Extra Samples can Reduce the Communication for Independence Testing

K. R. Sahasranand
Joint work with Himanshu Tyagi
Department of Electrical Communication Engineering, Indian Institute of Science,
Bangalore, India

June 13, 2018

Problem statement

- $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ be an iid sequence of pairs of bits

Problem statement

- $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ be an iid sequence of pairs of bits
- Party \mathcal{P}_{1} observes X^{n} and party \mathcal{P}_{2} observes Y^{n}
- The marginals X^{n} and Y^{n} are uniformly random bits

Problem statement

- $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ be an iid sequence of pairs of bits
- Party \mathcal{P}_{1} observes X^{n} and party \mathcal{P}_{2} observes Y^{n}
- The marginals X^{n} and Y^{n} are uniformly random bits
- Distributed hypothesis testing problem:

Problem statement

- $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ be an iid sequence of pairs of bits
- Party \mathcal{P}_{1} observes X^{n} and party \mathcal{P}_{2} observes Y^{n}
- The marginals X^{n} and Y^{n} are uniformly random bits
- Distributed hypothesis testing problem:

- How many bits / must \mathcal{P}_{1} send to \mathcal{P}_{2} ?
- A simple scheme $-\mathcal{P}_{1}$ sends X^{n} to \mathcal{P}_{2}.

Communication needed by the simple scheme

- via the case of "collocated" parties
- For pmfs P and Q on a finite alphabet \mathcal{Z}, let $n(\delta, \epsilon)$ be the minimum n such that we can find an acceptance region, $A_{n} \subset \mathcal{Z}^{n}$ so that

$$
\begin{aligned}
P^{n}\left(A_{n}\right) & \geq 1-\delta, \text { and }, \\
Q^{n}\left(A_{n}\right) & \leq \epsilon .
\end{aligned}
$$

Communication needed by the simple scheme

- via the case of "collocated" parties
- For pmfs P and Q on a finite alphabet \mathcal{Z}, let $n(\delta, \epsilon)$ be the minimum n such that we can find an acceptance region, $A_{n} \subset \mathcal{Z}^{n}$ so that

$$
\begin{aligned}
P^{n}\left(A_{n}\right) & \geq 1-\delta, \text { and }, \\
Q^{n}\left(A_{n}\right) & \leq \epsilon .
\end{aligned}
$$

- It can be seen using Hoeffding's inequality that

$$
n(\delta, \epsilon)=\frac{1}{D(P \| Q)} \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right)
$$

Communication needed by the simple scheme

- via the case of "collocated" parties
- For pmfs P and Q on a finite alphabet \mathcal{Z}, let $n(\delta, \epsilon)$ be the minimum n such that we can find an acceptance region, $A_{n} \subset \mathcal{Z}^{n}$ so that

$$
\begin{aligned}
P^{n}\left(A_{n}\right) & \geq 1-\delta, \text { and }, \\
Q^{n}\left(A_{n}\right) & \leq \epsilon .
\end{aligned}
$$

- It can be seen using Hoeffding's inequality that

$$
n(\delta, \epsilon)=\frac{1}{D(P \| Q)} \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right)
$$

- In our problem, $\mathcal{Z}=\mathcal{X} \times \mathcal{Y}=\{0,1\} \times\{0,1\}$.

Communication needed by the simple scheme

- via the case of "collocated" parties

Consider $P_{X Y} \equiv \operatorname{BSS}(\rho)$ defined by

$$
P(0,0)=P(1,1)=\frac{1}{4}(1+\rho), \text { and, } P(0,1)=P(1,0)=\frac{1}{4}(1-\rho)
$$

Communication needed by the simple scheme

- via the case of "collocated" parties

Consider $P_{X Y} \equiv \operatorname{BSS}(\rho)$ defined by

$$
P(0,0)=P(1,1)=\frac{1}{4}(1+\rho), \text { and, } P(0,1)=P(1,0)=\frac{1}{4}(1-\rho)
$$

