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Abstract—In the near-field of a reconfigurable intelligent
surface (RIS), the steering vector of the channel between the
RIS and a user depends on both azimuth and distance. As a
result, new channel estimation schemes, which are required for
configuring the RIS and data demodulation, are needed. We
study a low-training-overhead parametric maximum-likelihood
(ML) scheme that estimates the directional cosine, distance, and
complex gain to reconstruct the RIS-to-user channel gain. We
derive novel expressions for the Cramér-Rao lower bound for the
mean square error (MSE) of the estimated channel parameters
and the RIS-to-user channel gain. Using the asymptotic efficiency
of the ML estimate, we present novel, insightful expressions for
the statistics of the cascaded channel gain between the access
point and the user in the presence of errors in configuring the
RIS. These are also essential for building its linear minimum
MSE estimator. We then derive an expression for the achievable
rate in the presence of estimation errors, which leads to insightful,
closed-form expressions for the optimal pilot and data powers.
Our approach requires fewer pilots than the number of RIS
elements and achieves a lower MSE and a higher rate than several
benchmarking schemes.

Index Terms—Near-field communication, Reconfigurable intel-
ligent surfaces, Channel estimation, Achievable rate, Cramér-Rao
lower bound, Parametric maximum-likelihood estimation.

I. INTRODUCTION

Sixth-generation (6G) wireless communication systems are
expected to support new data-hungry applications such as
digital replicas, augmented reality, virtual reality, extended
reality, and holographic videos [2]. To do so, higher carrier fre-
quencies, where considerable bandwidth is available, are being
considered. Furthermore, techniques such as extremely large
multi-input multi-output (MIMO) and extremely large aperture
arrays are being actively investigated [2]. The move to larger
aperture arrays, more antennas, and higher carrier frequencies
makes the user fall in the near-field of the transmitter [3].
This is because the Fraunhofer distance, which demarcates
the far-field and near-field regions, increases as the product
of the square of the array aperture and the carrier frequency.
Hence, near-field is emerging as an important regime of
communication [4].
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Wavefronts that are planar in the far-field region become
spherical in the near-field region. As a result, the steering
vector of the near-field channel depends not only on the angle-
of-arrival/departure (AoA/AoD) between the transmitter and
the receiver, as is the case in the far-field, but also on the
distance. This distance dependency in the near-field enables
sharp beamfocusing [3] and joint localization and channel es-
timation [5]. It allows the transmitter to communicate with two
users along the same angular direction [3]. This fundamental
change in the channel model makes conventional far-field-
based techniques inapplicable or sub-optimal in the near-field.

Another 6G technology where near-field applies is a large
reconfigurable intelligent surface (RIS). An RIS is an array
of near-passive elements made from metamaterials. It can
focus or nullify the signal energy at the desired location by
controlling the reflection coefficients of its elements [6], [7].
To control the phases of its elements, the knowledge of the
cascaded channels between the transmitter, the RIS elements,
and the receiver is essential, and is acquired using channel
estimation schemes.

The channel estimation schemes when the user falls in the
near-field of an RIS can be broadly classified as parametric [6],
compressed sensing-based [5], [8]–[10], and codebook-based
schemes [11]. These vary from the far-field schemes, for which
we refer the reader to [12], [13] and the references therein.

a) Parametric Schemes: In these schemes, the parame-
ters that define the channel are estimated using non-Bayesian
approaches, such as best linear unbiased and maximum-
likelihood (ML) estimators, where the probability distribution
of the parameters to be estimated is not required [14]. These
schemes are appealing because, in principle, the number of
pilots required is of the order of the number of parameters to be
estimated. Such schemes have also been used for MIMO and
orthogonal frequency division multiplexing systems; see [15],
[16] and the references therein. More recently, these have been
explored for near-field RIS [6].

b) Compressed Sensing-based Schemes: These schemes
exploit the sparsity of the near-field channel. They are
philosophically similar to the parametric schemes in that
they reconstruct a higher-dimensional channel by estimating
a few parameters using fewer pilots. In [8], a wideband
spherical-domain dictionary that accounts for the beam-squint
effect in the near-field is designed. A low-complexity, three-
dimensional, compressed sensing-based channel estimation
scheme for an extremely large RIS and a hybrid millimeter
wave beamfocusing architecture at the access point (AP) is
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presented in [9]. In [10], a frequency-dependent, RIS-assisted
channel estimation scheme is presented that uses the polar-
domain sparsity of the steering vector. In [5], a downsampled
covariance matrix is constructed by eliminating the distance-
dependent entries of the channel covariance matrix. This
matrix is used to estimate the AoAs using the method of
projections. The distances and the complex gains are then
estimated using grid-search and orthogonal matching pursuit
(OMP), respectively. Similar approaches have also been ex-
plored for near-field MIMO [17], [18].

c) Codebook-based Schemes: A two-step hierarchical
channel estimation scheme is proposed in [11]. First, the
dominant angular direction is estimated using the discrete
Fourier transform (DFT) codebook. Then, the near-field code-
book of [17] with codewords corresponding to angles in the
neighborhood of the estimated dominant angular direction is
used to estimate the exact distance and angle bins.

The noises in the channel estimation process affect the RIS-
aided system in multiple ways. First, the RIS configuration
is affected because the estimated channel gain is used to
set it. An improper RIS configuration leads to beamfocusing
misalignment and imperfect spatial focusing. Second, after the
RIS is configured, the estimate of the gain of the cascaded
AP-RIS-user channel, which is required for coherent data
demodulation, is also affected by noise. The net effect of the
noises and the pilot transmission overhead is a reduction in the
achievable rate. While increasing the number of pilots and the
pilot powers improves the channel estimation accuracy, it also
reduces the time and power available for data transmission.
The system is also affected by hardware imperfections [19]
and phase noise.

A. Contributions

We study an alternate, low-overhead parametric channel
estimation scheme when the user lies in the near-field of the
RIS. We also characterize the fundamental trade-off between
the number of pilots and their powers, and the number of data
symbols and their powers, and optimize the achievable rate
of this scheme. While such a trade-off has been studied for
the far-field [12], [13], to the best of our knowledge, ours is
the first work that analyzes it for the near-field. Moreover, the
sensitivity of the estimation errors of such a parametric scheme
to noise, pilot power, and number of pilots and the non-linear
dependence of the near-field channel gain on the estimated
parameters requires us to develop new analytical tools. The
following are our contributions:

1) Channel Estimation and Error Statistics: We study a
two-step parametric estimation scheme. In the first step, the AP
obtains ML estimates of the RIS-to-user channel parameters,
namely directional cosine, distance, and complex gain, and
configures the RIS. We derive a novel Cramér-Rao lower
bound (CRLB) for the mean square error (MSE) of the
estimated parameters and the RIS-to-user channel gain.

In the second step, the user uses a linear minimum MSE
(LMMSE) estimator to estimate the AP-RIS-user cascaded
channel gain. This is essential for the user to coherently
demodulate the data transmitted by the AP. The novelty of

this estimator is that it accounts for the impact of the noise
that affected the RIS phase configuration as well as the noise
during the cascaded channel gain estimation. The estimator is
built on closed-form expressions for the mean and variance
of the cascaded channel gain in the presence of the above
estimation errors. We derive these expressions based on a
novel approximation of the cascaded channel gain, which
addresses the non-linear dependence of the near-field steering
vector on the directional cosine, distance, complex gain, and
their estimation errors.

2) Achievable Rate: We present a novel expression for
achievable rate that brings out the impact of the uplink and
downlink pilot powers and the number of pilots. We also show
that at a high pilot signal-to-noise ratio (SNR), maximizing
the rate is equivalent to maximizing a deterministic, tractable
effective signal-to-interference-plus-noise ratio (SINR).

3) Optimal Power Allocation: We derive in closed-form the
optimal allocation of powers to the uplink pilot, downlink
pilot, and downlink data symbols that maximizes the deter-
ministic effective SINR and, thus, the rate.

4) Numerical Results: We find that the proposed scheme
requires far fewer pilots than the number of RIS elements
and achieves a higher rate and lower MSE than the far-
field [7], near-field codebook-based [17], compressed sensing-
based [17], [20], and non-parametric schemes [14] over a wide
range of various system parameters. An important insight that
we glean is that much higher power should be allocated to the
downlink pilot than to a data symbol.

While [6] also considered parametric estimation, it only
derived an expression for the estimates and numerically plotted
the MSE. On the other hand, we analytically characterize the
impact of estimation errors on the cascaded channel gain,
derive the expressions for the CRLB for the MSE of the
parametric estimates, and extend it to the CRLB of the RIS-
to-user channel gain. Furthermore, we derive the achievable
rate and the optimal pilot and data powers and durations.

B. Organization and Notations
Section II presents the system model. In Section III, we

derive the expressions for the estimators and the error statis-
tics. Section IV derives the achievable rate expression and the
optimal power allocation. Section V presents numerical results.
Our conclusions follow in Section VI.

Notations: Matrices and vectors are written in uppercase
and lowercase boldface letters, respectively. The symbols |·|,
(·)∗, (·)H , (·)T , ∠ (·), ℑ{·}, and ℜ{·} denote the absolute
value, complex conjugate, Hermitian transpose, transpose,
angle, imaginary part, and real part, respectively. For a vector
x, ||x||p denotes its ℓp norm and x[n] is its nth element. The
notation A ⪰ B implies that A−B is positive semi-definite.
x ∼ CN (µ,C) implies that x is a complex Gaussian random
vector with mean µ and covariance matrix C. The expectation
with respect to the random variable X is denoted by EX [·]
and the expectation conditioned on the random variable Y
is denoted by EX [·|Y ]; the subscript is dropped when X
is obvious from the context. Variance is denoted by Var (·).
Furthermore, o (·) and O (·) denote Landau’s little-o and big-
O notations, respectively.
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Fig. 1. System model of an RIS-assisted near-field communication system,
where an AP communicates with a user with the help of an N -element RIS.
Also shown is the three-step transmission protocol consisting of M uplink
pilots, a downlink pilot, and Tc −M − 1 data symbols.

