Throughput-Optimal Discrete Rate Adaptation for Threshold-Based Feedback in OFDM Systems

Vineeth Kumar V

Ph.D. Student Department of Electrical Communication Engineering

August 23, 2017

- Introduction
- Our contributions
- Throughput-optimal discrete rate adaptation:
 - Derivation
 - Simulation results
- Conclusions and future work

-

Introduction

- OFDM is used in 4G Long Term Evolution (LTE) and LTE-Advanced
 - System bandwidth is divided into orthogonal subcarriers
 - Groups of adjacent subcarriers are called subchannels (SCs)

On the downlink, BS needs to determine whom to transmit to, on each SC, and with what rate

Overview of scheduling and discrete rate adaptation

- Rate adaptation and scheduling are used to achieve high spectral efficiencies
- Scheduling: BS selects a user for each SC
- Rate adaptation: BS determines the modulation and coding scheme (MCS) for transmission to the scheduled user on each SC

Reduced feedback schemes

- Feedback needed to make BS aware of SC gains
- Significant feedback overhead
 - K users, N SCs, B bits/SC \Rightarrow *KNB* bits

Reduced feedback schemes

- Feedback needed to make BS aware of SC gains
- Significant feedback overhead
 - K users, N SCs, B bits/SC \Rightarrow *KNB* bits
- Limited bandwidth available in the uplink for feedback
- Reduced feedback schemes needed
 - Best-m [Svedman VTC'04]
 - Threshold-based quantized feedback [Floren Globecom'03]

Threshold based quantized feedback

 Each user quantizes the downlink SNR for each SC using a *B*-bit quantizer that has 2^B regions

Conventional rate adaptation (CRA)

 Quantization thresholds are the same as the SNR thresholds of MCSs [Goldsmith book, Nguyen TWC'15]

$$M = 4 \text{ MCSs}$$

$$T_{1} = 0 \quad T_{2} \quad T_{3} \quad T_{4} \quad T_{5} = \infty$$

$$| R_{1} = 0 | R_{2} | R_{3} | R_{4} | T_{5} = \infty$$

$$| Q_{1} = 0 \quad Q_{2} \quad Q_{3} \quad Q_{4} \quad Q_{5} = \infty$$

$$B = 2 \text{ bits/SC}$$

• Quantization thresholds are the same as the SNR thresholds of MCSs [Goldsmith book, Nguyen TWC'15]

$$\begin{split} M &= 4 \text{ MCSs} \\ T_1 &= 0 \quad T_2 \quad T_3 \quad T_4 \quad T_5 = \infty \\ & & | R_1 = 0 | R_2 | R_3 | R_4 | \\ & | Q_1 = 0 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5 = \infty \end{split} \\ \text{B} = 2 \text{ bits/SC} \end{split}$$

- Given the feedback for an SC
 - SC SNR lies between a lower and an upper level
 - Select the highest rate MCS whose SNR threshold does not exceed the lower level

• Quantization thresholds are the same as the SNR thresholds of MCSs [Goldsmith book, Nguyen TWC'15]

$$\begin{split} M &= 4 \text{ MCSs} \\ T_1 &= 0 \quad T_2 \quad T_3 \quad T_4 \quad T_5 = \infty \\ & & | R_1 = 0 | R_2 | R_3 | R_4 | \\ & | Q_1 = 0 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5 = \infty \end{split} \\ B &= 2 \text{ bits/SC} \end{split}$$

- Given the feedback for an SC
 - SC SNR lies between a lower and an upper level
 - Select the highest rate MCS whose SNR threshold does not exceed the lower level
- Feedback and rate adaptation problems are coupled

- A novel throughput-optimal discrete rate adaptation (TORA) scheme for OFDM systems that use threshold-based quantized feedback
 - Does not require any additional feedback

- A novel throughput-optimal discrete rate adaptation (TORA) scheme for OFDM systems that use threshold-based quantized feedback
 - Does not require any additional feedback
- Closed-form expression for feedback-conditioned goodput of an MCS for MIMO diversity modes for exponentially correlated SC SNRs

- A novel throughput-optimal discrete rate adaptation (TORA) scheme for OFDM systems that use threshold-based quantized feedback
 - Does not require any additional feedback
- Closed-form expression for feedback-conditioned goodput of an MCS for MIMO diversity modes for exponentially correlated SC SNRs
- Lower bound on the throughput gain achieved by TORA for a user with 1-bit feedback