For $P \equiv P_{X Y} \equiv \operatorname{BSS}(\rho)$, and $Q \equiv P_{X} P_{Y}$, we get

$$
n(\delta, \epsilon)=\frac{1}{1-h\left(\frac{1-\rho}{2}\right)} \cdot \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right)
$$

For $Q \equiv P_{X Y} \equiv \operatorname{BSS}(\rho)$, and $P \equiv P_{X} P_{Y}$, we get

$$
n(\delta, \epsilon)=\frac{2}{\log \frac{1}{1-\rho^{2}}} \cdot \log \frac{1}{\delta}+O_{\epsilon}\left(\sqrt{\log \frac{1}{\delta}}\right)
$$

Communication needed by the simple scheme

- For the simple scheme, communication needed is $n(\delta, \epsilon)$.

Communication needed by the simple scheme

- For the simple scheme, communication needed is $n(\delta, \epsilon)$.
- Suppose, no constraint on the number of samples observed by $\mathcal{P}_{1}, \mathcal{P}_{2}$.

Communication needed by the simple scheme

- For the simple scheme, communication needed is $n(\delta, \epsilon)$.
- Suppose, no constraint on the number of samples observed by $\mathcal{P}_{1}, \mathcal{P}_{2}$.
- Then, can we test for independence by communicating fewer bits?

A "less costly" communication scheme

We will show that we can test independence of bit sequences using

$$
C(\delta, \epsilon)=\frac{1}{\rho^{2}} \cdot \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right) \text { or } \frac{1-\rho^{2}}{\rho^{2}} \cdot \log \frac{1}{\delta}+O_{\epsilon}\left(\sqrt{\log \frac{1}{\delta}}\right)
$$

A "less costly" communication scheme

We will show that we can test independence of bit sequences using

$$
C(\delta, \epsilon)=\frac{1}{\rho^{2}} \cdot \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right) \text { or } \frac{1-\rho^{2}}{\rho^{2}} \cdot \log \frac{1}{\delta}+O_{\epsilon}\left(\sqrt{\log \frac{1}{\delta}}\right)
$$

whereas for the simple scheme, the communication is

$$
n(\delta, \epsilon)=\frac{1}{1-h\left(\frac{1-\rho}{2}\right)} \cdot \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right) \text { or } \frac{2}{\log \frac{1}{1-\rho^{2}}} \cdot \log \frac{1}{\delta}+O_{\epsilon}\left(\sqrt{\log \frac{1}{\delta}}\right)
$$

Clearly, for all $\rho \notin\{-1,0,1\}$,

$$
\frac{1}{\rho^{2}}<\frac{1}{1-h\left(\frac{1-\rho}{2}\right)} \text { and } \frac{1-\rho^{2}}{\rho^{2}}<\frac{2}{\log \frac{1}{1-\rho^{2}}}
$$

Summary of results

- We present general upper and lower bounds that match for $\operatorname{BSS}(\rho)$
- Scheme uses linear correlation as a statistic
- Lower bound uses hypercontractivity to get a measure change bound

Results and Proofs

Minimum one-way communication for independence testing

- Shared randomness between \mathcal{P}_{1} and \mathcal{P}_{2}, denoted by U
- A distributed test $T=(c, d)$
- \mathcal{P}_{1} observes X^{n}.
- \mathcal{P}_{1} sends $B^{\prime}=c\left(X^{n}, U\right)$ to \mathcal{P}_{2}.
- \mathcal{P}_{1} observes Y^{n} and receives B^{\prime}.
- \mathcal{P}_{2} declares $d\left(Y^{n}, B^{\prime}, U\right)$.

