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Problem statement

(Xi ,Yi )
n
i=1 be an iid sequence of pairs of bits

Party P1 observes X n and party P2 observes Y n

The marginals X n and Y n are uniformly random bits

Distributed hypothesis testing problem:

Xn Y n

P1 P2

ℓ bits

H0 or H1

H0 : Bits have a (known) correlation ρ

H1 : Bits are independent

How many bits l must P1 send to P2?

A simple scheme – P1 sends X n to P2.
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Communication needed by the simple scheme
– via the case of “collocated” parties

For pmfs P and Q on a finite alphabet Z, let n(δ, ε) be the minimum
n such that we can find an acceptance region, An ⊂ Zn so that

Pn(An) ≥ 1− δ, and,

Qn(An) ≤ ε.

It can be seen using Hoeffding’s inequality that

n(δ, ε) =
1

D(P||Q)
log

1

ε
+ Oδ

(√
log

1

ε

)
.

In our problem, Z = X × Y = {0, 1} × {0, 1}.
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Communication needed by the simple scheme
– via the case of “collocated” parties

Consider PXY ≡ BSS(ρ) defined by

P(0, 0) = P(1, 1) =
1

4
(1 + ρ), and, P(0, 1) = P(1, 0) =

1

4
(1− ρ)

For P ≡ PXY ≡ BSS(ρ), and Q ≡ PXPY , we get

n(δ, ε) =
1

1− h
(
1−ρ
2

) · log
1

ε
+ Oδ

(√
log

1

ε

)

For Q ≡ PXY ≡ BSS(ρ), and P ≡ PXPY , we get

n(δ, ε) =
2

log 1
1−ρ2

· log
1

δ
+ Oε

(√
log

1

δ

)

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 4 / 18



Communication needed by the simple scheme
– via the case of “collocated” parties

Consider PXY ≡ BSS(ρ) defined by

P(0, 0) = P(1, 1) =
1

4
(1 + ρ), and, P(0, 1) = P(1, 0) =

1

4
(1− ρ)

For P ≡ PXY ≡ BSS(ρ), and Q ≡ PXPY , we get

n(δ, ε) =
1

1− h
(
1−ρ
2

) · log
1

ε
+ Oδ

(√
log

1

ε

)

For Q ≡ PXY ≡ BSS(ρ), and P ≡ PXPY , we get

n(δ, ε) =
2

log 1
1−ρ2

· log
1

δ
+ Oε

(√
log

1

δ

)

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 4 / 18



Communication needed by the simple scheme

For the simple scheme, communication needed is n(δ, ε).

Suppose, no constraint on the number of samples observed by P1,P2.

Then, can we test for independence by communicating fewer bits?
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A “less costly” communication scheme

We will show that we can test independence of bit sequences using

C (δ, ε) =
1

ρ2
· log

1

ε
+ Oδ

(√
log

1

ε

)
or

1− ρ2
ρ2

· log
1

δ
+ Oε

(√
log

1

δ

)

whereas for the simple scheme, the communication is

n(δ, ε) =
1

1− h
(
1−ρ
2

) · log
1

ε
+ Oδ

(√
log

1

ε

)
or

2

log 1
1−ρ2

· log
1

δ
+ Oε

(√
log

1

δ

)

Clearly, for all ρ /∈ {−1, 0, 1},

1

ρ2
<

1

1− h
(
1−ρ
2

) and
1− ρ2
ρ2

<
2

log 1
1−ρ2
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Summary of results

We present general upper and lower bounds that match for BSS(ρ)

Scheme uses linear correlation as a statistic

Lower bound uses hypercontractivity to get a measure change bound
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Results and Proofs



Minimum one-way communication for independence testing

Shared randomness between P1 and P2, denoted by U

A distributed test T = (c , d)
I P1 observes X n.
I P1 sends B l = c(X n,U) to P2.
I P1 observes Y n and receives B l .
I P2 declares d(Y n,B l ,U).

Xn Y n

P1 P2

ℓ bits

H0 or H1

(c , d) is an (l , δ, ε)-test if

PH0(d(Y n,B l ,U) = 1) ≤ δ and PH1(d(Y n,B l ,U) = 0) ≤ ε

Minimum communication:
C (δ, ε) is the min l s.t. ∃ an (l , δ, ε)-test for some n

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 9 / 18



Minimum one-way communication for independence testing

Shared randomness between P1 and P2, denoted by U

A distributed test T = (c , d)
I P1 observes X n.
I P1 sends B l = c(X n,U) to P2.
I P1 observes Y n and receives B l .
I P2 declares d(Y n,B l ,U).