- A novel throughput-optimal discrete rate adaptation (TORA) scheme for OFDM systems that use threshold-based quantized feedback
 - Does not require any additional feedback
- Closed-form expression for feedback-conditioned goodput of an MCS for MIMO diversity modes for exponentially correlated SC SNRs
- Lower bound on the throughput gain achieved by TORA for a user with 1-bit feedback
- Study the interaction of the proposed scheme with different schedulers and the system-level throughput implications in a multi-user setting

- Single cell, K users, N SCs
- Rayleigh fading
- Exponentially correlated SC SNRs for a user
- SC SNRs across users are independent.
- No. of quantization levels ≠ No. of MCSs

Throughput-optimal MCS

 Objective: Given the feedback, determine the MCS that maximizes fading-averaged throughput

Lemma

The throughput-optimal MCS $\Phi_n^*(\boldsymbol{b})$ for SC n given feedback \boldsymbol{b} is

$$\Phi_n^*(\boldsymbol{b}) = \operatorname*{arg\,max}_{1 \le m \le M} \{ R_m \Pr(\gamma_n \ge T_m | \boldsymbol{b}) \}.$$

 $\Psi_n^{(m)}(\mathbf{b}) = R_m Pr(\gamma_n \ge T_m | \mathbf{b})$: feedback-conditioned goodput of MCS m given \mathbf{b} .

Proof:

• For MCS *m*, the average throughput conditioned on *b* is

$$\mathbb{E}_{\gamma_n} \big[R_m \mathbf{1}_{\{\gamma_n \geq T_m\}} | \boldsymbol{b} \big] = R_m \mathsf{Pr}(\gamma_n \geq T_m | \boldsymbol{b}) \,.$$

• MCS with the largest value of $R_m Pr(\gamma_n \ge T_m | \boldsymbol{b})$ must be chosen

Feedback-conditioned goodput: I.I.D SCs

$$\begin{array}{c|c} & \gamma_n & q_n \in \{1, \dots, 2^B\} \\ \hline & & \\ Q_{q_n} & Q_{q_{n+1}} \\ \text{Quantizer} \end{array}$$

Result

The feedback-conditioned goodput $\Psi_n^{(m)}(\mathbf{b})$ of MCS m for SC n given feedback \mathbf{b} is

$$\boldsymbol{\Psi}_n^{(m)}\left(oldsymbol{b}
ight) = egin{cases} rac{R_m \mathcal{C}_m(n)}{\mathcal{D}_m(n)}, & T_m \leq oldsymbol{Q}_{q_n+1}, \ 0, & T_m > oldsymbol{Q}_{q_n+1}. \end{cases}$$

$$C_{m}(n) = \exp\left(-\frac{\max\left(T_{m}, Q_{q_{n}}\right)}{\bar{\gamma}}\right) - \exp\left(-\frac{Q_{q_{n}+1}}{\bar{\gamma}}\right),$$
$$D_{m}(n) = \exp\left(-\frac{Q_{q_{n}}}{\bar{\gamma}}\right) - \exp\left(-\frac{Q_{q_{n}+1}}{\bar{\gamma}}\right).$$

Can be extended to MIMO diversity modes also

Conditional probability expression for MCS $m \ (\rho \neq 0)$

• For n = 1, numerator term $C_m(1)$ is given by

$$C_{m}(1) = \sum_{s=0}^{\infty} \rho^{2s} \sum_{\substack{0 \le w_{1}, \dots, w_{N-1} \le s, \\ w_{1}+w_{2}+\dots+w_{N-1}=s}} \left\{ \left[U\left(\frac{\max\left\{T_{m}, Q_{q_{1}}\right\}}{\bar{\gamma}(1-\rho^{2})}, w_{1}+1\right) - U\left(\frac{Q_{q_{1}+1}}{\bar{\gamma}(1-\rho^{2})}, w_{1}+1\right) \right] \right\}$$

$$\times \left[U\left(\frac{Q_{q_{N}}}{\bar{\gamma}(1-\rho^{2})}, w_{N-1}+1\right) - U\left(\frac{Q_{q_{N}+1}}{\bar{\gamma}(1-\rho^{2})}, w_{N-1}+1\right) \right]$$

$$\times \left[\prod_{j=2}^{N-1} {W_{j-1} + w_{j} \choose w_{j}} \frac{\left[U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}+1}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right] \right\}.$$