II. SYSTEM MODEL AND TRANSMISSION PROTOCOL

As shown in Fig. 1, an AP communicates with a user with
the aid of an RIS with N elements. The RIS is a uniform
linear array (ULA) with an inter-element spacing of d [7], [21].
Let ϕ ∈ CN×1 be the RIS phase configuration vector, where
ϕ[n] = ejθn is the reflection coefficient of its nth element
with phase θn.

The channel between the AP and the RIS is a deterministic
line-of-sight (LoS) channel with gain hBR ∈ CN×1, which is
known perfectly to the AP and the user. This is justified when
the AP-to-RIS channel gain remains constant over multiple
coherence intervals of the RIS-to-user channel gain [6], [7],
[22]. For example, when the AP and the RIS are fixed on tow-
ers and rooftops, the AP-to-RIS channel’s AoD and distance
can be estimated over multiple coherence intervals with the
help of a co-located anchor node [23]. In an unmanned aerial
vehicle (UAV)-assisted RIS setup, where the RIS is mounted
on a UAV, the use of a co-located anchor node is not possible.
However, the use of a few passive sensors at the RIS can
facilitate the estimation of hBR [24].

As illustrated in Fig. 1, we consider a single-tap, cluster-
based channel model for the RIS-to-user channel gain, where
the signals scattered from the multiple scatterers in the cluster
arrive at the user over multiple paths. Let hRU = gb(Ω, r) ∈
CN×1 be the near-field non-LoS channel gain between the RIS
and the user. Here, b(Ω, r) ∈ CN×1 is the near-field steering
vector and g is the multipath complex gain [4, (132)]. The
superposition of the signals from the multiple paths makes g
a zero-mean, circularly symmetric complex Gaussian random
variable. Let its variance be σ2

g . Furthermore, g = βh1,
where h1 ∼ CN (0, αref (rref/r1)

ν
) is the diffused scattering

contributed by the scatterer cluster and β = (rref/r)
ν
2 e−j 2π

λ r

is the complex gain due to the RIS-scatterer cluster path [4,
(132)]. Here, λ is the wavelength, r1 is the distance between
the scatterer cluster and the user, αref is the signal power
attenuation at the reference distance rref, ν is the pathloss
exponent, and r is the distance between the RIS reference
element located at the origin (0, 0) and the center of the cluster.
Therefore, σ2

g = αref
(
r2ref/r1r

)ν
.

The nth element of the steering vector b(Ω, r) is [4]

b(Ω, r) [n] = N− 1
2 e−j 2π

λ (−(n−1)dΩ+ 1
2r (n−1)2d2(1−Ω2)), (1)

where Ω = sinϑ is the directional cosine and ϑ is the azimuth
angle of the cluster center relative to (0, 0). We assume that
the direct link between the AP and the user is blocked due to
obstacles [7], [25].

A. Transmission Protocol
The transmission protocol is illustrated in Fig. 1. It consists

of the following three steps:
1) RIS Configuration Estimation: The user transmits M

uplink pilots, each with power Pp. When the kth pilot xp = 1
is transmitted, the RIS configuration is set as ϕk. For example,
ϕk can be the kth column of the N × N DFT matrix [26],
[27]. The received signal yk at the AP for the kth pilot is

yk =
√
Ppϕ

T
kHBRhRUxp + nk, (2)

where nk ∼ CN
(
0, σ2

AP

)
is additive white Gaussian noise

(AWGN) and HBR is a diagonal matrix with diagonal entries
as hBR. Stacking the received signals for all M pilots, we get

y =
√
PpFmHBRhRU +n =

√
PpFmHBRgb(Ω, r)+n, (3)

where y ≜ [y1, y2, . . . , yM ]
T , Fm ≜ [ϕ1,ϕ2, . . . ,ϕM ]

T , and
n ≜ [n1, n2, . . . , nM ]

T .
Let ĝ, Ω̂, and r̂ be the estimates of the parameters g, Ω, and

r, respectively, that the AP obtains from y. Then, the estimate
ĥRU of hRU is ĥRU = ĝb

(
Ω̂, r̂

)
. Based on ĥRU, the AP sets

the phase ϕ̂ [n] of the nth RIS element as [28]

ϕ̂ [n] = e−j(∠hBR[n]+∠ĥRU[n]) =
h∗

BR [n] ĥ∗
RU [n]

|hBR [n]|
∣∣∣ĥRU [n]

∣∣∣ . (4)

Note that ϕ̂ [n] is affected by the noisy channel estimate ĥRU
in both its numerator and denominator. Thus, it is a non-linear
function of ĥRU and its estimation error.

The AP forwards the estimates Ω̂ and r̂ to the user.
2) Cascaded Channel Gain Estimation: After setting the

RIS phase configuration as per (4), the cascaded channel
gain heq

(
ϕ̂,Ω, r

)
between the AP and the user, assuming

channel reciprocity [6], [12], is given by heq

(
ϕ̂,Ω, r

)
≜∑N

n=1 hBR [n]hRU [n] ϕ̂ [n] . Substituting (4) in this, we get

heq

(
ϕ̂,Ω, r

)
=

N∑
n=1

|hBR [n]|hRU [n]
ĥ∗

RU [n]∣∣∣ĥRU [n]
∣∣∣ . (5)

Note that heq

(
ϕ̂,Ω, r

)
depends on the estimate ĥRU. It is also

a non-linear function of ĝ, Ω̂, r̂, and their estimation errors.
To coherently demodulate data, the user needs to know

heq

(
ϕ̂,Ω, r

)
. For this purpose, the AP transmits a downlink

pilot xc = 1 with power Pc.1 The received signal yc at the
user is

yc =
√
Pcheq

(
ϕ̂,Ω, r

)
+ nu, (6)

1An alternate option for the AP is to send multiple pilots. However, this
reduces the fraction of the time available for data transmission. Given that this
lowers the prelog factor in the achievable rate expression, it is suboptimal [12].
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where nu ∼ CN
(
0, σ2

u

)
is AWGN. In practice, the user

uses ĥeq

(
ϕ̂; Ω̂, r̂

)
as it receives only Ω̂ and r̂ from the AP.

Note that the estimate depends on the noises in both channel
estimation steps.

3) Downlink Data Transmission: The AP transmits Tc −
M − 1 data symbols in the remaining time in a coherence
interval of duration Tc symbols. When the AP transmits a
data symbol xd with power Pd, the user receives yd given by

yd = heq

(
ϕ̂,Ω, r

)
xd + nd, (7)

where nd ∼ CN
(
0, σ2

u

)
is AWGN.

III. PARAMETRIC CHANNEL ESTIMATION

We now derive an estimate of the RIS-to-user channel gain
by estimating its parameters. We then derive the LMMSE
estimate of the cascaded channel gain.

A. Step 1: Estimation of RIS-to-user Channel

We do not impose any distribution on Ω and r. Therefore,
we use the ML estimator. From (3), the probability density
function f(y|g,Ω, r) of y conditioned on g, Ω, and r is given
by

f (y| g,Ω, r) =
(
πσ2

AP

)−M
e
−∥y−

√
PpgFmHBRb(Ω,r)∥2

2
σ2

AP . (8)

The ML estimates ĝ, Ω̂, and r̂ can be shown to be(
ĝ, Ω̂, r̂

)
= argmax

g∈C
r≥rmin, Ω∈[−1,1]

{ln (f (y| g,Ω, r))} , (9)

where rmin ≜ 0.62
√
D3/λ is the boundary between the

reactive and radiative near-fields [4] and D ≜ Nd is the RIS
aperture.

The parametric ML estimates are given by

ĝ =

(
yHFmHBRb

(
Ω̂, r̂

))∗
√
Pp

∥∥∥FmHBRb
(
Ω̂, r̂

)∥∥∥2
2

, (10)

(
Ω̂, r̂

)
= argmax

r≥rmin,
Ω∈[−1,1]

{∣∣yHFmHBRb(Ω, r)
∣∣2

∥FmHBRb(Ω, r)∥22

}
. (11)

The proof is similar to that in [6], [7], and is skipped.
The objective function in (11) has a large number of local

maxima and minima due to the complex exponential and
periodic form of the steering vector (see (1)). In the near-
field literature, such problems have been solved using grid-
search [6]. Here, a bi-dimensional grid of size GΩ × Gr is
set, where GΩ is the grid size in Ω over the interval [−1, 1]
and Gr is the grid size in r over the interval [rmin, rmax].
Due to the periodic nature of the complex exponential of
the steering vector, we set GΩ = N , which is equal to
the number of resolvable angular-domain bins for an N -
element ULA [29, Ch. 7]. The values of Ω and r that yield
the largest value of the objective function are chosen as Ω̂
and r̂, respectively. In general, the number of floating point

1 10 20 30 40 50 60 70 80 90 100

10
-2

10
-1

10
0

Proposed

Grid-search only

Fig. 2. NMSE in estimating the RIS-to-user channel gain as a function of Gr

for our approach and the grid-search only approach (N = 100, M = N/2,

rmax = 200 m, and
MPpσ

2
g|ρBR|2

Nσ2
AP

= 5 dB).

operations (FLOPS) per iteration for bi-dimensional grid-
search is O (GrGΩ(NM +M)).

We propose a lower-complexity hybrid approach that com-
bines grid-search to find an initial point and fmincon, which
uses gradient descent and interior-point methods to finesse it.
As above, we set a bi-dimensional grid of size GΩ ×Gr and
evaluate the objective function at each grid point. The values of
Ω and r that yield the largest value of the objective function are
chosen as the initial condition. Then, we run gradient descent,
using MATLAB’s fmincon function, with the acquired initial
condition to obtain Ω̂ and r̂.

