$$\mathbb{P}\left(\delta_k\left(\frac{\mathbf{A}}{\sqrt{m}}\right) \geq \delta\right) \leq \frac{2}{(en/k)^k},$$

provided $m \ge c \left(\frac{k \log \frac{en}{k}}{\delta^2}\right)$, where c > 0 is an absolute numerical constant.

Restricted Isometry of Gaussian matrices

Gaussian RIP condition by Candès and Tao, 2005

Let **A** be an $m \times n$ random matrix with i.i.d. $\mathcal{N}(0, 1)$ entries. Then,

$$\mathbb{P}\left(\delta_k\left(\frac{\mathbf{A}}{\sqrt{m}}\right) \geq \delta\right) \leq \frac{2}{(en/k)^k},$$

provided $m \ge c \left(\frac{k \log \frac{en}{k}}{\delta^2}\right)$, where c > 0 is an absolute numerical constant.

Result extends to subgaussian random matrices as well

Recap - sparse signal recovery

Restricted Isometry Property (RIP) of the measurement matrix guarantees

Stability of sparse solution in noisy measurement case

Gaussian random matrices of size $m \times n$ satisfy *k*-RIP with high probability if $m \ge O\left(k \log \frac{n}{k}\right)$.

PART II Joint Sparse Signal Recovery

Joint Sparse Support Recovery

• Measurement model: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$

- k = no. of nonzero rows in X
- No inter/intra vector correlations in X

Joint Sparse Support Recovery

• Measurement model: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$

L

- $k = \text{no. of nonzero rows in } \mathbf{X}$
- No inter/intra vector correlations in X

Joint Sparse Support Recovery

• Measurement model: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$

- k = no. of nonzero rows in X
- No inter/intra vector correlations in X

Multiple Measurement Vector (MMV) problemJoint Sparse Support Recovery (JSSR)Recover entire X from $\{\mathbf{Y}, \mathbf{A}, \sigma^2\}$ Recover support(X) from $\{\mathbf{Y}, \mathbf{A}, \sigma^2\}$

Applications

Joint sparse signals frequently arise in multi-sensor signal processing

• $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$

• $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$

- $\bullet \ \mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \Gamma), \ \Gamma = \operatorname{diag}(\boldsymbol{\gamma})$

- $\bullet \ \mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \Gamma), \ \Gamma = \operatorname{diag}(\boldsymbol{\gamma})$
 - Support(γ) = support(\mathbf{x}_j)
 - ► Common covariance induces joint sparsity in x₁, x₂,..., x_L

- $\bullet \ \mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \Gamma), \ \Gamma = \operatorname{diag}(\boldsymbol{\gamma})$
 - Support(γ) = support(x_j)
 - ► Common covariance induces joint sparsity in x₁, x₂,..., x_L
 - ► $\mathbf{y}_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T)$

- $\bullet \ \mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \Gamma), \ \Gamma = \operatorname{diag}(\boldsymbol{\gamma})$
 - Support(γ) = support(\mathbf{x}_j)
 - ► Common covariance induces joint sparsity in x₁, x₂,..., x_L
 - $\mathbf{y}_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T)$
- MSBL algorithm:

$$\hat{oldsymbol{\gamma}} = rgmax_{oldsymbol{\gamma} \in \mathbb{R}^n_+} \ \log p(oldsymbol{Y};oldsymbol{\gamma})$$

 γ̂ found using Expectation Maximization (EM) procedure

• $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$

- $\mathbf{x}_j \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \Gamma), \ \Gamma = \operatorname{diag}(\boldsymbol{\gamma})$
- Support(γ) = support(x_j)
- ► Common covariance induces joint sparsity in x₁, x₂,..., x_L
- $\mathbf{y}_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T)$
- MSBL algorithm:

$$\hat{oldsymbol{\gamma}} = rgmax_{oldsymbol{\gamma} \in \mathbb{R}^n_+} \, \log p(oldsymbol{Y};oldsymbol{\gamma})$$

 γ̂ found using Expectation Maximization (EM) procedure SOMP support recovery phase transition