Minimum one-way communication for independence testing

- Shared randomness between \mathcal{P}_{1} and \mathcal{P}_{2}, denoted by U
- A distributed test $T=(c, d)$
- \mathcal{P}_{1} observes X^{n}.
- \mathcal{P}_{1} sends $B^{\prime}=c\left(X^{n}, U\right)$ to \mathcal{P}_{2}.
- \mathcal{P}_{1} observes Y^{n} and receives B^{\prime}.
- \mathcal{P}_{2} declares $d\left(Y^{n}, B^{\prime}, U\right)$.

- (c, d) is an (I, δ, ϵ)-test if

$$
P_{\mathcal{H}_{0}}\left(d\left(Y^{n}, B^{\prime}, U\right)=1\right) \leq \delta \quad \text { and } \quad P_{\mathcal{H}_{1}}\left(d\left(Y^{n}, B^{\prime}, U\right)=0\right) \leq \epsilon
$$

Minimum one-way communication for independence testing

- Shared randomness between \mathcal{P}_{1} and \mathcal{P}_{2}, denoted by U
- A distributed test $T=(c, d)$
- \mathcal{P}_{1} observes X^{n}.
- \mathcal{P}_{1} sends $B^{\prime}=c\left(X^{n}, U\right)$ to \mathcal{P}_{2}.
- \mathcal{P}_{1} observes Y^{n} and receives B^{\prime}.
- \mathcal{P}_{2} declares $d\left(Y^{n}, B^{\prime}, U\right)$.

- (c, d) is an (I, δ, ϵ)-test if

$$
P_{\mathcal{H}_{0}}\left(d\left(Y^{n}, B^{\prime}, U\right)=1\right) \leq \delta \quad \text { and } \quad P_{\mathcal{H}_{1}}\left(d\left(Y^{n}, B^{\prime}, U\right)=0\right) \leq \epsilon
$$

- Minimum communication: $C(\delta, \epsilon)$ is the $\min /$ s.t. \exists an (I, δ, ϵ)-test for some n

Proposed scheme for binary sequences

- Based on a scheme for common randomness generation by Guruswamy and Radhakrishnan (2017)
- Reparameterize $\{0,1\}$ to $\{+1,-1\}$
i. Let \mathbb{U} be an $\left(n \times 2^{k}\right)$ matrix of Unif $\{-1,+1\}$-valued rvs
ii. \mathcal{P}_{1} sends the least j s.t. that $\sum_{i=1}^{n} U_{i j} X_{i} \geq r \sqrt{n}$
- if none found, declares \mathcal{H}_{1}
iii. \mathcal{P}_{2} declares \mathcal{H}_{0} if $\sum_{i=1}^{n} U_{i j} Y_{i} \geq \theta . r \sqrt{n}$
- else it declares \mathcal{H}_{1}

Proposed scheme for binary sequences

- Based on a scheme for common randomness generation by Guruswamy and Radhakrishnan (2017)
- Reparameterize $\{0,1\}$ to $\{+1,-1\}$
i. Let \mathbb{U} be an $\left(n \times 2^{k}\right)$ matrix of Unif $\{-1,+1\}$-valued rvs
ii. \mathcal{P}_{1} sends the least j s.t. that $\sum_{i=1}^{n} U_{i j} X_{i} \geq r \sqrt{n}$
- if none found, declares \mathcal{H}_{1}
iii. \mathcal{P}_{2} declares \mathcal{H}_{0} if $\sum_{i=1}^{n} U_{i j} Y_{i} \geq \theta . r \sqrt{n}$
- else it declares \mathcal{H}_{1}

Proposed scheme for binary sequences

- Based on a scheme for common randomness generation by Guruswamy and Radhakrishnan (2017)
- Reparameterize $\{0,1\}$ to $\{+1,-1\}$
i. Let \mathbb{U} be an $\left(n \times 2^{k}\right)$ matrix of Unif $\{-1,+1\}$-valued rvs
ii. \mathcal{P}_{1} sends the least j s.t. that $\sum_{i=1}^{n} U_{i j} X_{i} \geq r \sqrt{n}$
- if none found, declares \mathcal{H}_{1}
iii. \mathcal{P}_{2} declares \mathcal{H}_{0} if $\sum_{i=1}^{n} U_{i j} Y_{i} \geq \theta . r \sqrt{n}$
- else it declares \mathcal{H}_{1}

