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Overview

Estimating properties of Markov chains and memoryless sources

Symmetric properties and performance of plug-in estimators

Pattern maximum likelihood (PML) estimate

Approximating the PML estimate using a variational approach
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Estimating the transition matrix of a DTMC
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An estimation problem

Suppose we have X1,X2,X3, . . . ,Xn from an irreducible time-homogeneous
Markov chain over S = {1, 2, . . . , k} with transition kernel

px ,y = Pr[Xt+1 = y |Xt = x ]

and uniform initial distribution.

We know k , but we do not know p.

We observe sample path x1, x2, . . . , xn of length n.

What can we infer about p?
Regime of interest: n ≤ k2.
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Estimating graphs from random walks
Let G be an undirected graph.

Let X1,X2, . . . ,Xn be a random walk starting from a random initial vertex.
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Estimating graphs from random walks
Let G be an undirected graph.
Let X1,X2, . . . ,Xn be a random walk starting from a random initial vertex.

Q: What can we infer about G from X1,X2, . . . ,Xn?
This is important in the regime where n is less than k2.

Many parameters such as the degree distribution, eigenvalues of the
adjacency matrix, etc., are of interest.
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A simpler problem: the i.i.d. case

We have a pmf p over S = {1, 2, . . . , k}

We observe X1, . . . ,Xn, i.i.d. with each Xi ∼ p.

What can we infer about p?

Pr[X n = xn] =
n∏

i=1
pxi =

∏
a∈S

pµa
a

where µa is the number of times a appears in xn.
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Sequence maximum likelihood estimation

If n is large enough, can find the empirical estimate of p (SML estimate):

For a ∈ S, let µa denote the number of times the symbol a occurs in
x1, x2, . . . , xn.

(pSML)a = µa∑
b∈S µb

= µa
n

Problem: If n . k , we do not get a good estimate.
If n < k , some symbols will never be observed.
The SML estimate assigns zero probability to such symbols.
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Symmetric properties of distributions

f (p) is symmetric if it is invariant to a relabeling of the alphabet.

For every σ ∈ Sk , f (pσ(·)) = f (p).

Examples: Support size, entropy (Shannon, Renyi), etc.

H(p) = −
∑

a
pa log2 pa

Want to estimate f (p) from X1, . . . ,Xn.
Specifically, for ε, δ > 0, want an estimator f̂ : Sn → R such that

Pr[|f (p)− f̂ (X n)| > ε] < δ

Sample complexity: smallest N such that the above holds for all n ≥ N .
Typically take δ = 1/3.
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Estimating symmetric properties: A plug-in approach?

Estimating f (p): Use ML/favourite estimator.
Different estimator for each f . Complexity??

Idea: Find an approximation of p, i.e., p̂.
Compute f (p̂) — plug-in estimator.

SML plug-in estimator: Choose p̂ = pSML.

Problem: If n is small compared to k , then pSML is bad.

Q: Can we do better than the SML estimate?
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The Pattern Maximum Likelihood Estimate
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An alternative to pSML

Pattern:

Given x = x1, x2, . . . , xn, the index of symbol a in x is 1 plus the
number of distinct symbols occurring before the first occurrence of a in
x.

The pattern of x is the string obtained by replacing xi by the index of xi .

Example: Consider
x = abracadabra.

The pattern of x,

ψ(x) = 12314151231.

Symbol Index
a 1
b 2
r 3
c 4
d 5
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x.

The pattern of x is the string obtained by replacing xi by the index of xi .

Example: Consider
x = abracadabra.

The pattern of x,

ψ(x) = 12314151231.

Symbol Index
a 1
b 2
r 3
c 4
d 5

Profile:

multiset of number of occurrences of different symbols
{µ1, µ2, . . . , µn}

Profile of abracadabra: {5, 2, 2, 1, 1}
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Example: Consider
x = abracadabra.

The pattern of x,

ψ(x) = 12314151231.

Symbol Index
a 1
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c 4
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Pattern probability:

P(ψ|p) ,
∑
σ

k∏
i=1

pµi
σ(i)
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Pattern:

Given x = x1, x2, . . . , xn, the index of symbol a in x is 1 plus the
number of distinct symbols occurring before the first occurrence of a in
x.

The pattern of x is the string obtained by replacing xi by the index of xi .

Example: Consider
x = abracadabra.

The pattern of x,

ψ(x) = 12314151231.

Symbol Index
a 1
b 2
r 3
c 4
d 5

P(12314151231|p) = Pr[abcadaeabca] + · · ·+ Pr[abracadabra] + · · ·
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An alternative to pSML: The PML estimate

SML and PML estimates
pSML: is the pmf that maximizes the probability of occurrence of the
sequence x.

pPML: the Pattern maximum likelihood (PML) estimate is the pmf that
maximizes the probability of occurrence of ψ(x).
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An alternative to pSML: The PML estimate

SML and PML estimates
pSML: is the pmf that maximizes the probability of occurrence of the
sequence x.

pPML: the Pattern maximum likelihood (PML) estimate is the pmf that
maximizes the probability of occurrence of ψ(x).