Xn Y n

P1 P2

ℓ bits

H0 or H1

(c , d) is an (l , δ, ε)-test if

PH0(d(Y n,B l ,U) = 1) ≤ δ and PH1(d(Y n,B l ,U) = 0) ≤ ε

Minimum communication:
C (δ, ε) is the min l s.t. ∃ an (l , δ, ε)-test for some n

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 9 / 18



Minimum one-way communication for independence testing

Shared randomness between P1 and P2, denoted by U

A distributed test T = (c , d)
I P1 observes X n.
I P1 sends B l = c(X n,U) to P2.
I P1 observes Y n and receives B l .
I P2 declares d(Y n,B l ,U).

Xn Y n

P1 P2

ℓ bits

H0 or H1

(c , d) is an (l , δ, ε)-test if

PH0(d(Y n,B l ,U) = 1) ≤ δ and PH1(d(Y n,B l ,U) = 0) ≤ ε

Minimum communication:
C (δ, ε) is the min l s.t. ∃ an (l , δ, ε)-test for some n

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 9 / 18



Proposed scheme for binary sequences

Based on a scheme for common randomness generation by
Guruswamy and Radhakrishnan (2017)

Reparameterize {0, 1} to {+1,−1}
i. Let U be an (n × 2k) matrix of Unif{−1,+1}-valued rvs

ii. P1 sends the least j s.t. that
∑n

i=1 UijXi ≥ r
√
n

– if none found, declares H1

iii. P2 declares H0 if
∑n

i=1 UijYi ≥ θ.r
√
n

– else it declares H1

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 10 / 18



Proposed scheme for binary sequences

Based on a scheme for common randomness generation by
Guruswamy and Radhakrishnan (2017)

Reparameterize {0, 1} to {+1,−1}
i. Let U be an (n × 2k) matrix of Unif{−1,+1}-valued rvs

ii. P1 sends the least j s.t. that
∑n

i=1 UijXi ≥ r
√
n

– if none found, declares H1

iii. P2 declares H0 if
∑n

i=1 UijYi ≥ θ.r
√
n

– else it declares H1

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 10 / 18



Proposed scheme for binary sequences

Based on a scheme for common randomness generation by
Guruswamy and Radhakrishnan (2017)

Reparameterize {0, 1} to {+1,−1}
i. Let U be an (n × 2k) matrix of Unif{−1,+1}-valued rvs

ii. P1 sends the least j s.t. that
∑n

i=1 UijXi ≥ r
√
n

– if none found, declares H1

iii. P2 declares H0 if
∑n

i=1 UijYi ≥ θ.r
√
n

– else it declares H1

n− c
√
n

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 10 / 18



Proposed scheme for binary sequences

Based on a scheme for common randomness generation by
Guruswamy and Radhakrishnan (2017)

Reparameterize {0, 1} to {+1,−1}
i. Let U be an (n × 2k) matrix of Unif{−1,+1}-valued rvs

ii. P1 sends the least j s.t. that
∑n

i=1 UijXi ≥ r
√
n

– if none found, declares H1

iii. P2 declares H0 if
∑n

i=1 UijYi ≥ θ.r
√
n

– else it declares H1

n− c
√
n ??n− cρ

√
n??

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 10 / 18



Proposed scheme for binary sequences

Based on a scheme for common randomness generation by
Guruswamy and Radhakrishnan (2017)

Reparameterize {0, 1} to {+1,−1}
i. Let U be an (n × 2k) matrix of Unif{−1,+1}-valued rvs

ii. P1 sends the least j s.t. that
∑n

i=1 UijXi ≥ r
√
n

– if none found, declares H1

iii. P2 declares H0 if
∑n

i=1 UijYi ≥ θ.r
√
n

– else it declares H1

Since EH0 [Y |X ] = ρX , we choose θ ≈ ρ
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The general scheme
We use the best “linear correlation” we can get from PXY

The maximum correlation of (X ,Y ) is given by

ρm(X ,Y ) = maxE[f (X )g(Y )]

f , g s.t. E[f (X )] = E[g(Y )] = 0 and

E[f (X )2] = E[g(Y )2] = 1

Consider (X ,Y ) with ρm(X ,Y ) = ρ

The maximizing f and g satisfy

E[g(Y )|X ] = ρf (X ) and E
[
E[g(Y )|X ]2

]
= ρ2

i. Let U be an (n × 2k) matrix of Unif{−1,+1}-valued rvs

ii. P1 sends the least j s.t. that
∑n

i=1 Uij f (Xi ) ≥ r
√
n

iii. P2 declares H0 if
∑n

i=1 Uijg(Yi ) ≥ θ.r
√
n

We choose θ ≈ ρ.
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Performance guarantees

Theorem (Upper bound for small ε, δ)

For δ, ε ∈ (0, 1/2) and PXY with ρm(X ,Y ) = ρ,

C (δ, ε) ≤ 1

ρ2
·
(√

log
1

ε
+

√(
1− ρ2

)
log

1

δ

)2

+ O

(√
log

1

εδ

)

Theorem (Upper bound for small ε, large δ)