As above, we also set GΩ = N . To understand how to

choose Gr, in Fig. 2, we plot the MSE E
[∥∥∥hRU − ĥRU

∥∥∥2
2

]
in estimating hRU as a function of Gr for our approach
and the grid-search only approach. The MSE is normalized
by E

[
||hRU||22

]
. The normalized MSE (NMSE) is generated

using 104 Monte Carlo realizations of g, r, and noise, with
r uniformly distributed over 5 m to 50 m. The NMSE
of our approach rapidly decreases and reaches a floor for
Gr = 7 ≪ N . The NMSE of the grid-search only approach is
higher and becomes closer to that of our approach when Gr

is close to N . Our approach, thus, requires a coarser grid and
markedly reduces the number of FLOPS. For N = 100, 180,
340, and 480, the computational complexity of the grid-search
only approach, where GΩ = Gr = N , is 8.4×, 22.7×, 52.0×,
and 79.7×, respectively, more than the proposed approach.2

Finally, using ĝ, Ω̂, and r̂, the estimate ĥRU is

ĥRU = ĝb
(
Ω̂, r̂

)
. (12)

We summarize our proposed approach to estimate hRU in
Fig. 3. Using ĥRU, the RIS phase configuration is set as per (4).

Let el = [eg, eΩ, er]
T , where eg = g − ĝ, eΩ = Ω − Ω̂,

and er = r − r̂ are the estimation errors, and C (g,Ω, r) =
E
[
ele

H
l

]
.

2The simulations are run using MATLAB software on a system with 128
GB RAM, Intel i9-13900 processor, and a clock speed of 3 GHz.
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AP receives 

Solve (11) using grid-search: Obtain
coarse estimates of  and 

Solve (11) using gradient
descent: Obtain  and 

Obtain  using (10)

Set 

Fig. 3. Flowchart of the proposed parametric near-field ML channel estimation
scheme.

B. Step 2: Cascaded channel gain Estimation

We now derive the LMMSE estimate ĥeq

(
ϕ̂; Ω, r

)
of

heq

(
ϕ̂,Ω, r

)
. We use the LMMSE estimator to utilize the

available estimates Ω̂ and r̂ and the statistics of g. To make
the derivation tractable, we initially assume that the values of
the large-scale parameters Ω and r are known. Since the user
knows only Ω̂ and r̂, it uses ĥeq

(
ϕ̂; Ω̂, r̂

)
as its estimator in

practice. The LMMSE estimate ĥeq

(
ϕ̂; Ω, r

)
is [14, (12.6)]

ĥeq

(
ϕ̂; Ω, r

)
= µeq +

√
Pcσ

2
eq

Pcσ2
eq + σ2

u

(
yc −

√
Pcµeq

)
, (13)

where µeq and σ2
eq are the mean and variance, respectively, of

heq

(
ϕ̂,Ω, r

)
when Ω and r are known.

In (13), we require µeq and σ2
eq. Since heq

(
ϕ̂,Ω, r

)
is a

non-linear function of g, Ω, r, and their estimation errors,
obtaining exact expressions for µeq and σ2

eq is difficult. We

present a novel approximation for heq

(
ϕ̂,Ω, r

)
to make the

problem tractable. It is motivated by our analysis of (5) in
the asymptotic regime of large Pp/σ

2
AP and M . While the

estimator in (13) is conventional, our expressions for µeq and
σ2

eq are novel and are essential for LMMSE estimation. We
shall see in Section V that the approximation is accurate even
for smaller values of the SNR and M .

We first derive the CRLB CCRLB(g,Ω, r) for estimating
g, Ω, and r. It is useful for two reasons. First, it lower
bounds the error covariance of any estimator, i.e., C(g,Ω, r) ⪰
CCRLB(g,Ω, r). Second, it is tight in the asymptotic regime of
a large number of pilots. This facilitates the derivation of µeq
and σ2

eq. Our numerical results show that the results apply even
for a smaller number of pilots and at low SNRs.

To derive CRLB, we first define the following terms:

∂g =
1√
Pp

∂

∂g

(√
PpFmHBRb(Ω, r)g

)
,

= FmHBRb(Ω, r), (14)

∂Ω =
1√
Ppg

∂

∂Ω

(√
PpFmHBRb(Ω, r)g

)
,

= FmHBR (b(Ω, r)⊙ xΩ) , (15)

∂r =
1√
Ppg

∂

∂r

(√
PpFmHBRb(Ω, r)g

)
,

= FmHBR (b(Ω, r)⊙ xr) , (16)

where the nth element of xΩ and xr are given by xΩ [n] =

j 2πλ (n − 1)d + j 2πrλ (n − 1)2d2Ω and xr [n] = j πλ
1−Ω2

r2 (n −
1)2d2, and ⊙ is the element-wise product.

From (3), we see that ∂g , ∂Ω, and ∂r characterize the
variations in the signal component of the received pilot vector
y with respect to g, Ω, and r, respectively. The following
lemma presents CCRLB(g,Ω, r).

Lemma 1. The CRLB for estimating g, Ω, and r is

CCRLB(g,Ω, r) =
σ2

AP

Pp

 βgg
g

2|g|2 βgΩ
g

2|g|2 βgr
g∗

2|g|2 β
∗
gΩ

1
4|g|2 βΩΩ

1
4|g|2 βΩr

g∗

2|g|2 β
∗
gr

1
4|g|2 β

∗
Ωr

1
4|g|2 βrr


T

,

(17)
where

βgg =
1

α

(
∥∂Ω∥22 ∥∂r∥22 − κ2o

)
, (18)

βgΩ =
1

α

(
∂H
g ∂rκo − ∂H

g ∂Ω ∥∂r∥22
)
, (19)

βgr =
1

α

(
∂H
g ∂Ωκo − ∂H

g ∂r ∥∂Ω∥22
)
, (20)

βΩΩ =
1

α

(
2 ∥∂g∥22 ∥∂r∥22 −

∣∣∣∂H
r ∂g

∣∣∣2) , (21)

βΩr =
1

α

(
∂H
g ∂r∂

H
Ω∂g − 2 ∥∂g∥22 κo

)
, (22)

βrr =
1

α

(
2 ∥∂g∥22 ∥∂Ω∥22 −

∣∣∣∂H
Ω∂g

∣∣∣2) . (23)

Here, κo ≜ ℜ
{
∂H
Ω∂r

}
and

α = ∥∂g∥22
(
∥∂Ω∥22 ∥∂r∥22 − κ2o

)
+
[
κoℜ

{
∂H
Ω∂g∂

H
g ∂r

}
−1

2

(∣∣∣∂H
g ∂r

∣∣∣2 ∥∂Ω∥22 +
∣∣∣∂H

g ∂Ω

∣∣∣2 ∥∂r∥22

)]
. (24)

Proof: The proof is given in Appendix A.
Insights: The terms ∂g , ∂Ω, and ∂r in (17) exhibit an

oscillatory behavior with respect to Ω due to the periodic
nature of the complex exponential in the near-field steering
vector b(Ω, r). As |Ω| approaches 1, ∂r decreases to 0
because the distance dependency of the near-field steering
vector vanishes. For large r, ∂g and ∂Ω saturate to a constant
value, while ∂r decreases towards 0.

It is evident from (17) that CCRLB(g,Ω, r) ∝ σ2
AP/Pp. It

depends on g, Ω, r, the RIS phase configuration matrix Fm,
and the number of pilots M , which affects the size of Fm.
Intuitively, as M increases, the CRLB decreases because more
observations are available for estimating the parameters. The
CRLB also depends on the AP-to-RIS channel gain hBR, and
the gradients of the steering vector b(Ω, r) with respect to Ω
and r through ∂Ω and ∂r, respectively. We numerically study
this dependence on the system parameters in Section V.

For ML estimation, C(g,Ω, r) → CCRLB(g,Ω, r) as M
increases. Furthermore, in this regime, when conditioned on
g, Ω, and r, we have el ∼ CN (0,CCRLB(g,Ω, r)) [14, (7.8)].
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Fig. 4. Gaussian probability paper test for eg , eΩ, and er for different values
of M (N = 100 and Pp |g|2 |ρBR|2/

(
Nσ2

AP

)
= 3 dB).

We now verify this. To do so, we use the Gaussian probability
paper test [30, Ch. 6]. It compares Q−1 (1− Fχ(x)) (referred
to as ‘Empirical’) with the line (x− µχ) /σχ, where µχ, σ2

χ,
and Fχ(·) are the empirical mean, variance, and empirical
cumulative distribution function of a random variable χ. The
closer the two curves are, the closer χ is to a Gaussian random
variable in distribution. For the simulations, we generate
104 noise realizations and set Ω = 0.5, r = 20 m, and
g = 0.1 + j0.3.

Fig. 4(a) shows the Gaussian paper test result for egR ≜
ℜ{eg} for two values of M . We see that the empirical
curve and

(
x− µegR

)
/σegR become closer as M increases.

Figs. 4(b), 4(c), and 4(d) show the corresponding results for
egI ≜ ℑ{eg}, eΩ, and er, respectively. In all these figures,
the two curves become closer to each other as M increases.
We also see that the Gaussianity applies for M = 35, which
is less than N = 100.

Next, we derive the CRLB CCRLB (hRU) for estimating the
RIS-to-user channel gain hRU.

Lemma 2. The CRLB for estimating hRU is given by

CCRLB (hRU) = JhRUCCRLB(g,Ω, r)J
H
hRU
, (25)

where JhRU = [b(Ω, r), hRU ⊙ xΩ, hRU ⊙ xr].

Proof: The proof is given in Appendix B.
The above results lead to the following novel approximation

of the cascaded channel gain heq

(
ϕ̂,Ω, r

)
as a function of

the errors in estimating the parameters.

Theorem 1. heq

(
ϕ̂,Ω, r

)
can be written as

heq

(
ϕ̂,Ω, r

)
=

|g|√
N

∥hBR∥1

Fig. 5. NMSE between heq

(
ϕ̂,Ω, r

)
and its approximation in (26) as a

function of Ppσ2
g |ρBR|2/

(
Nσ2

AP

)
for two values of N (M = N/2).

+
|g|√
N

N∑
n=1

|hBR [n]|ηT
n (g,Ω, r) el + o

(√
σ2

AP

Pp

)
, (26)

where ηn (g,Ω, r) ≜
[
g∗/

(
2 |g|2

)
, xΩ [n] , xr [n]

]T
. The

approximation error decreases to 0 as Pp/σ
2
AP → ∞ and

M → ∞.