MSBL support recovery phase transition

Sufficient conditions for support recovery

Suppose $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_L$ are i.i.d. zero mean Gaussian vectors with common support $\mathcal{S}^*, |\mathcal{S}^*| \leq k$, and with variances of the nonzero entries in $[\gamma_{\min}, \gamma_{\max}]$. Then,

$$\mathbb{P}\left(\mathsf{support}(\hat{m{\gamma}})
eq \mathcal{S}^*
ight) \leq \exp\left(-rac{\eta}{8}L
ight), \;\; \mathsf{if}$$

Condition 1: Self Khatri-Rao product $\mathbf{A} \odot \mathbf{A}$ satisfies 2k-RIP, i.e.,

$$\left(1 - \delta_{2k}^{\odot}\right) \left|\left|\mathbf{z}\right|\right|_{2}^{2} \leq \left|\left(\mathbf{A} \odot \mathbf{A}\right)\mathbf{z}\right|\right|_{2}^{2} \leq \left(1 + \delta_{2k}^{\odot}\right) \left|\left|\mathbf{z}\right|\right|_{2}^{2}$$

holds for all 2k or less sparse vectors \mathbf{z} , for some $\delta_{2k}^{\odot} \in (0, 1)$.

Condition 2:
$$L \ge \frac{c_1 k \log n}{\eta}$$
, where $\eta = \frac{m}{8k} \left(\frac{\gamma_{\min}}{\sigma^2 + \gamma_{\max}} \right) \frac{2}{\sum_{|\mathcal{S}| = 2k} ||\mathbf{A}_{\mathcal{S}}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}}|||_2}$,

and c_1 is an absolute positive constants.

* The above result holds for column normalized A.

• MSBL's log-likelihood cost:

$$-\log p(\mathbf{Y}; \boldsymbol{\gamma}) = -\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j}; \mathbf{0}, \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right)$$

• MSBL's log-likelihood cost:

$$-\log p(\mathbf{Y}; \boldsymbol{\gamma}) = -\sum_{j=1}^{L} \log \mathcal{N}\left(\mathbf{y}_{j}; \mathbf{0}, \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^{T}\right)$$

$$\propto \log |\sigma^2 \mathbf{I}_m + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^{\mathcal{T}}| + \operatorname{trace} \left(\left(\sigma^2 \mathbf{I}_m + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^{\mathcal{T}} \right)^{-1} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{\mathcal{T}} \right) \right)$$

• MSBL's log-likelihood cost:

$$\log p(\mathbf{Y}; \boldsymbol{\gamma}) = -\sum_{j=1}^{L} \log \mathcal{N} \left(\mathbf{y}_{j}; \mathbf{0}, \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^{T} \right)$$

$$\propto \log |\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^{T}| + \operatorname{trace} \left(\left(\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^{T} \right)^{-1} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T} \right) \right)$$

$$\operatorname{Log Det Bregman matrix divergence between matrices}_{\mathbf{X}, \mathbf{Y} \in \mathbb{S}_{++}^{m} \text{ is defined as}}$$

$$\mathcal{D}_{\phi}(\mathbf{X}, \mathbf{Y}) \triangleq \operatorname{trace}(\mathbf{X} \mathbf{Y}^{-1}) - \log |\mathbf{X} \mathbf{Y}^{-1}| - m$$

• MSBL's log-likelihood cost:

$$\begin{aligned} -\log p(\mathbf{Y}; \boldsymbol{\gamma}) &= -\sum_{j=1}^{L} \log \mathcal{N} \left(\mathbf{y}_{j}; \mathbf{0}, \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T} \right) \\ &\propto \log |\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}| + \operatorname{trace} \left(\left(\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T} \right)^{-1} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T} \right) \right) \\ &\propto \mathcal{D}_{-\log \det}^{\operatorname{Bregman}} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}, \ \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T} \right) + \operatorname{constant terms} \end{aligned}$$

Log Det Bregman Matrix Div.