Proposed scheme for binary sequences

- Based on a scheme for common randomness generation by Guruswamy and Radhakrishnan (2017)
- Reparameterize $\{0,1\}$ to $\{+1,-1\}$
i. Let \mathbb{U} be an $\left(n \times 2^{k}\right)$ matrix of Unif $\{-1,+1\}$-valued rvs
ii. \mathcal{P}_{1} sends the least j s.t. that $\sum_{i=1}^{n} U_{i j} X_{i} \geq r \sqrt{n}$
- if none found, declares \mathcal{H}_{1}
iii. \mathcal{P}_{2} declares \mathcal{H}_{0} if $\sum_{i=1}^{n} U_{i j} Y_{i} \geq \theta . r \sqrt{n}$
- else it declares \mathcal{H}_{1}

Proposed scheme for binary sequences

- Based on a scheme for common randomness generation by Guruswamy and Radhakrishnan (2017)
- Reparameterize $\{0,1\}$ to $\{+1,-1\}$
i. Let \mathbb{U} be an $\left(n \times 2^{k}\right)$ matrix of Unif $\{-1,+1\}$-valued rvs
ii. \mathcal{P}_{1} sends the least j s.t. that $\sum_{i=1}^{n} U_{i j} X_{i} \geq r \sqrt{n}$
- if none found, declares \mathcal{H}_{1}
iii. \mathcal{P}_{2} declares \mathcal{H}_{0} if $\sum_{i=1}^{n} U_{i j} Y_{i} \geq \theta . r \sqrt{n}$
- else it declares \mathcal{H}_{1}

Since $\mathbb{E}_{\mathcal{H}_{0}}[Y \mid X]=\rho X$, we choose $\theta \approx \rho$

The general scheme

We use the best "linear correlation" we can get from $P_{X Y}$
The maximum correlation of (X, Y) is given by

$$
\begin{aligned}
& \rho_{m}(X, Y)=\max \mathbb{E}[f(X) g(Y)] \\
& \quad f, g \text { s.t. } \mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0 \text { and } \\
& \quad \mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1
\end{aligned}
$$

The general scheme

We use the best "linear correlation" we can get from $P_{X Y}$
The maximum correlation of (X, Y) is given by

$$
\begin{aligned}
& \rho_{m}(X, Y)=\max \mathbb{E}[f(X) g(Y)] \\
& \quad f, g \text { s.t. } \mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0 \text { and } \\
& \quad \mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1
\end{aligned}
$$

Consider (X, Y) with $\rho_{m}(X, Y)=\rho$
The maximizing f and g satisfy

$$
\mathbb{E}[g(Y) \mid X]=\rho f(X) \text { and } \mathbb{E}\left[\mathbb{E}[g(Y) \mid X]^{2}\right]=\rho^{2}
$$

The general scheme

We use the best "linear correlation" we can get from $P_{X Y}$
The maximum correlation of (X, Y) is given by

$$
\begin{aligned}
& \rho_{m}(X, Y)=\max \mathbb{E}[f(X) g(Y)] \\
& \quad f, g \text { s.t. } \mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0 \text { and } \\
& \quad \mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1
\end{aligned}
$$

Consider (X, Y) with $\rho_{m}(X, Y)=\rho$
The maximizing f and g satisfy

$$
\mathbb{E}[g(Y) \mid X]=\rho f(X) \text { and } \mathbb{E}\left[\mathbb{E}[g(Y) \mid X]^{2}\right]=\rho^{2}
$$

i. Let \mathbb{U} be an $\left(n \times 2^{k}\right)$ matrix of Unif $\{-1,+1\}$-valued rvs
ii. \mathcal{P}_{1} sends the least j s.t. that $\sum_{i=1}^{n} U_{i j} f\left(X_{i}\right) \geq r \sqrt{n}$
iii. \mathcal{P}_{2} declares \mathcal{H}_{0} if $\sum_{i=1}^{n} U_{i j} g\left(Y_{i}\right) \geq \theta \cdot r \sqrt{n}$

We choose $\theta \approx \rho$.