Proof: The proof is given in Appendix C.
To understand (26), consider the case when g, Ω, and r are

perfectly known at the AP. In this case, heq
(
ϕopt) is given by

heq
(
ϕopt) = |g|√

N
∥hBR∥1 . (27)

Therefore, the second term in (26) captures the impact of
the improper RIS configuration, which is due to errors in
estimating hRU, on the cascaded channel gain. This term is
distance-dependent as the user is in the near-field of the RIS.

The expression in Theorem 1 is based on asymptotic ex-
pressions of Pp/σ

2
AP and M . The approximation relies on

the fact that C(g,Ω, r) → CCRLB(g,Ω, r) for large M . It
is evident from Fig. 4 and the results in Section V-A that
it holds for M ≥ 35. To understand its accuracy in the
non-asymptotic regime of pilot SNR, Fig. 5 plots the MSE
between heq

(
ϕ̂,Ω, r

)
and its approximation in (26), divided

by the average power of heq

(
ϕ̂,Ω, r

)
, as a function of

Ppσ
2
g |ρBR|2/

(
Nσ2

AP

)
. It does so for two values of N . The

plots are generated through Monte Carlo simulations that aver-
age over 104 realizations of noise and g. The NMSE decreases
as Ppσ

2
g |ρBR|2/

(
Nσ2

AP

)
or N increases. Furthermore, we see

that the NMSE is less than 10−2 when Ppσ
2
g |ρBR|2/

(
Nσ2

AP

)
exceeds 7 dB and 0 dB for N = 80 and 100, respectively.
These SNR values are reasonable in 5G systems. Also shown
is the 95% confidence interval. It becomes narrower when
Ppσ

2
g |ρBR|2/

(
Nσ2

AP

)
increases.

Using (26), we now present the expressions for µeq and σ2
eq.
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Lemma 3. In the asymptotic regime of large M and Pp/σ
2
AP,

the mean µeq and variance σ2
eq of heq

(
ϕ̂,Ω, r

)
are given by

µeq =

√
πσ2

g

4N
∥hBR∥1 , (28)

σ2
eq =

(
1− π

4

) σ2
g

N
∥hBR∥21

+
σ2

AP

PpN

N∑
n=1

N∑
m=1

|hBR [n]| |hBR [m]| δnm, (29)

where

δnm =
βgg
4

+
π2d2

λ2
(m− 1) (n− 1)

× (ξn (Ω, r) [βΩΩξm (Ω, r) + β∗
Ωrψm (Ω, r)]

+ψn (Ω, r) [βΩrξm (Ω, r) + βrrψm (Ω, r)]) , (30)

ξn(Ω, r) = 1 + Ωd(n−1)
r , and ψn(Ω, r) =

(1−Ω2)(n−1)d
2r2 .

Proof: The proof is given in Appendix D.
Insights: When g, Ω, and r are perfectly known at the AP,

we can show from (27) that σ2
eq = (1− π/4)σ2

g ∥hBR∥21 /N .
Therefore, the second term in (29) captures the effect of the
estimation errors in g, Ω, and r. It depends on Pp/σ

2
AP, hBR,

and CCRLB(g,Ω, r) (through the term σ2
APδnm/Pp).

The above result yields the following insight about the
beamfocusing gain.

Corollary 1. The beamfocusing gain GB is given by

GB = E
[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2] = σ2
g

N
∥hBR∥21

+
σ2

AP

PpN

N∑
n=1

N∑
m=1

|hBR [n]| |hBR [m]| δnm. (31)

Proof: The proof follows from (62) in Appendix D.
The first term in (31) is the beamfocusing gain when g,

Ω, and r are known at the AP. The second term captures the
impact of the errors in estimating g, Ω, and r.

Substituting (28) and (29) in (13) yields the expression for
ĥeq

(
ϕ̂; Ω, r

)
. As mentioned, the user employs ĥeq

(
ϕ̂; Ω̂, r̂

)
as the cascaded channel gain estimate.

C. Extensions and Open Problems

In the following, we discuss how the proposed parametric
estimator can be extended to other system models.

1) Multi-cluster Channel Model: When the RIS-to-user
channel has Q clusters, then hRU =

∑Q
q=1 b (Ωq, rq) gq ,

where gq , Ωq , and rq are the complex gain, directional
cosine, and distance for the qth cluster, respectively. Then,
we can show that the estimate ĝq of gq , for 1 ≤ q ≤ Q,
is given by

ĝq =

(
yHFmHBRb

(
Ω̂q, r̂q

))∗
√
Pptr

(
A
(
Ω̂, r̂

)
AH

(
Ω̂, r̂

)) , (32)

where A (Ω, r) = FmHBR [b (Ω1, r1) . . .b (ΩQ, rQ)],

Ω̂ =
[
Ω̂1, . . . , Ω̂Q

]T
, and r̂ = [r̂1, . . . , r̂Q]

T . Here Ω̂

and r̂ are the estimates of Ω = [Ω1, . . . ,ΩQ]
T and

r = [r1, . . . , rQ]
T . They are given by(

Ω̂, r̂
)

= argmax
Ωq∈[−1,1],
rq≥rmax,
q∈{1,...,Q}


Q∑

q=1

∣∣yHFmHBRb (Ωq, rq)
∣∣2

tr (A (Ω, r)AH (Ω, r))

 . (33)

For Q = 1, the above estimator reduces to that in (10)
and (11). This estimator maximizes a lower bound on
the log-likelihood function. The bound is based on
the following inequality: tr

(
AH (Ω, r)A (Ω, r)ggH

)
≤

tr
(
AH (Ω, r)A (Ω, r)

)
∥g∥22 [31, Sec. 7.2].

2) Uniform Planar Array (UPA) RIS: When the elements of
the RIS are arranged as a UPA, four parameters, namely
azimuth AoA, elevation AoA, distance, and complex
gain need to be estimated. As shown in Section V, the
proposed parametric ML estimator can be easily extended
to a UPA RIS.

3) Multi-antenna AP: For an AP with NAP antennas, let
HAR ∈ CN×NAP denote the AP-to-RIS channel gain.
Then, the uplink pilot vector y ∈ CMNAP×1 in (3)
can be shown to be y =

√
PpGb(Ω, r)g + n, where

G = [diag (ϕ1)HAR, . . . , diag (ϕM )HAR]
T . The para-

metric estimator to obtain ĝ, Ω̂, and r̂ can be obtained
by replacing FmHBR by G in (10) and (11).

4) Multiple Users: The users can send pilots in orthogonal
time-frequency resources, as is done in far-field-based
systems. The proposed estimator in (10) and (11) can
be used to estimate the parameters and the channel of
each user.

While our approach does extend to the above models, the
following new challenges arise and lead to interesting open
problems. With Q ≥ 2 clusters, we need to invert a 3Q×3Q-
dimensional Fisher information matrix to obtain CRLB. Sim-
ilarly, for a UPA RIS, we need to invert a 4× 4 Fisher infor-
mation matrix. This challenge can make the CRLB analysis
and the subsequent LMMSE estimation and achievable rate
analysis intractable. When the AP has multiple antennas, it
needs to jointly optimize the transmit precoding vector and
the RIS configuration to maximize the achievable rate at the
user. However, solutions to such optimization problems are
known only numerically in the literature [32]–[34]. Therefore,
characterizing the impact of noisy estimates on the achievable
rate becomes analytically challenging.

IV. ACHIEVABLE RATE AND OPTIMAL POWER
ALLOCATION

We now develop expressions for the achievable rate and op-
timal power allocation. In principle, these need to be obtained
considering the estimation error ĥeq

(
ϕ̂; Ω̂, r̂

)
−heq

(
ϕ̂,Ω, r

)
.

However, due to the underlying intractability, we first derive
the rate and optimal power allocation using ĥeq

(
ϕ̂; Ω, r

)
and

then replace Ω and r by their estimates. We assess the efficacy
of this approximation in Section V-B.
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Let eeq ≜ heq

(
ϕ̂,Ω, r

)
− ĥeq

(
ϕ̂; Ω, r

)
denote the error in

estimating the cascaded channel gain. Then, yd in (7) equals

yd = ĥeq

(
ϕ̂; Ω, r

)
xd + eeqxd + nd. (34)

The term eeqxd + nd captures the net effect of the estimation
error and the noise.

Theorem 2. The achievable rate R is given by

R =

(
1− M + 1

Tc

)
× E

[
log2

(
1 + Γeff (Pp, Pc, Pd)

∣∣∣h̃eq

(
ϕ̂
)∣∣∣2)] , (35)

where

Γeff (Pp, Pc, Pd) =
Pd

[
|µeq|2

(
Pcσ

2
eq + σ2

u

)
+ Pcσ

4
eq

]
(Pd + Pc)σ2

eqσ
2
u + σ4

u

, (36)

h̃eq

(
ϕ̂
)
=

(
|µeq|2+

Pcσ
4
eq

Pcσ2
eq + σ2

u

)− 1
2

ĥeq

(
ϕ̂; Ω, r

)
.

(37)

Proof: The proof is given in Appendix E.
The prelog term (1− [M + 1] /Tc) in (35) accounts for the

time spent on all the pilot transmissions.3

A. Optimal Power Allocation

In (35), R is written in terms of a unit power random
variable h̃eq

(
ϕ̂
)

. One subtlety, which makes it difficult to
directly optimize the rate expression in (35), is that the
probability distribution of h̃eq

(
ϕ̂
)

still depends on Pp and
Pc. However, as we show below, this dependence disappears
for large Ppσ

2
g/σ

2
AP and Pcσ

2
g/σ

2
u.

Corollary 2. For large M , Ppσ
2
g/σ

2
AP, and Pcσ

2
g/σ

2
u, R→ R̃,

where

R̃ ≜

(
1− M + 1

Tc

)
E

[
log2

(
1 + Γeff (Pp, Pc, Pd)

|g|2

σ2
g

)]
.