• For $1 \le n \le N$, denominator term $D_m(n)$ is given by

$$\begin{split} D_{m}(n) &= \sum_{s=0}^{\infty} \rho^{2s} \sum_{\substack{0 \leq w_{1}, \dots, w_{N-1} \leq s, \\ w_{1}+w_{2}+\dots+w_{N-1} = s}} \left\{ \left[U\left(\frac{Q_{q_{1}}}{\bar{\gamma}(1-\rho^{2})}, w_{1}+1\right) - U\left(\frac{Q_{q_{1}+1}}{\bar{\gamma}(1-\rho^{2})}, w_{1}+1\right) \right] \right. \\ & \times \left[U\left(\frac{Q_{q_{N}}}{\bar{\gamma}(1-\rho^{2})}, w_{N-1}+1\right) - U\left(\frac{Q_{q_{N}+1}}{\bar{\gamma}(1-\rho^{2})}, w_{N-1}+1\right) \right] \right] \\ & \times \left[\prod_{j=2}^{N-1} {w_{j} \choose w_{j}} \frac{\left[U\left(\frac{Q_{q_{j}(1+\rho^{2})}}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}+1}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \\ & \left. \left(1+\rho^{2}\right)^{w_{j-1}+w_{j+1}} \right] \right] \\ & \left. \left\{ \left. \prod_{j=2}^{N-1} \left(\frac{w_{j-1}+w_{j}}{w_{j}}\right) \frac{\left[U\left(\frac{Q_{q_{j}(1+\rho^{2})}}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}+1}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right] \\ & \left. \left. \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j-1}+w_{j}}{w_{j}}\right) \frac{\left[U\left(\frac{Q_{q_{j}(1+\rho^{2})}}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}+1}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right] \\ & \left. \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j-1}+w_{j}}{w_{j}}\right) \frac{\left[U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}+1}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right\} \right\} \\ & \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j-1}+w_{j}}{w_{j}}\right) \frac{\left[U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}+1}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right\} \right\} \right\} \\ & \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j-1}+w_{j}}{w_{j}}\right) \frac{\left[U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right\} \right\} \\ & \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j-1}+w_{j}}{w_{j}}\right) \frac{\left[\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right\} \right\} \\ & \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j}}{w_{j}}\right) \frac{\left[\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right\} \right\} \\ & \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j}}{w_{j}}\right) \frac{\left[\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) - U\left(\frac{Q_{q_{j}}(1+\rho^{2})}{\bar{\gamma}(1-\rho^{2})}, w_{j-1}+w_{j}+1\right) \right] \right\} \\ & \left\{ \prod_{j=2}^{N-1} \left(\frac{w_{j}}{w_{j}}\right) \frac{\left[\left(\frac{w_{j}}{w_{j}}\right) +$$

Insensitivity of average throughput to SC correlation

Throughput is insensitive to ρ

- Not much additional information is provided by other SC SNRs
- *Explanation:* For $\rho = 1$, all SC SNRs lie in the same quantization region with high probability

Contrasting CRA and TORA

• CRA for 1-bit feedback:

Contrasting CRA and TORA

• CRA for 1-bit feedback:

TORA for 1-bit feedback (ρ = 0):

$$\Phi_n^*(\boldsymbol{b}) = \begin{cases} \arg\max_{1 \le m \le M} \left\{ R_m \left[\frac{\exp\left(-\frac{T_m}{\bar{\gamma}}\right) - \exp\left(-\frac{Q_2}{\bar{\gamma}}\right)}{1 - \exp\left(-\frac{Q_2}{\bar{\gamma}}\right)} \right] \right\}, & b_n = 0\\ \arg\max_{1 \le m \le M} \left\{ R_m \left[\frac{\exp\left(-\frac{\max\left\{T_m, Q_2\right\}}{\bar{\gamma}}\right)}{\exp\left(-\frac{Q_2}{\bar{\gamma}}\right)} \right] \right\}, & b_n = 1 \end{cases}$$

Contrasting CRA and TORA

• CRA for 1-bit feedback:

TORA for 1-bit feedback (ρ = 0):

$$\Phi_{n}^{*}(\boldsymbol{b}) = \begin{cases} \arg\max_{1 \le m \le M} \left\{ R_{m} \left[\frac{\exp\left(-\frac{T_{m}}{\bar{\gamma}}\right) - \exp\left(-\frac{Q_{2}}{\bar{\gamma}}\right)}{1 - \exp\left(-\frac{Q_{2}}{\bar{\gamma}}\right)} \right] \right\}, \quad b_{n} = 0\\ \arg\max_{1 \le m \le M} \left\{ R_{m} \left[\frac{\exp\left(-\frac{\max\left\{T_{m}, Q_{2}\right\}}{\bar{\gamma}}\right)}{\exp\left(-\frac{Q_{2}}{\bar{\gamma}}\right)} \right] \right\}, \quad b_{n} = 1 \end{cases}$$

CRA is conservative

Lower bound for throughput gain (1-bit feedback)

Lemma

The fading-averaged throughput gain $\Delta R(x)$ of a user at distance x from the BS is lower bounded by

$$\Delta R(x) \geq \begin{cases} R_i \exp\left(-\frac{T_i \sigma^2 x^{\alpha}}{P_T \beta}\right) - R_{m'} \exp\left(-\frac{Q_2 \sigma^2 x^{\alpha}}{P_T \beta}\right), & x_i < x \le x_{i-1}, \\ 0, & x_{m'} < x \le r, \end{cases}$$

where $x_i = \begin{bmatrix} \frac{P_T \beta \eta \ln\left(\frac{R_i}{R_{i-1}}\right)}{\sigma^2 (2^{R_i} - 2^{R_{i-1}})} \end{bmatrix}^{\frac{1}{\alpha}}$, for $i \in \{m', \dots, M-1\}$, and $x_M = 0$.

- $R_{m'}$: Rate for SNR= Q_2
- x_i: Distance at which rate transition occurs
- r: Cell radius

•
$$\bar{\gamma}_k = \frac{P_T \beta x^{-\alpha}}{\sigma^2}$$

Evaluation of $\Delta R(x)$ & its lower bound

CRA is sub-optimal

Simulation Settings

Goal: Study interaction between MCSs at BS, quantizers at users, and scheduler in a multi-user cell

- MCS tables at BS: *M* = 2, 4, 8, 16 (LTE).
- MCS threshold-based feedback: quantization threshold generation

• Schedulers used: greedy, CDF, and round robin (RR) schedulers

			Efficiency
CQI index	Modulation	Approximate code rate	(information bits per symbol)
0	'Out-of-range'	_	_
1	QPSK	0.076	0.1523
2	QPSK	0.12	0.2344
3	QPSK	0.19	0.3770
4	QPSK	0.3	0.6016
5	QPSK	0.44	0.8770
6	QPSK	0.59	1.1758
7	16QAM	0.37	1.4766
8	16QAM	0.48	1.9141
9	16QAM	0.6	2.4063
10	64QAM	0.45	2.7305
11	64QAM	0.55	3.3223
12	64QAM	0.65	3.9023
13	64QAM	0.75	4.5234
14	64QAM	0.85	5.1152
15	64QAM	0.93	5.5547

글 🕨 🖌 글

• SISO, $\rho = 0.86$, 10 users, 10 SCs, 1000 drops, 2000 fades/drop

No. of	No. of	Cell throughput (bits/symbol)								
feedback	MCSs at	Gre	edy sche	duler	C	OF sched	uler	RR scheduler		
bits (B)	BS (<i>M</i>)	CRA	TORA	F-CSI	CRA	TORA	F-CSI	CRA	TORA	F-CSI
1	2	1.88	1.88	4.76	1.22	1.22	2.74	0.65	0.65	1.64
1	4	1.88	3.10	4.76	1.22	1.51	2.74	0.65	1.05	1.64
1	8	1.88	<u>3.58</u>	4.76	1.22	1.58	2.74	0.65	1.13	1.64
1	16	1.88	3.72	4.76	1.22	1.60	2.74	0.65	1.16	1.64
2	4	3.51	3.51	4.76	2.01	2.01	2.74	1.16	1.16	1.64
2	8	3.51	3.96	4.76	2.01	2.07	2.74	1.16	1.27	1.64
2	16	3.51	4.10	4.76	2.01	2.08	2.74	1.16	1.30	1.64
3	8	4.40	4.40	4.76	2.51	2.51	2.74	1.48	1.48	1.64
3	16	4.40	4.52	4.76	2.51	2.52	2.74	1.48	1.50	1.64
4	16	4.76	4.76	4.76	2.74	2.74	2.74	1.64	1.64	1.64