Performance guarantees

Theorem (Upper bound for small ϵ, δ)

For $\delta, \epsilon \in(0,1 / 2)$ and $P_{X Y}$ with $\rho_{m}(X, Y)=\rho$,

$$
C(\delta, \epsilon) \leq \frac{1}{\rho^{2}} \cdot\left(\sqrt{\log \frac{1}{\epsilon}}+\sqrt{\left(1-\rho^{2}\right) \log \frac{1}{\delta}}\right)^{2}+O\left(\sqrt{\log \frac{1}{\epsilon \delta}}\right)
$$

Theorem (Upper bound for small ϵ, large δ)
For $\epsilon \in(0,1 / 2), \delta \in(1 / 2,1)$ and $P_{X Y}$ with $\rho_{m}(X, Y)=\rho$,

$$
C(\delta, \epsilon) \leq \frac{1}{\rho^{2}} \cdot\left(\sqrt{\log \frac{1}{\epsilon}}-\sqrt{\left(1-\rho^{2}\right) \log \frac{1}{1-\delta}}\right)^{2}+O\left(\sqrt{\log \frac{1}{\epsilon(1-\delta)}}\right)
$$

Deriving the lower bound

Given a (deterministic) (I, δ, ϵ)-test (c, d)
let $A_{i}=\left\{x^{n}: c\left(x^{n}\right)=i\right\}$ and $B_{i}=\left\{y^{n}: d\left(y^{n}, i\right)=0\right\}, L=2^{\prime}$,
Note that $\left\{A_{1}, \ldots, A_{L}\right\}$ is a partition of \mathcal{X}^{n}

Deriving the lower bound

Given a (deterministic) (I, δ, ϵ)-test (c, d)
let $A_{i}=\left\{x^{n}: c\left(x^{n}\right)=i\right\}$ and $B_{i}=\left\{y^{n}: d\left(y^{n}, i\right)=0\right\}, L=2^{\prime}$,
Note that $\left\{A_{1}, \ldots, A_{L}\right\}$ is a partition of \mathcal{X}^{n}
The change of measure bound:

$$
1-\delta \leq \sum_{i=1}^{L} P_{X^{n} Y^{n}}\left(A_{i} \times B_{i}\right)
$$

Deriving the lower bound

Given a (deterministic) (I, δ, ϵ)-test (c, d)
let $A_{i}=\left\{x^{n}: c\left(x^{n}\right)=i\right\}$ and $B_{i}=\left\{y^{n}: d\left(y^{n}, i\right)=0\right\}, L=2^{\prime}$,
Note that $\left\{A_{1}, \ldots, A_{L}\right\}$ is a partition of \mathcal{X}^{n}
The change of measure bound: Using Cauchy-Schwarz and Jensen's

$$
\begin{aligned}
1-\delta & \leq \sum_{i=1}^{L} P_{X^{n} Y^{n}}\left(A_{i} \times B_{i}\right) \\
& \leq \sum_{i=1}^{L} \sqrt{P_{X^{n}}\left(A_{i}\right) P_{Y^{n}}\left(B_{i}\right)} \\
& \leq \sqrt{L \sum_{i=1}^{L} P_{X^{n}}\left(A_{i}\right) P_{Y^{n}}\left(B_{i}\right)} \\
& \leq \sqrt{L \epsilon}
\end{aligned}
$$