(38)

Proof: The proof is given in Appendix F.
A key point to note is that in (38), |g|2/σ2

g is a unit
mean exponential random variable, whose distribution is not a
function of Pp, Pc, and Pd. Hence, maximizing R̃ is equivalent
to maximizing Γeff (Pp, Pc, Pd), which we shall refer to as
the deterministic effective SINR. We maximize it under the
following constraints:

3Eq. (35) is the achievable rate when E
[
eeq| ĥeq

(
ϕ̂; Ω, r

)]
= 0 [35].

Since ĥeq

(
ϕ̂; Ω, r

)
is the LMMSE estimate of heq

(
ϕ̂,Ω, r

)
, this condition

would be satisfied when heq

(
ϕ̂,Ω, r

)
is a complex Gaussian random vari-

able. However, from (26), heq

(
ϕ̂,Ω, r

)
is not a complex Gaussian random

variable in our system model. Hence, (35) is an approximate expression for
the achievable rate. The approximation, which is widely used in literature,
makes the problem tractable and yields valuable insights about the impact of
noisy channel estimates of hRU and heq

(
ϕ̂,Ω, r

)
on the rate and the power

allocation.

1) Energy Budget at the User: The energy consumed by
the user in the M uplink pilot transmissions of the RIS
configuration estimation step with symbol duration Ts is
MPpTs. It should not exceed the total energy budget EUE
available at the user, i.e., MPp ≤ EUE/Ts. This also
implies a total power constraint on the user.

2) Energy Budget at the AP: The energy consumed by
the AP in the downlink pilot and data transmissions
is (Pc + (Tc −M − 1)Pd)Ts. Let EAP be the available
energy budget at the AP. Hence, Pc+(Tc −M − 1)Pd ≤
EAP/Ts. This also implies a total power constraint on the
AP.

Therefore, the optimization problem can be stated as

Q : max
Pp,Pc,Pd

{Γeff (Pp, Pc, Pd)} , (39a)

s.t. MPp ≤ EUE/Ts, (39b)
Pc + (Tc −M − 1)Pd ≤ EAP/Ts, (39c)
Pp ≥ 0, Pd ≥ 0, Pc ≥ 0. (39d)

The optimal powers P ⋆
p , P ⋆

c (Ω, r), and P ⋆
d (Ω, r), when Ω

and r are known, are as follows.

Theorem 3. The optimal power allocation that solves Q is

P ⋆
p =

EUE

TsM
, (40)

P ⋆
d (Ω, r) = ϱ−

√
ϱ

Tc −M − 1

√
ϱ+

σ2
u

|µeq|2 + σ2
eq

, (41)

P ⋆
c (Ω, r) =

EAP

Ts
− (Tc −M − 1)P ⋆

d (Ω, r) , (42)

where ϱ =
(EAP/Ts)σ

2
eq+σ2

u

σ2
eq(Tc−M−2) .

Proof: The proof is given in Appendix G.
Equation (40) implies that the M uplink pilots are allocated

equal powers. The optimal values of P ⋆
d (Ω, r) and P ⋆

c (Ω, r)
in (41) and (42) depend on EAP and EUE. They also depend
on µeq and σ2

eq, which depend on the uplink pilot power.

Since the AP knows only Ω̂ and r̂, it uses P ⋆
d

(
Ω̂, r̂

)
and

P ⋆
c

(
Ω̂, r̂

)
for the downlink pilot and data transmissions in

practice.

V. SIMULATION RESULTS

We now present Monte Carlo results to quantify the de-
pendence of the achievable rate on the system parameters
and assess the accuracy of our analytical approach. For
the AP-to-RIS channel, we set hBR =

√
NρBRb (Ωϕ, rϕ).

The simulation parameters are given in Table I. The Fraun-
hofer distance Rf turns out to be 50 m. We shall re-
fer to ΥAP ≜ EAPσ

2
g |ρBR|2/

(
TsNσ

2
u

)
and ΥUE ≜

EUEσ
2
g |ρBR|2/

(
TsNσ

2
AP

)
as the normalized energy budget at

the AP and the user, respectively. ΥUE and ΥAP physically
correspond the uplink and downlink fading-average energy
budget-to-noise-ratio per RIS element, respectively.4 We use

4In Table I, ΥAP = −5 dB implies that the AP’s total power EAP/Ts is
20.3 dBm, which is apportioned between the downlink pilot and data as per
Theorem 3.
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Fig. 6. NMSE in estimating hRU for the near-field and far-field models as a function of M , r, and Ω (ΥUE = 5 dB).

TABLE I
SIMULATION PARAMETERS

Parameter Notation Value
Pathloss exponent ν 2.7
Reference distance rref 1 m
Signal power attenuation at rref αref −20 dB
Scatterer cluster-to-user distance r1 10 m
RIS-to-scatterer cluster distance r 20 m
AP-to-RIS distance rϕ 10 m
RIS-to-user directional cosine Ω 0.5
AP-to-RIS directional cosine Ωϕ 0.2
Noise variance at user and AP σ2

u, σ2
AP −103.8 dBm

Carrier frequency fc 30 GHz
RIS inter-element spacing d λ/2

AP-to-RIS channel pathloss |ρBR|2 −27 dB
Normalized energy budget at AP ΥAP −5 dB
Number of RIS elements N 100
Distance grid size Gr 7
Maximum distance for grid-search rmax 200 m

M uniformly spaced N ×N DFT matrix columns in the RIS
configuration estimation step. We average over 104 realizations
of the channel and noise.

In Section V-A, we study the NMSE in estimating hRU. In
Section V-B, we study its implications on the achievable rate
and the optimal number of pilots and their powers.

A. NMSE

Fig. 6(a) plots the NMSE E
[
||hRU − ĥRU||22

]
/E
[
||hRU||22

]
in estimating hRU as a function of the number of pilots
M . We compare the NMSE from parametric estimation for
the near-field and far-field models. For both models, the
NMSE decreases as M increases and then reaches a floor
at M = 35. The floor occurs because P ⋆

p decreases as M
increases (see (40)). The floor for the far-field model, which
neglects the dependence of hRU on r, is 7.14× higher than
that for the near-field model. An important observation is
that the number of pilots required to reach the floor is more
than the number of parameters to be estimated. However, it
is still significantly smaller than N . The NMSE can be very
large for small M . Thus, the parametric estimates are sensitive
to noise for small M . Also shown is the normalized CRLB

tr (CCRLB (hRU))/E
[
∥hRU∥22

]
. The near-field model reaches it

for M ≥ 35.
Fig. 6(b) plots the NMSE as a function of the RIS-to-

scatterer cluster distance r.5 For r < Rf , the NMSE of the
far-field model is significantly higher than that of the near-
field model. The two NMSEs approach each other once r
exceeds Rf . Also shown is the normalized CRLB. The CRLB
marginally increases when r increases from rmin = 2.2 m to
15 m. This is an artifact of our using equispaced odd-numbered
columns of the DFT matrix as RIS configurations during
uplink pilot transmissions. However, the CRLB decreases for
r > 15 m. Our approach reaches the CRLB for r > 30 m.

Fig. 6(c) plots the NMSE as a function of Ω for different
values of r. For the near-field model, the NMSE is insensitive
to changes in r and Ω. However, for the far-field model, the
NMSE initially increases, attains a peak at Ω = 0, and then
decreases. The peak occurs at Ω = 0 because the second,
distance-dependent term in (1) dominates the first, far-field
term the most at Ω = 0. By the same logic, r has a negligible
impact on the near-field steering vector when |Ω| is close to
1. Hence, in this regime, the NMSEs of the near-field and the
far-field models are comparable. The NMSEs of both models
become closer as r increases. The NMSE of the near-field
model is close to the normalized CRLB for all Ω.

B. Optimal Power Allocation and Pilots, and Benchmarking

Fig. 7 plots the ratio P ⋆
c /P

⋆
d (in dB) of the optimal downlink

pilot and data powers as a function of N for different values
of ΥAP. We see that P ⋆

c /P
⋆
d ≫ 1. Thus, substantially more

power should be allocated to the pilot symbol than a data
symbol in the near-field. As N increases, P ⋆

c /P
⋆
d decreases.

This is because, as N increases, the estimation errors in each
entry in hRU accumulate and affect heq

(
ϕ̂,Ω, r

)
. Hence,

to improve the rate, the data power P ⋆
d increases. As ΥAP

increases, P ⋆
c /P

⋆
d decreases. This is because the smaller

cascaded channel gain estimation errors enable more power
to be allocated for data transmission.

5We shall see in Section V-B that the optimal number of pilots is in the
range of [0.3N, 0.5N ]. Hence, we set M = N/2 in this figure.
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Fig. 7. Ratio of optimal downlink pilot power to data power P ⋆
c /P

⋆
d as a

function of N (ΥUE = −5 dB, Ω = 0.5, and M = 50).

Next, we benchmark our proposed scheme, which we refer
to as ‘Parametric near-field ML (Ω̂ and r̂)’, with the following
schemes:

1) Parametric Near-field ML (Ω and r): Parametric near-
field estimation is used. The cascaded channel gain esti-
mation and the optimal power allocation are done using
true values of Ω and r.

2) Parametric Near-field ML (Ω̂ and r̂) with Equal Power
Allocation (EPA): Near-field parametric estimation is
used. However, equal power is allocated to the downlink
data and pilots. Thus, Pd = Pc = EAP/ (Ts(Tc −M)).

3) Parametric Far-field ML [7]: The parametric channel
estimation is designed assuming the far-field model. Thus,
only Ω and g are estimated and the estimate Ω̂ is used for
cascaded channel gain estimation and power allocation.

4) Parametric Far-field ML with EPA: Here, the above far-
field parametric channel estimation is used except that the
downlink pilot and data powers are equal.

5) Non-parametric ML: The ML estimate ĥRU of the RIS-to-
user channel gain is given by ĥRU = (FmHBR)

†y/
√
Pp,

where (·)† is the Moore-Penrose inverse. Here, M ≥ N .
6) Near-field Codebook [17]: First, M1 = ⌈M/2⌉ pi-

lots are sent by the user to enable the AP to es-
timate the codeword that is closest to b(Ω, r). For
the mth pilot, the RIS configuration is set as ϕm =√
Nh∗

BR⊙vBR⊙c∗m, where vBR [n] ≜ |hBR [n]|−1, cm =
b(Ωk, rks), and ⊙ is the element-wise product. Here,
Ωk = (2k − 1−N)λ/ (dN), rks = Z∆(1 − Ω2

k)/s,
∀k ∈ {0, 1, . . . , N − 1} and s ∈ {0, 1, . . . , Smax − 1},
Z∆ = 2d2N2/

(
λ(1.2)2

)
, and m = Smaxk + s + 1.