 Can reduce feedback overhead and compensate for it by having more MCSs at BS

1-bit feedback: Optimizing quantization threshold

TU channel, 10 users, 10 SCs, 1000 drops, 2000 fades/drop

- TORA is much less sensitive to the variation in Q₂
- Significant throughput gains over CRA

- Proposed throughput-optimal discrete rate adaptation for threshold-based quantized feedback in OFDM
 - Enables decoupling between No. of feedback bits & No. of MCSs at BS
 - Can reduce feedback on uplink as required
 - Outperforms CRA

- Proposed throughput-optimal discrete rate adaptation for threshold-based quantized feedback in OFDM
 - Enables decoupling between No. of feedback bits & No. of MCSs at BS
 - · Can reduce feedback on uplink as required
 - Outperforms CRA
- Developed analytical expressions for the feedback-conditioned goodput for exponential correlation model

- Proposed throughput-optimal discrete rate adaptation for threshold-based quantized feedback in OFDM
 - Enables decoupling between No. of feedback bits & No. of MCSs at BS
 - Can reduce feedback on uplink as required
 - Outperforms CRA
- Developed analytical expressions for the feedback-conditioned goodput for exponential correlation model
- Throughput can be increased with better quantization threshold generation methods
 - Percentile threshold-based feedback

 Vineethkumar V, Neelesh B. Mehta, "Base Station-Side Rate Estimation for Threshold-Based Feedback, and Design Implications in Multi-User OFDM Systems," Accepted in IEEE Trans. on Wireless Communications, 2017

Focus on reduced feedback schemes

• Rate adaptation for differential feedback

 Rate adaptation with differently outdated and reduced feedback

B1: Conditional goodput for MIMO diversity modes

• SIMO: 1 Tx - N_r Rx; MISO: N_t Tx - 1 Rx; MIMO: N_t Tx - N_r Rx (N_t , $N_r \ge 1$)

0

 With ideal beamforming, SNR on SC n, can be approximated as a chi-square RV [Li TSP'11]

•
$$f_{\gamma_n}(v) = \frac{1}{\Gamma(D)a^D} v^{D-1} \exp\left(\frac{v}{a}\right)$$
, where $a = \frac{\tilde{\gamma}_k}{2} \left(\frac{N_t + N_r}{N_t N_{r+1}}\right)^{\frac{d}{3}}$ & $D = 2N_t N_r$.

Result

The conditional goodput $\Psi_n^{(m)}(\mathbf{b})$ of MCS m for SC n given \mathbf{b} is

$$\Psi_n^{(m)}\left(\boldsymbol{b}\right) = \begin{cases} \frac{R_m \left[U\left(\frac{max(T_m, Q_{q_n})}{2a\tilde{\gamma}}, \frac{D}{2}\right) - U\left(\frac{Q_{q_{n+1}}}{2a\tilde{\gamma}}, \frac{D}{2}\right)\right]}{U\left(\frac{Q_{q_n}}{2a\tilde{\gamma}}, \frac{D}{2}\right) - U\left(\frac{Q_{q_{n+1}}}{2a\tilde{\gamma}}, \frac{D}{2}\right)}, & T_m \le Q_{q_i+1}, \\ 0, & T_m > Q_{q_i+1}. \end{cases}$$

•
$$\Pr(\gamma_n \geq T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \geq T_m \mid \boldsymbol{b}_n)$$
 for $\rho = 0$

•
$$\Pr(\gamma_n \ge T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \ge T_m \mid \boldsymbol{b}_n) \text{ for } \rho = 0$$

• $\Pr(\gamma_n \ge T_m \mid \boldsymbol{b}_n) = \Pr(\gamma_n \ge T_m \mid \boldsymbol{Q}_{q_n} \le \gamma_n < \boldsymbol{Q}_{q_{n+1}}).$

- $\Pr(\gamma_n \geq T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \geq T_m \mid \boldsymbol{b}_n)$ for $\rho = 0$
- $\Pr(\gamma_n \geq T_m \mid b_n) = \Pr(\gamma_n \geq T_m \mid Q_{q_n} \leq \gamma_n < Q_{q_{n+1}}).$
- Upon applying Bayes' theorem,