Deriving the lower bound

Given a (deterministic) (I, δ, ϵ)-test (c, d)
let $A_{i}=\left\{x^{n}: c\left(x^{n}\right)=i\right\}$ and $B_{i}=\left\{y^{n}: d\left(y^{n}, i\right)=0\right\}, L=2^{\prime}$,
Note that $\left\{A_{1}, \ldots, A_{L}\right\}$ is a partition of \mathcal{X}^{n}
The change of measure bound: Using Cauchy-Schwarz and Jensen's

$$
\begin{aligned}
1-\delta & \leq \sum_{i=1}^{L} P_{X^{n} Y^{n}}\left(A_{i} \times B_{i}\right) \\
& \leq \sum_{i=1}^{L} \sqrt{P_{X^{n}}\left(A_{i}\right) P_{Y^{n}}\left(B_{i}\right)} \\
& \leq \sqrt{L \sum_{i=1}^{L} P_{X^{n}}\left(A_{i}\right) P_{Y^{n}}\left(B_{i}\right)} \\
& \leq \sqrt{L \epsilon}
\end{aligned}
$$

Replace Cauchy-Schwarz with a hypercontractivity bound

Deriving the lower bound

For $1 \leq q \leq p<\infty$, with $p^{\prime}=p /(p-1)$,
$P_{X Y}$ is (p, q)-hypercontractive iff $\mathbb{E}[|f(X) g(Y)|] \leq\|f(X)\|_{p^{\prime}}\|g(Y)\|_{q}$.
For any rectangle $A \times B: P_{X Y}(A \times B) \leq P_{X}(A)^{\frac{1}{\rho^{\prime}}} P_{Y}(B)^{\frac{1}{q}}$

Deriving the lower bound

For $1 \leq q \leq p<\infty$, with $p^{\prime}=p /(p-1)$,
$P_{X Y}$ is (p, q)-hypercontractive iff $\mathbb{E}[|f(X) g(Y)|] \leq\|f(X)\|_{p^{\prime}}\|g(Y)\|_{q}$.
For any rectangle $A \times B: P_{X Y}(A \times B) \leq P_{X}(A)^{\frac{1}{\rho^{\prime}}} P_{Y}(B)^{\frac{1}{q}}$

$$
\begin{aligned}
1-\delta & \leq \sum_{i=1}^{L} P_{X^{n} Y^{n}}\left(A_{i} \times B_{i}\right) \\
& \leq \sum_{i=1}^{L}\left(P_{X^{n}}\left(A_{i}\right) P_{Y^{n}}\left(B_{i}\right)\right)^{\frac{1}{q}} P_{X^{n}}\left(A_{i}\right)^{\frac{1}{p^{\prime}}-\frac{1}{q}} \\
& \leq\left(\sum_{i=1}^{L} P_{X^{n}}\left(A_{i}\right) P_{Y^{n}}\left(B_{i}\right)\right)^{\frac{1}{q}}\left(\sum_{i=1}^{L} P_{X^{n}}\left(A_{i}\right)^{q^{\prime}\left(\frac{1}{p^{\prime}-\frac{1}{q}}\right)}\right)^{\frac{1}{q^{\prime}}} \\
& \leq \epsilon^{\frac{1}{q}} L^{\frac{1}{p}}
\end{aligned}
$$

where we have assumed $1 \leq p^{\prime} \leq q$

The lower bound

Theorem (Lower bound 1)
Given $\delta, \epsilon \in(0,1)$ and (p, q) such that $1 \leq p^{\prime} \leq q \leq p$ and (X, Y) is (p, q)-hypercontractive,

$$
C(\delta, \epsilon) \geq \frac{p}{q} \log \frac{1}{\epsilon}-p \log \frac{1}{1-\delta}
$$

The lower bound

Theorem (Lower bound 1)