We set the Smax = 16, which is the value used in [17].
However, we have seen from extensive simulations that
the rate is insensitive to the choice of Smax. And, W =
[c1, c2, . . . , cNSmax

] is the near-field codebook matrix. Its
codewords are obtained by uniformly sampling Ω over the
interval [−1, 1] and r−1 over the interval [0, 1/rmin]. The
AP selects the codeword cm⋆ with the largest received
signal strength. Next, the AP sends M2 =M−M1 pilots
and sets b(Ω, r) = cm⋆ for the user to obtain an LMMSE

-25 -20 -10 0 10 20 30

10
-2

10
-1

10
0

Fig. 8. NMSE in estimating heq
(
ϕopt) as a function of ΥUE for different

benchmarking schemes (Ω = 0.5).

estimate ĝ of g. Finally, the AP sets the RIS configuration
as ϕ̂ = e−j∠ĝϕm⋆ .

7) Near-field OMP [17], [20]: hRU is written as hRU = Wz,
where W is defined above and z is a one-sparse vector
of the complex gain. We implement the OMP algorithm
with

√
PpFmHBRW as the sensing matrix and y in (3)

as the measurement vector to obtain ẑ. Then, ĥRU = Wẑ.

The pilot and data powers are set as per Theorem 3 for
all schemes except EPA. For all the schemes, except the
proposed scheme for which we have analytical expressions, we
empirically measure µeq and σ2

eq and use them for estimating

heq

(
ϕ̂,Ω, r

)
and for power allocation.

Fig. 8 plots the NMSE
E
[
|heq

(
ϕopt)− ĥeq

(
ϕ̂; Ω̂, r̂

)
|2
]
/E
[
|heq

(
ϕopt) |2] in

estimating the cascaded channel gain heq
(
ϕopt) for all the

schemes. We set M = N/2 for all the schemes except the
non-parametric ML scheme, where M = N . Our proposed
scheme has a lower NMSE than all the schemes for ΥUE ≥ −2
dB. It is indistinguishable from the near-field scheme when Ω
and r are known. As ΥUE increases, its NMSE decreases and
equals the NMSE for the case when the AP perfectly knows
hRU. Here, only the noisy channel estimate of the cascaded
channel gain contributes to the NMSE, which, therefore, is
a horizontal line. The NMSE for the non-parametric ML
scheme also approaches the NMSE when the AP perfectly
knows hRU, but only for ΥUE ≥ 13 dB. For ΥUE < −2 dB,
the OMP scheme has a marginally smaller NMSE than
the proposed scheme, but it has a higher error floor. The
codebook scheme has the highest NMSE due to its limited
number of pilot transmissions.

Fig. 9 plots the achievable rate R of all the schemes as a
function of M . As M increases, the achievable rate initially
increases for all the schemes. This is because the errors in
estimating ĝ, Ω̂, and r̂ decrease. The achievable rates of all
the schemes decrease as M further increases because less time
is available for data transmission. For the non-parametric ML
scheme, we can show results only for M ≥ N . Its achievable
rate is maximum at M = 100 and decreases thereafter. The
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TABLE II
COMPARISONS OF DIFFERENT SCHEMES (ΥUE = 20 DB AND Ω = 0).

Scheme Complexity M⋆ R
(bits/s/Hz)

Near-field codebook O
(
M1 +M2

2 +N
)

100 0.58
Non-parametric ML O

(
N2M +M

)
100 1.96

Near-field OMP O (MNSmax) 35 1.81
Parametric far-field ML O

(
N2M +NM

)
35 1.71

Parametric far-field
ML with EPA 1.50

Parametric near-field
ML with EPA O

(
Gr

(
N2M +NM

))
35 1.64

Parametric near-field ML 2.25

achievable rate of the codebook-based scheme is very low for
M < 85 due to the coarse codebook it uses and the larger
estimation errors this begets. The optimal number of pilots
is 35 for the near-field parametric and far-field parametric
schemes with either optimal power allocation or EPA. This
is close to the value of M in Fig. 6(a) at which the MSE
in estimating hRU reaches a floor. The optimal rate of the
codebook-based scheme is 3.87 times lower than that of the
proposed scheme. The OMP algorithm also has a lower rate
than the proposed scheme. However, it has a higher rate than
all the other schemes, including near-field parametric ML with
EPA.

The proposed scheme outperforms all the benchmarking
schemes for all values of M . The far-field parametric ML
scheme has a lower rate, even when the powers are allocated
optimally. This is because it estimates only Ω but not r,
which leads to a larger estimation error. Near-field and far-
field EPA have lower rates due to their sub-optimal power
allocations. The non-parametric ML scheme has a lower rate
due to its larger training overhead. The relative performance
of these benchmarking schemes is also affected by the chosen
simulation parameters. We compare the complexity, optimal
number of pilots, and rate of the schemes in Table II.

We now assess the optimality of the power allocation given
in Theorem 3. We also assess the applicability of our insights
when the RIS is a 10×10 UPA with N = 100 elements. For a
UPA RIS, let ĝ, Ω̂, r̂, and ω̂ denote the parametric estimates of
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Fig. 10. Achievable rate for ULA and UPA RIS as a function of
Pdσ

2
g |ρBR|2/

(
Nσ2

u

)
(M = N/2 and Ω = 0.5). The rate of the optimal

power allocation obtained from Theorem 3 is shown as a circle (‘◦’).

the complex gain g, the azimuth directional cosine Ω, the radial
distance r, and the elevation directional cosine ω, respectively.
They are given by(

Ω̂, ω̂, r̂
)
= argmax

Ω,ω∈[−1,1],
r≥rmin

{∣∣yHFmHBRaU (Ω, ω, r)
∣∣2

∥FmHBRaU (Ω, ω, r)∥22

}
, (43)

ĝ =

(
yHFmHBRaU

(
Ω̂, ω̂, r̂

))∗
√
Pp

∥∥∥FmHBRaU

(
Ω̂, ω̂, r̂

)∥∥∥2
2

, (44)

where aU (Ω, ω, r) is the near-field UPA steering vector [6].
Similar to the ULA RIS, we solve (43) numerically to ob-
tain Ω̂, r̂, and ω̂. We use a three-dimensional grid of size
GΩ ×Gr ×Gω , where GΩ, Gr, and Gω are the grid sizes for
Ω ∈ [−1, 1], r ∈ [rmin, rmax], and, ω ∈ [−1, 1], respectively.
We set GΩ = Gω = 10 and Gr = 7. For the UPA RIS,
to estimate the cascaded channel gain in (13) and the power
allocation in Theorem 3, we obtain µeq and σ2

eq from Monte
Carlo simulations with 104 realizations of g and noise. We set
Ω = ω = 0.5 and r = 20 m.

Fig. 10(a) plots the achievable rate for a ULA RIS
as a function of the normalized data power-to-noise ratio
Pdσ

2
g |ρBR|2/

(
Nσ2

u

)
for two values of ΥUE. Fig. 10(b) plots

the respective results for the UPA RIS. The achievable rate
trends for the UPA and ULA RISs are qualitatively similar.
In both figures, as Pdσ

2
g |ρBR|2/

(
Nσ2

u

)
increases, the rate ini-

tially increases as the pilot-to-noise ratio increases. However,
the rate then decreases. This is because less power is left for
the downlink pilot, which leads to larger channel estimation
errors and a lower SINR. In both figures, the achievable rate
increases as ΥUE increases because the MSE in estimating hRU
decreases. The power allocation obtained from Theorem 3 is
within 1% of that obtained from simulations.

VI. CONCLUSIONS

We studied a parametric estimation scheme when the user
was in the near-field of the RIS. We analyzed the impact of the
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errors in estimating the RIS-to-user channel gain parameters,
which were used to estimate the RIS-to-user channel gain
and set the RIS configuration, and the cascaded channel gain
on the achievable rate. We did this with the help of novel
expressions for the CRLB on the estimation error of the
directional cosine, the complex gain, and the distance, and
a novel, tractable approximation for the cascaded channel
gain. We also obtained the CRLB of the RIS-to-user channel
gain. We presented an expression for the achievable rate in
terms of the deterministic effective SINR, which captured the
cumulative effect of the estimation errors on the RIS phase
configuration and on coherent data demodulation. This led to
insightful closed-form expressions for the optimal data and
pilot powers.

While our analysis used asymptotic tools, our results applied
for normalized energy budgets as small as −5 dB. The optimal
number of pilots was less than the number of RIS elements,
but was more than the number of estimated parameters. Fur-
thermore, the optimal pilot power was more than the optimal
data power. The proposed scheme had a higher achievable rate
and a lower NMSE than the far-field, codebook-based, non-
parametric, OMP, and EPA schemes.

An interesting avenue for future work is generalizing our
analysis to compressed sensing algorithms for the near-field
multi-cluster-based channel model. It is also of interest to
analyze the impact of hardware imperfections and phase noise
at the RIS and the impact of errors in estimating the AP-to-RIS
channel gain.