$$\begin{aligned} \mathsf{Pr}\big(\gamma_n \geq T_m \mid \mathcal{Q}_{q_n} \leq \gamma_n < \mathcal{Q}_{q_{n+1}}\big) &= \frac{\mathsf{Pr}\big(\gamma_n \geq T_m, \mathcal{Q}_{q_n} < \gamma_n < \mathcal{Q}_{q_{n+1}}\big)}{\mathsf{Pr}\big(\mathcal{Q}_{q_n} \leq \gamma_n < \mathcal{Q}_{q_{n+1}}\big)}, \\ &= \frac{\int_{\max\{T_m, \mathcal{Q}_{q_n}\}}^{\mathcal{Q}_{q_{n+1}}} f_{\gamma_n}(\boldsymbol{\nu}) \, d\boldsymbol{\nu}}{\int_{\mathcal{Q}_{q_n}}^{\mathcal{Q}_{q_{n+1}}} f_{\gamma_n}(\boldsymbol{\nu}) \, d\boldsymbol{\nu}}. \end{aligned}$$

• $\Pr(\gamma_n \geq T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \geq T_m \mid \boldsymbol{b}_n)$ for $\rho = 0$

•
$$\Pr(\gamma_n \geq T_m \mid b_n) = \Pr(\gamma_n \geq T_m \mid Q_{q_n} \leq \gamma_n < Q_{q_{n+1}}).$$

Upon applying Bayes' theorem,

$$\Pr(\gamma_n \ge T_m \mid Q_{q_n} \le \gamma_n < Q_{q_{n+1}}) = \frac{\Pr(\gamma_n \ge T_m, Q_{q_n} < \gamma_n < Q_{q_{n+1}})}{\Pr(Q_{q_n} \le \gamma_n < Q_{q_{n+1}})},$$
$$= \frac{\int_{\max\{T_m, Q_{q_n}\}}^{Q_{q_{n+1}}} f_{\gamma_n}(v) dv}{\int_{Q_{q_n}}^{Q_{q_{n+1}}} f_{\gamma_n}(v) dv}.$$

• Rayleigh fading: $f_{\gamma_n}(v) = \frac{1}{\bar{\gamma}} \exp\left(-\frac{1}{\bar{\gamma}}\right)$.

• $\Pr(\gamma_n \geq T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \geq T_m \mid \boldsymbol{b}_n)$ for $\rho = 0$

•
$$\Pr(\gamma_n \geq T_m \mid b_n) = \Pr(\gamma_n \geq T_m \mid Q_{q_n} \leq \gamma_n < Q_{q_{n+1}}).$$

Upon applying Bayes' theorem,

$$\begin{aligned} \mathsf{Pr}\big(\gamma_n \geq T_m \mid \mathcal{Q}_{q_n} \leq \gamma_n < \mathcal{Q}_{q_{n+1}}\big) &= \frac{\mathsf{Pr}\big(\gamma_n \geq T_m, \mathcal{Q}_{q_n} < \gamma_n < \mathcal{Q}_{q_{n+1}}\big)}{\mathsf{Pr}\big(\mathcal{Q}_{q_n} \leq \gamma_n < \mathcal{Q}_{q_{n+1}}\big)}, \\ &= \frac{\int_{\max\{T_m, \mathcal{Q}_{q_n}\}}^{\mathcal{Q}_{q_{n+1}}} f_{\gamma_n}(\boldsymbol{\nu}) \, d\boldsymbol{\nu}}{\int_{\mathcal{Q}_{q_n}}^{\mathcal{Q}_{q_{n+1}}} f_{\gamma_n}(\boldsymbol{\nu}) \, d\boldsymbol{\nu}}. \end{aligned}$$

• Rayleigh fading: $f_{\gamma_n}(v) = \frac{1}{\bar{\gamma}} \exp\left(-\frac{1}{\bar{\gamma}}\right)$.

• Carrying out the integration using $f_{\gamma_n}(v)$ gives the required result.

• For MCS *m*, the conditional probability can be evaluated as:

$$\Pr(\gamma_n \ge T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \ge T_m \mid Q_{q_1} \le \gamma_1 < Q_{q_1+1}, \dots, Q_{q_N} \le \gamma_N < Q_{q_N+1})$$
$$= \frac{\int_{Q_{q_1}}^{Q_{q_1+1}} \cdots \int_{\max\{T_m, Q_{q_n}\}}^{Q_{q_n+1}} \cdots \int_{Q_{q_N}}^{Q_{q_N+1}} f_{\gamma}(\boldsymbol{v}) dv_1 \dots dv_N}{\int_{Q_{q_1}}^{Q_{q_1+1}} \cdots \int_{Q_{q_n}}^{Q_{q_n+1}} \cdots \int_{Q_{q_N}}^{Q_{q_N+1}} f_{\gamma}(\boldsymbol{v}) dv_1 \dots dv_N}$$