For convenience, maximize over ordered pmfs, i.e., p1 ≥ p2 ≥ . . . ≥ pk .

p(ψ)
PML = arg max

p∈Pk
P(ψ|p)

= arg max
p∈Pk

∑
σ

k∏
i=1

pµi
σ(i) (1)
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Origins of PML

Origins of PML: Universal compression of memoryless sources over
unknown alphabets by Orlitsky et al.1

Universal compression: block redundancy (average number of
additional bits required compared to the case when distribution is
known)

R(P) = inf
q

sup
p

sup
x∈S

log p(x)
q(x)

For sequences, block redundancy

R(In
k ) = k − 1

2 log n
2π + log

(
Γ(1/2)k

Γ(k/2)

)
+ ok(1)

(Orlitsky et al.) For compressing patterns, block redundancy

(1.5 log e)n1/3(1 + o(1)) ≤ R(In
ψ) ≤ π

√
2/3(log e)

√
n

1A. Orlitsky, N. Santhanam, and J. Zhang, “Universal compression of memoryless sources
over unknown alphabets,” IEEE Trans. Inf. Theory, Jul. 2004
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Estimating symmetric properties using pPML

PML plug-in estimator: Compute pPML, and find f (pPML).

Let Z(n) denote the set of all length-n patterns.

Proposition (Acharya et al.1)

Consider any estimator f̂ for f that takes as input2 ψ(X(n)). Suppose that
for every ε > 0, δ > 0 and transition probability distribution p, there exists
N such that

Pr
[
|f (p)− f̂ (ψ(X(n)))| ≥ ε

]
< δ

for all n ≥ N . Then,

Pr
[
|f (p(ψ(X(n)))

PML )− f (p)| ≥ 2ε
]
< δ · |Z(n)|

for all n ≥ N .

|Z(n)| ≤ min
{

e3
√

n,

(
n + k − 1

k − 1

)}

1J. Acharya, H. Das, A. Orlitsky, and A.T. Suresh, “A Unified Maximum Likelihood
Approach for Optimal Distribution Property Estimation,” arXiv, Dec 2016
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The previous result is not as bad as it sounds!
(Acharya et al.) For symmetric properties such as entropy, support size,
distance from uniform distribution, sample complexity is order optimal!

Property SML Optimal

Entropy O(k/ε) O
(

k
ε log k

)
Support size∗ O(k log(1/ε)) O

(
k

log k log2(1/ε)
)

Basic idea: There exist optimal estimators that give bias ε, error
probability 1/3, and satisfy a “bounded difference property”
Have sample complexity Ns

Use McDiarmid’s inequality to show that probability of error e−Ω(
√

n)

can be achieved using O(Ns) samples
Then, use previous result
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Efficiently approximating pPML
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Computing pPML

p(ψ)
PML = arg maxp∈P

∑
σ

k∏
a=1

pµa
σ(a).
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Computing pPML

p(ψ)
PML = arg maxp∈P

∑
σ

k∏
a=1

pµa
σ(a).

Determinant: Given k × k matrix M = (mi,j),

det(M) =
∑
σ∈Sk

(−1)sgn(σ)
k∏

i=1
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Computing pPML

p(ψ)
PML = arg maxp∈P

∑
σ

k∏
a=1

pµa
σ(a).

Permanent: Given k × k matrix M = (mi,j),

perm(M) =
∑
σ∈Sk

k∏
i=1

ai,σ(i)

Pattern probability = perm((pµj
i ))

Computing permanent is hard!
For 0− 1 matrix, best known Ryser’s algorithm requires O(k2k) operations.
We use a variational approach as done by Vontobela.

aP. O. Vontobel, “The Bethe approximation of the pattern maximum likelihood distribution,”
ISIT, Boston, MA, 2012

P.O. Vontobel, “The Bethe and Sinkhorn approximations of the pattern maximum likelihood
estimate and their connections to the Valiant-Valiant estimate,” ITA, San Diego, CA, 2014
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A variational approach: Reformulating pPML

Z , P(ψ|p) =
∑
σ∈K

∏
i,j

pµjσij
i

where σij is the (i , j)th entry of the permutation matrix σ

Objective: Express this as the minimum of a certain free energy function.

Introduce a “trial” distribution β on all permutations on {1, 2, . . . , k}.

Define the Gibbs average energy function

UG(β; p,ψ) , −
∑
σ∈K

β(σ) log
(∏

i,j
pµjσij

i

)
= −

∑
σ∈K

∑
i,j
β(σ)σij log

(
pµj

i

)
,

and the Gibbs entropy function

HG(β) , −
∑
σ∈K

β(σ) log β(σ).
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A variational approach: Reformulating pPML

UG(β; p,ψ) = log k −
∑
σ∈K

∑
i,j,l,m

β(σ) log
(

pµijσilσjm
l,m

)
,

HG(β) = −
∑
σ∈K

β(σ) log β(σ).