Given $\delta, \epsilon \in(0,1)$ and (p, q) such that $1 \leq p^{\prime} \leq q \leq p$ and (X, Y) is (p, q)-hypercontractive,

$$
C(\delta, \epsilon) \geq \frac{p}{q} \log \frac{1}{\epsilon}-p \log \frac{1}{1-\delta}
$$

Similarly, using reverse hypercontractivity, we can get:
Theorem (Lower bound 2)
Given $\delta, \epsilon \in(0,1)$ and (p, q) such that $1 \geq q \geq 0 \geq q^{\prime} \geq p$ and (X, Y) is (p, q)-reverse hypercontractive,

$$
C(\delta, \epsilon) \geq \frac{p}{q} \log \frac{1}{1-\epsilon}-p \log \frac{1}{\delta}
$$

Evaluation for $\operatorname{BSS}(\rho)$

For $1 \leq q \leq p,(X, Y)$ is (p, q)-hypercontractive iff $\frac{q-1}{p-1} \geq \rho^{2}$
On optimizing the lower bound over this region, we get the desired bound.

Corollary

For a $\operatorname{BSS}(\rho), \delta \in(0,1 / 2)$ and ϵ s.t. $\delta+\epsilon^{\frac{1-|\rho|}{1+\rho \mid} \leq 1}$

$$
C(\delta, \epsilon)=\frac{1}{\rho^{2}} \log \frac{1}{\epsilon}+O_{\delta}\left(\sqrt{\log \frac{1}{\epsilon}}\right)
$$

Evaluation for $\operatorname{BSS}(\rho)$

For $1 \geq q \geq p,(X, Y)$ is (p, q)-reverse hypercontractive iff $\frac{1-q}{1-p} \geq \rho^{2}$
On optimizing the lower bound over this region, we get the desired bound.

Corollary

For a $\operatorname{BSS}(\rho), \epsilon, \delta \in(0,1 / 2)$

$$
C(\delta, \epsilon)=\frac{1-\rho^{2}}{\rho^{2}} \log \frac{1}{\delta}+O_{\epsilon}\left(\sqrt{\log \frac{1}{\delta}}\right)
$$

Evaluation for $\operatorname{BSS}(\rho)$

For $1 \leq q \leq p,(X, Y)$ is (p, q)-hypercontractive iff $\frac{q-1}{p-1} \geq \rho^{2}$
On optimizing the lower bound over this region, we get the desired bound.

Corollary

For a $\operatorname{BSS}(\rho), \delta \in(1 / 2,1)$ and ϵ s.t. $\delta+\epsilon^{\frac{1-|\rho|}{1+|\rho|}} \leq 1$,

$$
C(\delta, \epsilon)=\frac{1}{\rho^{2}}\left(\sqrt{\log \frac{1}{\epsilon}}-\sqrt{\left(1-\rho^{2}\right) \log \frac{1}{1-\delta}}\right)^{2}+O\left(\sqrt{\log \frac{1}{\epsilon(1-\delta)}}\right)
$$

Remark - Also works for Gaussian symmetric source GSS (ρ) :

$$
\binom{X}{Y} \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)
$$

Future directions

- Joint (δ, ϵ) optimality?

Future directions

- Joint (δ, ϵ) optimality?
- Can interaction help?

Future directions

- Joint (δ, ϵ) optimality?
- Can interaction help?
- The case of unknown joint distribution -
- $\operatorname{BSS}(\rho)$ is ρ away from $\operatorname{BSS}(0)$
- Simple scheme uses $O\left(1 / \rho^{2}\right)$ bits and is order-optimal
- Alphabet size $k>2$?

Future directions

- Joint (δ, ϵ) optimality?
- Can interaction help?
- The case of unknown joint distribution -
- $\operatorname{BSS}(\rho)$ is ρ away from $\operatorname{BSS}(0)$
- Simple scheme uses $O\left(1 / \rho^{2}\right)$ bits and is order-optimal
- Alphabet size $k>2$?
- Do not have a practical scheme that outperforms the simple scheme