• For MCS *m*, the conditional probability can be evaluated as:

$$\Pr(\gamma_n \ge T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \ge T_m \mid Q_{q_1} \le \gamma_1 < Q_{q_1+1}, \dots, Q_{q_N} \le \gamma_N < Q_{q_N+1})$$
$$= \frac{\int_{Q_{q_1}}^{Q_{q_1+1}} \cdots \int_{\max\{T_m, Q_{q_n}\}}^{Q_{q_n+1}} \cdots \int_{Q_{q_N}}^{Q_{q_N+1}} f_{\gamma}(\boldsymbol{v}) dv_1 \dots dv_N}{\int_{Q_{q_1}}^{Q_{q_1+1}} \cdots \int_{Q_{q_n}}^{Q_{q_n+1}} \cdots \int_{Q_{q_N}}^{Q_{q_N+1}} f_{\gamma}(\boldsymbol{v}) dv_1 \dots dv_N}$$

• Exponential correlation model: $\mathbb{E}\left[\gamma_{kn}\gamma_{kl}^*\right] = \bar{\gamma}_k \rho^{2|n-l|}$, for $1 \le l \le N$, and $0 \le \rho \le 1$

• For MCS *m*, the conditional probability can be evaluated as:

$$\Pr(\gamma_n \ge T_m \mid \boldsymbol{b}) = \Pr(\gamma_n \ge T_m \mid Q_{q_1} \le \gamma_1 < Q_{q_1+1}, \dots, Q_{q_N} \le \gamma_N < Q_{q_N+1})$$
$$= \frac{\int_{Q_{q_1}}^{Q_{q_1+1}} \cdots \int_{\max\{T_m, Q_{q_n}\}}^{Q_{q_n+1}} \cdots \int_{Q_{q_N}}^{Q_{q_N+1}} f_{\gamma}(\boldsymbol{v}) dv_1 \dots dv_N}{\int_{Q_{q_1}}^{Q_{q_1+1}} \cdots \int_{Q_{q_n}}^{Q_{q_n+1}} \cdots \int_{Q_{q_N}}^{Q_{q_N+1}} f_{\gamma}(\boldsymbol{v}) dv_1 \dots dv_N}$$

- Exponential correlation model: $\mathbb{E}\left[\gamma_{kn}\gamma_{kl}^*\right] = \bar{\gamma}_k \rho^{2|n-l|}$, for $1 \le l \le N$, and $0 \le \rho \le 1$
- *f*_γ(*ν*) for exponentially correlated vector *ν* = (*v*₁,..., *v*_N) of SC SNRs [Mallik TIT'03]:

$$f_{\gamma}(\mathbf{v}) = \frac{\exp -\left(\frac{\left[v_{1}+v_{N}+\left(1+\rho^{2}\right)\sum_{2}^{N-1}v_{l}\right]}{\bar{\gamma}^{N}\left(1-\rho^{2}\right)^{N-1}}\right)}{\bar{\gamma}^{N}\left(1-\rho^{2}\right)^{N-1}} \sum_{n=0}^{\infty} \left(\frac{\rho^{2}}{\bar{\gamma}\left(1-\rho^{2}\right)^{2}}\right)^{n} \times \sum_{\substack{0 \le w_{1}, \dots, w_{N-1} \le s, \\ w_{1}+w_{2}+\dots+w_{N-1} = s}} \frac{X_{1}^{l_{1}}X_{2}^{l_{1}+l_{2}}\dots X_{N-1}^{l_{N-1}+l_{N-2}}X_{N}^{l_{N-1}}}{\left(l_{1}!l_{2}!\dots l_{N-1}!\right)^{2}}$$

B4: Lower bound on rate gain averaged over fading and UE-location

Result

When the UE-location is uniformly distributed over the cell area, the fading-averaged and user location-averaged cell-throughput gain ΔR_{cell} is lower bounded by:

$$\begin{split} \Delta R_{cell} \geq \frac{2\Gamma\left(\frac{2}{\alpha}\right)}{\alpha R^2} \sum_{i=m'+1}^{M} \left(R_i c_i^{\frac{2}{\alpha}} \left[U\left(\frac{2}{\alpha}, \frac{x_i^{\alpha}}{c_i}\right) - U\left(\frac{2}{\alpha}, \frac{x_{i-1}^{\alpha}}{c_i}\right) \right] \\ - R_{m'} c_{m'}^{\frac{2}{\alpha}} \left[U\left(\frac{2}{\alpha}, \frac{x_i^{\alpha}}{c_{m'}}\right) - U\left(\frac{2}{\alpha}, \frac{x_{i-1}^{\alpha}}{c_{m'}}\right) \right] \right), \end{split}$$