APPENDIX

A. Proof of Lemma 1

It can be easily checked from (8) that the regularity
conditions Ey

[
∂
∂u ln (f (y| g,Ω, r))

∣∣ g,Ω, r] = 0, ∀u ∈
{g,Ω, r} , for the existence of CRLB are satisfied. The CRLB
CCRLB(g,Ω, r) is given by J−1, where J is the Fisher infor-
mation matrix and is given by

J =

Jgg JgΩ Jgr
J∗
gΩ JΩΩ JΩr

J∗
gr JΩr Jrr

 . (45)

Here, for u, v ∈ {g,Ω, r}, we have

Juv ≜ Ey

[(
∂

∂u
ln (f (y| g,Ω, r))

)
×
(
∂

∂v
ln (f (y| g,Ω, r))

)∗∣∣∣∣ g,Ω, r] . (46)

From (8), we can show that

∂

∂g
ln (f (y| g,Ω, r)) = 1

σ2
AP

(√
Ppy

H∂g

−Ppg
∗ ∥∂g∥22

)
, (47)

∂

∂Ω
ln (f (y| g,Ω, r)) = 2

σ2
AP

ℜ
{
g
√
Ppy

H∂Ω

−Pp |g|2 ∂H
g ∂Ω

}
, (48)

∂

∂r
ln (f (y| g,Ω, r)) = 2

σ2
AP

ℜ
{
gyH∂r

−Pp |g|2 ∂H
g ∂r

}
. (49)

Substituting (47), (48), and (49) in (46), and finding J−1

yields (17). We skip the algebraic details.

B. Brief Proof of Lemma 2

CCRLB (hRU) ∈ CN×N of hRU = gb(Ω, r) can be written
in terms of CCRLB(g,Ω, r) as follows [14, (3.30)]:

CCRLB (hRU) = JhRUCCRLB(g,Ω, r)J
H
hRU
, (50)

where JhRU ≜
[
∂hRU
∂g , ∂hRU

∂Ω , ∂hRU
∂r

]
∈ CN×3. Using hRU =

gb(Ω, r), it can be shown that ∂hRU
∂g = b(Ω, r), ∂hRU

∂Ω =

gb(Ω, r)⊙ xΩ, and ∂hRU
∂r = gb(Ω, r)⊙ xr. Substituting these

and hRU = gb(Ω, r) yields JhRU in (25).

C. Proof of Theorem 1

Let ζn
(
ĝ, Ω̂, r̂

)
≜ ĥ∗

RU[n]

|ĥRU[n]| =
ĝ∗

|ĝ|
√
Nb∗

(
Ω̂, r̂

)
[n]. Its first-

order Taylor series expansion is given by

ζn

(
ĝ, Ω̂, r̂

)
= ζn (g,Ω, r)−∇ζTn (g,Ω, r) el + δrem, (51)

where δrem is the remainder term and ∇ζn (g,Ω, r) is the
gradient of ζn

(
ĝ, Ω̂, r̂

)
evaluated at g, Ω, and r.

First we evaluate ∇ζn (g,Ω, r). From (1), we get

∂

∂ĝ
ζn

(
ĝ, Ω̂, r̂

)
= − (ĝ∗)

2

2 |ĝ|3
√
Nb∗

(
Ω̂, r̂

)
[n] , (52)

∂

∂Ω̂
ζn

(
ĝ, Ω̂, r̂

)
= − ĝ∗

|ĝ|
√
Nb∗

(
Ω̂, r̂

)
[n]

×

(
j
2π (n− 1)

λ

[
d+

Ω̂

r̂
(n− 1) d2

])
, (53)

∂

∂r̂
ζn

(
ĝ, Ω̂, r̂

)
= − ĝ∗

|ĝ|
√
Nb∗

(
Ω̂, r̂

)
[n]

×
(
j
π

λ

[
1

r̂2
(n− 1)

2
d2
(
1− Ω̂2

)])
. (54)

Combining (52), (53), and (54), we get

∇ζn (g,Ω, r) = − g∗

|g|
√
Nb∗ (Ω, r) [n]ηn (g,Ω, r) , (55)

where ηn (g,Ω, r) ≜
[

g∗

2|g|2 , xΩ [n] , xr [n]
]T
.

Next, we evaluate the remainder term in (51) given by
δrem = 1

2e
T
l ∇2ζn (g

′,Ω′, r′) el. Here, ∇2ζn (g
′,Ω′, r′) is

the Hessian of ζn

(
ĝ, Ω̂, r̂

)
evaluated at g′, Ω′, and r′.

Conditioned on g, Ω, and r, el ∼ CN (0,CCRLB(g,Ω, r)).
From (17), we get CCRLB(g,Ω, r) → 0 as Pp/σ

2
AP → ∞.

Therefore, el → 0 as Pp/σ
2
AP → ∞ and δrem decays as

o
(
σAP/

√
Pp

)
.

Substituting (51) and (55) in (5) and simplifying yields (26).

D. Proof of Lemma 3

We derive expressions for µeq and σ2
eq separately below.
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a) µeq: From the law of iterated expectations, we have
µeq = E

[
Eel

[
heq

(
ϕ̂,Ω, r

)∣∣∣ g,Ω, r]] . From (26), we get

Eel

[
heq

(
ϕ̂,Ω, r

)∣∣∣ g,Ω, r] = |g|√
N

∥hBR∥1

+
|g|√
N

N∑
n=1

|hBR [n]|ηT
n (g,Ω, r)E [el| g,Ω, r] . (56)

Since E [el| g,Ω, r] = 0, we get µeq = E [|g|] ∥hBR∥1 /
√
N .

Since g ∼ CN
(
0, σ2

g

)
, |g| is Rayleigh distributed with mean

E [|g|] =
√

0.25πσ2
g . Substituting this in µeq yields (28).

b) σ2
eq: We can write the second moment of

heq

(
ϕ̂,Ω, r

)
as

E
[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2] = E
[
Eel

[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2∣∣∣∣ g,Ω, r]] .
(57)

As above, after substituting (26), we get

Eel

[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2∣∣∣∣ g,Ω, r] = |g|2

N
∥hBR∥21

+
2 |g|2

N
∥hBR∥1

N∑
n=1

|hBR [n]| ℜ
{
ηT
n (g,Ω, r)Eel

[el| g,Ω, r]
}

+
|g|2

N

N∑
n=1

N∑
m=1

|hBR [n]| |hBR [m]|

× ηT
n (g,Ω, r)Eel

[
ele

H
l

∣∣ g,Ω, r]η∗
m (g,Ω, r) . (58)

For large M , conditioned on g, Ω, and r, we know that el ∼
CN (0,CCRLB(g,Ω, r)). Hence,

E
[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2∣∣∣∣ g,Ω, r]=|g|2

N
∥hBR∥21+

|g|2

N

N∑
n,m=1

|hBR [n]|

× |hBR [m]|ηT
n (g,Ω, r)CCRLB(g,Ω, r)η

∗
m (g,Ω, r) . (59)

Substituting (59) in (57), we get

E
[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2] = σ2
g

N
∥hBR∥21+

N∑
n,m=1

|hBR [n]| |hBR [m]|

× 1

N
E
[
|g|2 ηT

n (g,Ω, r)CCRLB(g,Ω, r)η
∗
m (g,Ω, r)

]
. (60)

From (17), the last line in (60) can be shown to reduce to

E
[
|g|2 ηT

n (g,Ω, r)CCRLB(g,Ω, r)η
∗
m (g,Ω, r)

]
=
σ2

AP

Pp

(
δnm+E

[
ej2θg

] jπ
λ
γn−E

[
e−j2θg

] jπ
λ
γ∗m

)
, (61)

where θg = ∠g, δnm is given in (30), and γm =
βgΩ(m−1)d

2

(
1 + Ω

r d (m− 1)
)
+

βgr(1−Ω2)(m−1)2d2

4r2 .
As g is circularly symmetric, θg is uniformly distributed

over [−π, π] and E
[
e±j2θg

]
= 0. Substituting in (60), we get

E
[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2] = σ2
g

N
∥hBR∥21

+
σ2

AP

PpN

N∑
n=1

N∑
m=1

|hBR [n]| |hBR [m]| δnm. (62)

Substituting (28) and (62) in the formula σ2
eq =

E
[∣∣∣heq

(
ϕ̂,Ω, r

)∣∣∣2]− |µeq|2 yields (29).

E. Proof of Theorem 2

The achievable rate is given by [35, (15)]

R =

(
1− M + 1

Tc

)
E

log2
1 +

Pd

∣∣∣ĥeq

(
ϕ̂; Ω, r

)∣∣∣2
PdE

[
|eeq|2

]
+ σ2

u


 .
(63)

Here, the term (1−[M + 1] /Tc) arises as Tc−M −1 symbol
durations out of Tc symbol durations are available for data
transmission.

Let Γeff (Pp, Pc, Pd) ≜
PdE

[
|ĥeq(ϕ̂;Ω,r)|2

]
PdE[|eeq|2]+σ2

u

and h̃eq

(
ϕ̂
)

=

ĥeq(ϕ̂;Ω,r)√
E
[
|ĥeq(ϕ̂;Ω,r)|2

] . Substituting these in (63) yields (35).

From [14, (12.8)], we get

E
[
|eeq|2

]
= σ2

eq −
Pcσ

4
eq

Pcσ2
eq + σ2

u

=
σ2

eqσ
2
u

Pcσ2
eq + σ2

u

. (64)

And, from (13), we get

E
[∣∣∣ĥeq

(
ϕ̂; Ω, r

)∣∣∣2] = |µeq|2 +
Pcσ

4
eq

Pcσ2
eq + σ2

u

. (65)

Substituting (64) and (65) in Γeff (Pp, Pc, Pd) yields (36).

F. Proof of Corollary 2

Let eeff ≜ h̃eq

(
ϕ̂
)
− heq(ϕopt)√

E[|heq(ϕopt)|2]
. Then, R in (35) is

R =

(
1− M + 1

Tc

)
E
[
log2 (1 + Γeff (Pp, Pc, Pd)

×
∣∣∣∣(E [∣∣heq

(
ϕopt)∣∣2])− 1

2

heq
(
ϕopt)+ eeff

∣∣∣∣2
)]

. (66)

We first derive an expression for E
[
|eeff|2

]
and characterize

its asymptotic behavior.