For ε ∈ (0, 1/2), δ ∈ (1/2, 1) and PXY with ρm(X ,Y ) = ρ,

C (δ, ε) ≤ 1

ρ2
·
(√

log
1

ε
−
√(

1− ρ2
)

log
1

1− δ

)2

+ O

(√
log

1

ε(1− δ)

)
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Deriving the lower bound
Given a (deterministic) (l , δ, ε)-test (c , d)

let Ai = {xn : c(xn) = i} and Bi = {yn : d(yn, i) = 0}, L = 2l ,

Note that {A1, ...,AL} is a partition of X n

The change of measure bound:

Using Cauchy-Schwarz and Jensen’s

1− δ ≤
L∑

i=1

PX nY n (Ai × Bi )

≤
L∑

i=1

√
PX n(Ai )PY n(Bi )

≤

√√√√L
L∑

i=1

PX n(Ai )PY n(Bi )

≤
√
Lε

Replace Cauchy-Schwarz with a hypercontractivity bound
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Deriving the lower bound

For 1 ≤ q ≤ p <∞, with p′ = p/(p − 1),

PXY is (p, q)-hypercontractive iff E[|f (X )g(Y )|] ≤ ‖f (X )‖p′‖g(Y )‖q.

For any rectangle A× B: PXY (A× B) ≤ PX (A)
1
p′ PY (B)

1
q

1− δ ≤
L∑

i=1

PX nY n(Ai × Bi )

≤
L∑

i=1

(PX n(Ai )PY n(Bi ))
1
q PX n(Ai )

1
p′−

1
q

≤
(

L∑
i=1

PX n(Ai )PY n(Bi )

) 1
q
(

L∑
i=1

PX n(Ai )
q′
(

1
p′−

1
q

)) 1
q′

≤ ε 1
q L

1
p ,

where we have assumed 1 ≤ p′ ≤ q
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The lower bound

Theorem (Lower bound 1)

Given δ, ε ∈ (0, 1) and (p, q) such that 1 ≤ p′ ≤ q ≤ p and (X ,Y ) is
(p, q)-hypercontractive,

C (δ, ε) ≥ p

q
log

1

ε
− p log

1

1− δ

Similarly, using reverse hypercontractivity, we can get:

Theorem (Lower bound 2)

Given δ, ε ∈ (0, 1) and (p, q) such that 1 ≥ q ≥ 0 ≥ q′ ≥ p and (X ,Y ) is
(p, q)-reverse hypercontractive,

C (δ, ε) ≥ p

q
log

1

1− ε − p log
1

δ

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 15 / 18



The lower bound

Theorem (Lower bound 1)

Given δ, ε ∈ (0, 1) and (p, q) such that 1 ≤ p′ ≤ q ≤ p and (X ,Y ) is
(p, q)-hypercontractive,

C (δ, ε) ≥ p

q
log

1

ε
− p log

1

1− δ

Similarly, using reverse hypercontractivity, we can get:

Theorem (Lower bound 2)

Given δ, ε ∈ (0, 1) and (p, q) such that 1 ≥ q ≥ 0 ≥ q′ ≥ p and (X ,Y ) is
(p, q)-reverse hypercontractive,

C (δ, ε) ≥ p

q
log

1

1− ε − p log
1

δ

(IISc, Bangalore, India) ECE Students’ Seminar Series June 13, 2018 15 / 18



Evaluation for BSS(ρ)

For 1 ≤ q ≤ p, (X ,Y ) is (p, q)-hypercontractive iff q−1
p−1 ≥ ρ2

On optimizing the lower bound over this region, we get the desired bound.

Corollary

For a BSS(ρ), δ ∈ (0, 1/2) and ε s.t. δ + ε
1−|ρ|
1+|ρ| ≤ 1

C (δ, ε) =
1

ρ2
log

1

ε
+ Oδ

(√
log

1

ε

)
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For a BSS(ρ), ε, δ ∈ (0, 1/2)

C (δ, ε) =
1− ρ2
ρ2

log
1

δ
+ Oε

(√
log

1

δ

)
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Evaluation for BSS(ρ)

For 1 ≤ q ≤ p, (X ,Y ) is (p, q)-hypercontractive iff q−1
p−1 ≥ ρ2

On optimizing the lower bound over this region, we get the desired bound.

Corollary

For a BSS(ρ), δ ∈ (1/2, 1) and ε s.t. δ + ε
1−|ρ|
1+|ρ| ≤ 1,

C (δ, ε) =
1

ρ2

(√
log

1

ε
−
√(

1− ρ2
)

log
1

1− δ

)2

+ O

(√
log

1

ε(1− δ)

)

Remark – Also works for Gaussian symmetric source GSS(ρ):(
X
Y

)
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
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Future directions

Joint (δ, ε) optimality?

Can interaction help?

The case of unknown joint distribution –
I BSS(ρ) is ρ away from BSS(0)
I Simple scheme uses O(1/ρ2) bits and is order-optimal
I Alphabet size k > 2?

Do not have a practical scheme that outperforms the simple scheme
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