• MSBL's log-likelihood cost:

$$-\log p(\mathbf{Y}; \boldsymbol{\gamma}) = -\sum_{j=1}^{L} \log \mathcal{N} \left(\mathbf{y}_{j}; \mathbf{0}, \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \Gamma \mathbf{A}^{T} \right)$$

$$\propto \log |\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \Gamma \mathbf{A}^{T}| + \operatorname{trace} \left(\left(\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \Gamma \mathbf{A}^{T} \right)^{-1} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T} \right) \right)$$

$$\propto \underbrace{\mathcal{D}_{-\log \det}^{\operatorname{Bregman}} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}, \sigma^{2} \mathbf{I}_{m} + \mathbf{A} \Gamma \mathbf{A}^{T} \right)}_{\operatorname{Log Det Bregman Matrix Div.}} + \operatorname{constant terms}$$

$$\bullet \operatorname{MSBL} \operatorname{optimization minimizes} \mathcal{D}_{-\log \det}^{\operatorname{Bregman}} \left(\underbrace{\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}}_{\operatorname{emp. cov mat}}, \underbrace{\sigma^{2} \mathbf{I}_{m} + \mathbf{A} \Gamma \mathbf{A}^{T}}_{\operatorname{param. cov mat}} \right)$$

• Can we use some other matrix divergence?

- MMV model: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \sim \mathcal{N}(\mathbf{0}, \operatorname{diag}(\boldsymbol{\gamma}))$
 - ► $\mathbf{y}_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_m + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T)$

- MMV model: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \sim \mathcal{N}(\mathbf{0}, \operatorname{diag}(\boldsymbol{\gamma}))$
 - $\mathbf{y}_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_m + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T)$

• Covariance matrices:

• Empirical
$$\mathbf{R}_{\mathbf{Y}} = \frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}$$

• Parameterized $\Sigma_{\gamma} = \sigma^2 \mathbf{I}_m + \mathbf{A} \Gamma \mathbf{A}^T$

- MMV model: $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{W}$
 - $\mathbf{x}_j \sim \mathcal{N}(\mathbf{0}, \operatorname{diag}(\boldsymbol{\gamma}))$
 - ► $\mathbf{y}_j \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_m + \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T)$

• Covariance matrices:

• Empirical
$$\mathbf{R}_{\mathbf{Y}} = \frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}$$

• Parameterized
$$\Sigma_{\gamma} = \sigma^2 \mathbf{I}_m + \mathbf{A} \Gamma \mathbf{A}^T$$

Covariance Matching Principle:

 $\operatorname{support}(\mathbf{X}) = \operatorname{support}(\hat{\gamma})$

Examples of covariance matching algorithms

Frobenius matrix norm based covariance matching (Co-LASSO)

$$\hat{\boldsymbol{\gamma}} = \arg\min_{\boldsymbol{\gamma} \in \mathbb{R}^{n}_{+}} \left| \left| \left| \frac{1}{L} \boldsymbol{Y} \boldsymbol{Y}^{T} - (\sigma^{2} \boldsymbol{I} + \boldsymbol{A} \boldsymbol{\Gamma} \boldsymbol{A}^{T}) \right| \right| \right|_{F}^{2} + \lambda \left| |\boldsymbol{\gamma} \right| \right|_{1}$$

- Main features of the Co-LASSO [Pal & Vaidyanathan, 2013]
 - ℓ_1 norm penalty promotes recovery of sparse γ
 - Convex objective
 - Very high memory requirements

Examples of covariance matching algorithms

 Log-Det Bregman matrix divergence based covariance matching (MSBL)

$$\hat{\gamma} = \underset{\boldsymbol{\gamma} \in \mathbb{R}^{n}_{+}}{\arg\min} \left| \log \left| \sigma^{2} \mathbf{I} + \mathbf{A} \Gamma \mathbf{A}^{T} \right| + \operatorname{tr} \left(\left(\sigma^{2} \mathbf{I} + \mathbf{A} \Gamma \mathbf{A}^{T} \right)^{-1} \left(\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T} \right) \right)$$

- Main features of MSBL [Wipf & Rao, 2007]
 - Non-convex objective
 - Expectation Maximization based implementation (slow!)
 - Good performance