where $c_{m'} = \frac{Q_{th}\sigma^2}{P_{T\beta}}$, $c_i = \frac{T_i\sigma^2}{P_{T\beta}}$, for $i \in \{m' + 1, ..., M\}$, and $\Gamma(\cdot)$ is the gamma function.

B5: Adaptation of scheduling algorithms

- Notation: Throughput optimal MCS $\Phi_{kn}^*(\boldsymbol{b})$ has an SNR threshold $T_{\Phi_{kn}^*(\boldsymbol{b})}$, rate $R_{\Phi_{kn}^*(\boldsymbol{b})}$, and conditional goodput $\Psi_{kn}^*(\boldsymbol{b}) = R_{\Phi_{kn}^*(\boldsymbol{b})} \Pr(\gamma_{kn} > T_{\Phi_{kn}^*(\boldsymbol{b})}|\boldsymbol{b})$
- Greedy scheduler: $i_n = \underset{1 \le k \le K}{\operatorname{arg max}} \{ \Psi_{kn}^*(\boldsymbol{b}) \}$
- CDF scheduler [Park TCom'06]:
 - Step 1: Compute $\Psi_{kn}^*(\boldsymbol{b})$.
 - Step 2: Generate U_{kn} uniformly distributed in $\left[F_{\Psi_{kn}^{*}(\boldsymbol{b})}(s_{j-1}), F_{\Psi_{kn}^{*}(\boldsymbol{b})}(s_{j})\right]$.

• Step 3:
$$i_n = \underset{1 \le k \le K}{\operatorname{arg\,max}} \left\{ (U_{kn})^{\frac{1}{w_k}} \right\}.$$

RR scheduler: Periodic scheduling of users.

B6:Percentile threshold-based feedback

 Divide the CDF of SNR into regions such that SNR lies in each region with equal probability

• SISO, $\rho = 0.86$, 10 users, 10 SCs, 1000 drops, 2000 fades/drop

Feed- back MCSs bits at BS (<i>B</i>) (<i>M</i>)	Throughput (bits/symbol/Hz)								Jain's Fairness Index			
	Greedy Scheduler			CDF Scheduler			RR Scheduler			Greedy		
	(<i>M</i>)	Conv.	Proposed	Full CSI	Conv.	Proposed	Full CSI	Conv.	Proposed	Full CSI	Conv.	Proposed
1	2	1.59	1.85	4.82	0.62	0.77	2.84	0.31	0.65	1.71	0.26	0.25
1	4	2.71	3.25	4.82	1.14	1.38	2.84	0.57	1.03	1.71	0.30	0.20
1	8	3.37	3.91	4.82	1.47	1.66	2.84	0.73	1.19	1.71	0.30	0.19
1	16	3.66	4.15	4.82	1.64	1.75	2.84	0.82	1.24	1.71	0.30	0.18
1	31	3.74	4.18	4.82	1.71	1.77	2.84	0.85	1.26	1.71	0.30	0.19
2	4	3.19	3.38	4.82	1.56	1.63	2.84	0.86	1.09	1.71	0.22	0.20
2	8	3.98	4.15	4.82	1.94	2.01	2.84	1.10	1.31	1.71	0.21	0.19
2	16	4.31	4.45	4.82	2.13	2.19	2.84	1.23	1.41	1.71	0.21	0.19
2	31	4.39	4.50	4.82	2.21	2.25	2.84	1.28	1.44	1.71	0.21	0.19
3	8	4.20	4.27	4.82	2.17	2.21	2.84	1.29	1.39	1.71	0.20	0.20
3	16	4.55	4.60	4.82	2.40	2.43	2.84	1.43	1.51	1.71	0.20	0.19
3	31	4.62	4.65	4.82	2.48	2.50	2.84	1.50	1.56	1.71	0.20	0.19
4	16	4.66	4.68	4.82	2.55	2.56	2.84	1.53	1.57	1.71	0.19	0.19
4	31	4.72	4.73	4.82	2.64	2.65	2.84	1.60	1.63	1.71	0.19	0.19