We define the Gibbs free energy function

FG(β; p,ψ) , UG(β; p,ψ)− HG(β),

It is a fact that2

min
β

FG(β; p,ψ) = − log Z = − logP(ψ|p)

Therefore,
p(ψ)

PML = arg min
p∈C

min
β∈P

FG(β; p,ψ).

2J.S. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approximations and
generalized belief propagation algorithms,” IEEE Trans. Inf. Theory, Jul. 2005
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Interpretation

Thermodynamic system with state space K. Probability that the system is in
state σ:

γ(σ) = e−E(σ)/T

Z
where

E : K → R is the energy function (Hamiltonian)
T is the temperature, κ is Boltzmann’s constant (1.38× 10−23JK−1)
Z =

∑
σ e−E(σ)/(κT ) is the Helmholtz free energy

In our case,
E (σ) =

∑
i,j σi,j log pµj

i

κT = 1
Z = P(ψ|p)
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Interpretation

The Helmholtz average energy function

UH(γ; E ) ,
∑
σ

γ(σ)E (σ)

and the Helmholtz entropy function

HH(γ) , −
∑
σ∈K

γ(σ) log γ(σ).

Then, FH = −κT log Z = UH − THH

The Gibbs average energy function

UG(β; E ) , −
∑
σ∈K

β(σ)E (σ),

the Gibbs entropy function

HG(β) , −
∑
σ∈K

β(σ) log β(σ),

and FG = UG − THG
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A variational approach to approximating pPML

p(ψ)
PML = arg min

p
min
β

FG(β; p,ψ).

But how do we compute this?

Idea: Use approximations that are easy to compute3.
Specifically, perform minimization w.r.t. β over an easier set.

Mean field approximation: Choose β to be a product distribution. Easy to
compute.

Bethe approximation:
Typically use low-complexity belief propagation algorithms.

3J.S. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approximations and
generalized belief propagation algorithms,” IEEE Trans. Inf. Theory, Jul. 2005
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Generalization to DTMCs
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An alternative to pSML: The PML estimate

SML and PML estimates
pSML: is the transition kernel that maximizes the probability of
occurrence of the sequence x.

pPML: the Pattern maximum likelihood (PML) estimate is the transition
kernel that maximizes the probability of occurrence of ψ(x).
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The traditional mean field approximation

p(ψ)
PML = arg min

p∈P
min
β∈P′

FG(β; p,ψ).

Choose β to be a product distribution on k × k binary matrices, i.e.,
β(σ) =

∏
i,l βil (σil ).

FTMF(βββ; p,ψ) = −
∑

σ∈{0,1}k×k

((∏
i,l
βil (σil )

)
log
(
1K(σ)

∏
i,j,l,m

pµijσilσjm
l,m

))

+
∑
i,l

1∑
σil =0

βil (σil ) log βil (σil ) + log k.

The traditional mean-field PML estimate is

p(ψ)
TMFPML = arg min

p∈C
min
βββ

FTMF(βββ; p,ψ).

However, we show that this actually reduces to the SML estimate.
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A modified mean field estimate

Inspired by mean field approach used by Chertkov and Yedidia4 for
approximating permanent of a nonnegative matrix.

In the MF approximation, impose constraint that
∑

l βil (1) =
∑

i βil (1) = 1.
Define bil , βil (1).

FMF( · ; p,ψ) : D → R

FMF(b; p,ψ) = −
∑

i,j,l,m
j 6=i
m 6=l

bilbjm log pµij
lm −

∑
i,l

bil log pµii
ll

+
∑
i,l

(
bil log bil + (1− bil ) log(1− bil )

)
+ log k. (2)

The mean-field PML (MFPML) estimate is defined as

p(ψ)
MFPML , arg min

p∈C
min

(bij )∈D
FMF(b; p,ψ).

4M. Chertkov and A. Yedidia, “Approximating the permanent with fractional belief
propagation,” J. Machine Learning Research, 2013.
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Empirical results

We have a low-complexity algorithm to compute MFPML estimate.
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Figure: Histogram of estimation error of absolute second largest eigenvalue of
transition matrix for k = 20 and n = 400.
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Figure: Histogram of estimation error of entropy rate for k = 20 and n = 400.
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transition matrix for k = 50 and n = 2000.
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Points to ponder on

Good reasons to study PML estimates for Markov chains.

Obtaining efficient approximations is hard.

Bethe approximation: Complexity blows up very quickly.

Ideally want algorithms to work for large k .

Even the mean field PML estimate becomes difficult to implement for
very large k .
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Thank you!
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