Examples of covariance matching algorithms

α-Rényi divergence based covariance matching (RD-CMP)

$$\hat{\boldsymbol{\gamma}} = \underset{\mathcal{S}\subseteq[n]}{\arg\min} \mathcal{D}_{\alpha} \left(\mathcal{N} \left(\boldsymbol{0}, \frac{1}{L} \boldsymbol{Y} \boldsymbol{Y}^{T} \right) , \mathcal{N} \left(\boldsymbol{0}, \sigma^{2} \boldsymbol{I} + \boldsymbol{\gamma} \boldsymbol{A}_{\mathcal{S}} \boldsymbol{A}_{\mathcal{S}}^{T} \right) \right)$$
$$\boldsymbol{x}_{i} \sim \mathcal{N} \left(\boldsymbol{0}, \boldsymbol{\gamma} \operatorname{diag}(\boldsymbol{1}_{\mathcal{S}}) \right)$$

RD-CMP objective is a difference of two submodular functions

$$\hat{\mathcal{S}} = \underset{\mathcal{S}\subseteq[n]}{\operatorname{argmin}} \underbrace{\log \left| (1-\alpha) \mathbf{R}_{\mathbf{Y}} + \alpha \left(\sigma^{2} \mathbf{I}_{m} + \gamma \mathbf{A}_{\mathcal{S}} \mathbf{A}_{\mathcal{S}}^{T} \right) \right|}_{f(\mathcal{S}), \text{ submodular in } \mathcal{S}} - \underbrace{\alpha \log \left| \sigma^{2} \mathbf{I}_{m} + \gamma \mathbf{A}_{\mathcal{S}} \mathbf{A}_{\mathcal{S}}^{T} \right|}_{g(\mathcal{S}), \text{ submodular in } \mathcal{S}}$$

- Main features of RD-CMP algorithm [Khanna & Murthy, 2017]
 - Generalizes the MSBL cost function
 - Objective is difference of two submodular set functions (optimized via Majorization-Minimization)
 - Very low computational complexity

Performance

Support recovery phase transition for n = 200, L = 400 and SNR = 10 dB

Co-LASSO

RD-CMP

- Average runtime vs signal dimension
 - SNR = 10 dB
 - $k = \lceil 50 \log_{10} n \rceil$
 - *m* = [0.75*k*]
 - $mL = \lceil 50k \log_{10} n \rceil$

• Covariance Matching Principle:

• Covariance Matching Principle:

• A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^2 \mathbf{I}_m + \mathbf{A} \Gamma \mathbf{A}^T$

$$\operatorname{vec}\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2}\mathbf{I}_{m}
ight)pprox\left(\mathbf{A}\odot\mathbf{A}
ight)\boldsymbol{\gamma}$$

• Covariance Matching Principle:

• A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^2 \mathbf{I}_m + \mathbf{A} \Gamma \mathbf{A}^T$

vec
$$(\mathbf{R}_{\mathbf{Y}} - \sigma^2 \mathbf{I}_m) \approx (\mathbf{A} \odot \mathbf{A}) \gamma$$

Khatri-Rao product

• Covariance Matching Principle:

• A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^2 \mathbf{I}_m + \mathbf{A} \Gamma \mathbf{A}^T$

vec
$$(\mathbf{R}_{\mathbf{Y}} - \sigma^2 \mathbf{I}_m) \approx (\mathbf{A} \odot \mathbf{A}) \gamma$$

Khatri-Rao product

 For stable recovery of a k-sparse γ, A ⊙ A must behave as an isometry for the restricted class of all k-sparse vectors

• Covariance Matching Principle:

• A closer look at covariance matching constraint: $\mathbf{R}_{\mathbf{Y}} \approx \sigma^2 \mathbf{I}_m + \mathbf{A} \Gamma \mathbf{A}^T$

vec
$$(\mathbf{R}_{\mathbf{Y}} - \sigma^2 \mathbf{I}_m) \approx (\mathbf{A} \odot \mathbf{A}) \gamma$$

Khatri-Rao product

 For stable recovery of a k-sparse γ, A ⊙ A must behave as an isometry for the restricted class of all k-sparse vectors [When is this true?]

Columnwise Khatri-Rao product

Columnwise Khatri-Rao product

$$\underbrace{\begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_p \\ | & | & | \end{bmatrix}}_{\mathbf{A} (m \times p)} \odot \underbrace{\begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \\ | & | & | \end{bmatrix}}_{\mathbf{B} (m \times p)} = \underbrace{\begin{bmatrix} | & | & | & | \\ \mathbf{a}_1 \otimes \mathbf{b}_1 & \mathbf{a}_2 \otimes \mathbf{b}_2 & \dots & \mathbf{a}_p \otimes \mathbf{b}_p \\ | & | & | \end{bmatrix}}_{\mathbf{A} \odot \mathbf{B} (m^2 \times p)}$$

⊗ denotes Kronecker product

- Khatri-Rao product arises naturally in
 - Sparsity pattern recovery (via covariance matching)
 - Direction of arrival estimation
 - Tensor decomposition

When does A o B satisfy the Restricted Isometry Property?

Restricted Isometry of Khatri-Rao Product

Suppose **A** and **B** are $m \times n$ matrices with real i.i.d. $\mathcal{N}(0, 1)$ entries. Then,

$$\mathbb{P}\left(\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}}\odot\frac{\mathbf{B}}{\sqrt{m}}\right)\geq\delta\right)\leq\frac{4e}{n^{2(\beta-1)}}$$

provided that $m \ge \left(\frac{c_1\beta^{3/2}}{\delta}\right)\sqrt{k} (\log n)^{3/2}$. The results holds for all $\beta \ge 1$, and c_1 is an absolute positive numerical constant.

• For
$$m \ge \mathcal{O}\left(\frac{\sqrt{k}\log^{3/2}n}{\delta}\right)$$
, we have $\delta_k\left(\frac{\mathbf{A}}{\sqrt{m}}\odot\frac{\mathbf{B}}{\sqrt{m}}\right) \le \delta$ w.h.p.

Restricted Isometry of Khatri-Rao Product

Suppose **A** and **B** are $m \times n$ matrices with real i.i.d. $\mathcal{N}(0, 1)$ entries. Then,

$$\mathbb{P}\left(\delta_{k}\left(\frac{\mathbf{A}}{\sqrt{m}}\odot\frac{\mathbf{B}}{\sqrt{m}}\right)\geq\delta\right)\leq\frac{4e}{n^{2(\beta-1)}}$$

provided that $m \ge \left(\frac{c_1\beta^{3/2}}{\delta}\right)\sqrt{k} (\log n)^{3/2}$. The results holds for all $\beta \ge 1$, and c_1 is an absolute positive numerical constant.

• For
$$m \ge \mathcal{O}\left(\frac{\sqrt{k}\log^{3/2}n}{\delta}\right)$$
, we have $\delta_k\left(\frac{\mathbf{A}}{\sqrt{m}}\odot\frac{\mathbf{B}}{\sqrt{m}}\right) \le \delta$ w.h.p.

• In MSBL, $\delta_{2k} \left(\frac{\mathbf{A}}{\sqrt{m}} \odot \frac{\mathbf{A}}{\sqrt{m}} \right) < 1$ can guarantee perfect support recovery w.h.p., if $m \ge \mathcal{O}(\sqrt{k})!$

Conventional Support Recovery

- Type-I estimation of X
 - X = unknown deterministic
- Work with Y directly
- RIP of A plays a role
- No. of meas: $m \geq \mathcal{O}(k)$

 Examples: SOMP, row-LASSO, M-FOCUSS

Covariance Matching

- Type-II estimation of X
 - $\mathbf{x}_j \overset{i.i.d.}{\sim} \mathcal{N}(0, \operatorname{diag}(\boldsymbol{\gamma}))$
- Work with $\frac{1}{L} \mathbf{Y} \mathbf{Y}^{T}$ (sample covariance)
- RIP of $\mathbf{A} \odot \mathbf{A}$ plays a role
- No. of meas: $m \ge \mathcal{O}(\sqrt{k})$

• Examples: Co-LASSO, MSBL, RD-CMP

Related Publications

- S. Khanna and C. R. Murthy, "On the Support Recovery of Jointly Sparse Gaussian Sources using Sparse Bayesian Learning," (arXiV preprint: arXiv:1703.04930).
- S. Khanna and C. R. Murthy, "On the Restricted Isometry of the Columnwise Khatri-Rao Product," (submitted to IEEE Trans. Signal Process.).
- S. Khanna and C. R. Murthy, "Rényi Divergence based Covariance Matching Pursuit of Joint Sparse Support," IEEE Workshop on Signal Processing SPAWC-17), Sapporo, Japan, 2017, pp. 1-6.