Lemma 4. E
[
|eeff|2

]
= o

(
σ2

AP/
(
Ppσ

2
g

))
for large Pcσ

2
g/σ

2
u

and Ppσ
2
g/σ

2
AP.

Proof: Substituting (37) in E
[
|eeff|2

]
, we get

E
[
|eeff|2

]
= 2−

2ℜ{ςeq}√
E
[∣∣heq

(
ϕopt)∣∣2]E [∣∣∣ĥeq

(
ϕ̂; Ω, r

)∣∣∣2] .
(67)

where ςeq = E
[
ĥ∗eq

(
ϕ̂; Ω, r

)
heq
(
ϕopt)]. From (6) and (13),

we can write ςeq as
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ςeq=E

heq
(
ϕopt)µ∗

eq−
µ∗

eqPcσ
2
eq

Pcσ2
eq+σ

2
u

+
Pcσ

2
eqh

∗
eq

(
ĥRU

)
Pcσ2

eq + σ2
u


+

√
Pcσ

2
eq

Pcσ2
eq + σ2

u

E
[
heq
(
ϕopt)n∗u] . (68)

From (27), E
[
heq
(
ϕopt)] = µeq. Since nu is zero-mean and is

independent of heq
(
ϕopt), E [heq

(
ϕopt)n∗u] = 0. Substituting

these in (68), we get

ςeq =
σ2
u |µeq|2 + Pcσ

2
eqE
[
heq
(
ϕopt)h∗eq

(
ĥRU

)]
Pcσ2

eq + σ2
u

. (69)

Using law of iterated expectations, we get

E
[
heq
(
ϕopt)h∗eq

(
ĥRU

)]
= E

[
Eel

[
heq
(
ϕopt)h∗eq

(
ĥRU

)∣∣∣ g,Ω, r]] . (70)

From (26) and (27), we have heq

(
ϕ̂,Ω, r

)
= heq

(
ϕopt) +

|g|√
N

∑N
n=1 hBR [n]ηT

n (g,Ω, r) el. Substituting this, we get

E
[
heq
(
ϕopt)h∗eq

(
ĥRU

)]
= E

[∣∣heq
(
ϕopt)∣∣2]+ E

[
|g|√
N

×heq
(
ϕopt) N∑

n=1

h∗
BR [n]ηH

n (g,Ω, r)Eel
[e∗l | g,Ω, r]

]
. (71)

Since Eel
[e∗l |g,Ω, r] = 0, (71) simplifies to

E
[
heq
(
ϕopt)h∗eq

(
ĥRU

)]
= E

[∣∣heq
(
ϕopt)∣∣2]. Substituting

this in (69) and simplifying yields

ςeq =
|µeq|2 σ2

u + Pcσ
2
eqE
[∣∣heq

(
ϕopt)∣∣2]

Pcσ2
eq + σ2

u

. (72)

Finally, substituting (72) in (67), we get

E
[
|eeff|2

]
=2−

2|µeq|2σ2
u

Pcσ2
eq+σ2

u
+

Pcσ
2
eqE

[
|heq(ϕopt)|2

]
Pcσ2

eq+σ2
u√

E
[∣∣heq

(
ϕopt)∣∣2]E [∣∣∣ĥeq

(
ϕ̂; Ω, r

)∣∣∣2] .
(73)

From (29), we can show for large Pcσ
2
g/σ

2
u and Ppσ

2
g/σ

2
AP

that σ2
u

Pcσ2
eq+σ2

u
→ 0 and

E
[
|heq(ϕopt)|2

]
√

E[|heq(ϕopt)|2]E
[
|ĥeq(ϕ̂;Ω,r)|2

] = 1 +

o
(
σ2

AP/
(
Ppσ

2
g

))
. Hence, E

[
|eeff|2

]
= o

(
σ2

AP/
(
Ppσ

2
g

))
.

Thus, as Ppσ
2
g/σ

2
AP and Pcσ

2
g/σ

2
u → ∞, E

[
|eeff|2

]
= 0.

Hence, eeff converges to 0 in the mean-squared sense. Mean-
squared convergence implies convergence in distribution [36,
Th. 7.2.3]. Let

a (x) ≜

(
1− M + 1

Tc

)
E
[
log2 (1 + Γeff (Pp, Pc, Pd)

×
∣∣∣∣(E [∣∣heq

(
ϕopt)∣∣2])− 1

2

heq
(
ϕopt)+ x

∣∣∣∣2
)]

. (74)

a (x) is a continuous function of x. Therefore us-
ing [36, Th. 7.2.18], a (eeff) → a (0) in distribution as
Ppσ

2
g/σ

2
AP and Pcσ

2
g/σ

2
u → ∞. Using the Jensen’s in-

equality and simplifying further, we can show that R =
E [a (eeff)] and R̃ = E [a (0)] are upper bounded by
(1− [M + 1] /Tc) log2 (1 + Γeff (Pp, Pc, Pd)). Hence, R →
R̃. Finally, substituting

heq(ϕopt)√
E[|heq(ϕopt)|2]

= g/σg in R̃

yields (38).

G. Proof of Theorem 3

At the optimal values, the constraints in (39b) and (39c)
must be met with equality. Therefore, the optimal user power
P ⋆
p is EUE/ (TsM) and P ⋆

c (Ω, r)+(Tc −M − 1)P ⋆
d (Ω, r) =

EAP/Ts. Substituting Pc = (EAP/Ts)− (Tc −M − 1)Pd and
simplifying, Γeff (Pd) in (39a) is given by

Γeff (Pd) =
Pdu1 − P 2

du2
u4 − Pdu3

, (75)

where u1 ≜ EAPσ
2
eq

(
|µeq|2 + σ2

eq

)
/Ts +

(
|µeq|2 σ2

u

)
, u2 ≜

(Tc −M − 1)σ2
eq

(
|µeq|2 + σ2

eq

)
, u3 ≜ (Tc −M − 2)σ2

eqσ
2
u,

and u4 ≜ σ2
u

(
(EAPσ

2
eq/Ts) + σ2

u

)
.

From (75), we can show that ∂Γeff(Pd)
∂Pd

=(
u2u3P

2
d − 2u2u4Pd + u1u4

)
/(u4 − Pdu3)

2. Hence, the
solution of ∂Γeff(Pd)

∂Pd
= 0 is

P ⋆
d (Ω, r) =

u2u4 ±
√
u22u

2
4 − u1u2u3u4

u2u3
. (76)

Among the two possibilities, the second deriva-
tive of Γeff (Pd) evaluated at P ⋆

d (Ω, r) =(
u2u4 +

√
u22u

2
4 − u1u2u3u4

)
/ (u2u3) is positive, which

rules out this root as the optimal solution. Hence,
P ⋆
d (Ω, r) =

(
u2u4 −

√
u22u

2
4 − u1u2u3u4

)
/ (u2u3).

Substituting the expressions of u1, u2, u3, and u4 in this
yields (41).
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[21] F. Zhang, M.-M. Zhao, M. Lei, and M. Zhao, “Joint power allocation
and phase-shift design for RIS-aided cooperative near-field localization,”
in Proc. Intl. Symp. Wireless Commun. Syst., Oct. 2022, pp. 1–6.

[22] J. An, C. Xu, L. Wang, Y. Liu, L. Gan, and L. Hanzo, “Joint training
of the superimposed direct and reflected links in reconfigurable intel-
ligent surface assisted multiuser communications,” IEEE Trans. Green
Commun. Netw., vol. 6, no. 2, pp. 739–754, Jun. 2022.

[23] W. Yang, M. Li, and Q. Liu, “A novel anchor-assisted channel estimation
for RIS-aided multiuser communication systems,” IEEE Commun. Lett.,
vol. 26, no. 11, pp. 2740–2744, Nov. 2022.

[24] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Enabling large intelligent
surfaces with compressive sensing and deep learning,” IEEE Access,
vol. 9, pp. 44 304–44 321, 2021.

[25] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo,
Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless communications with
reconfigurable intelligent surface: Path loss modeling and experimental
measurement,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 421–
439, Jan. 2021.

[26] B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM:
Channel estimation and reflection optimization,” IEEE Wireless Com-
mun. Lett., vol. 9, no. 4, pp. 518–522, Apr. 2020.

[27] B. Shamasundar, N. Daryanavardan, and A. Nosratinia, “Channel train-
ing & estimation for reconfigurable intelligent surfaces: Exposition of
principles, approaches, and open problems,” IEEE Access, vol. 11, pp.
6717–6734, 2023.

[28] J. An, L. Wang, C. Xu, L. Gan, and L. Hanzo, “Optimal pilot power
based channel estimation improves the throughput of intelligent reflec-
tive surface assisted systems,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 16 202–16 206, Dec. 2020.

[29] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[30] J. Chambers, Graphical Methods for Data Analysis. CRC Press, 1983.
[31] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge

Univ. Press, 2013.

[32] W. Chen, Z. Yang, Z. Wei, D. Wing Kwan Ng, and M. Matthaiou, “RIS-
Aided MIMO beamforming: Piecewise near-field channel model,” IEEE
Trans. Commun., vol. 73, no. 10, pp. 9612–9626, Oct. 2025.

[33] Q. Zhou, J. Zhao, K. Cai, and Y. Zhu, “RIS-assisted beamfocusing in
near-field IoT communication systems: A transformer-based approach,”
IEEE Internet Things J., vol. 12, no. 15, pp. 30 564–30 575, Aug. 2025.

[34] Y. Cheng, C. Huang, W. Peng, M. Debbah, L. Hanzo, and C. Yuen,
“Achievable rate optimization of the RIS-Aided near-field wideband
uplink,” IEEE Trans. Wireless Commun., vol. 23, no. 3, pp. 2296–2311,
Mar. 2024.

[35] B. Hassibi and B. Hochwald, “How much training is needed in multiple-
antenna wireless links?” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp.
951–963, Apr. 2003.

[36] G. R. Grimmett and D. R. Stirzaker, Probability and Random Process.
Oxford Univ. Press, 2001.

Shivani Dhok (Student Member, IEEE) Shivani
Dhok received her B.Tech. in Electronics and Com-
munication Engineering in the year 2021 from the
Indian Institute of Information Technology, Nagpur,
India. She is currently pursuing a Ph.D. with the De-
partment of Electrical Communication Engineering,
Indian Institute of Science (IISc), Bengaluru, India.
She was awarded the Prime Minister’s Research
Fellowship (PMRF). Her research interests include
wireless communication and signal processing for
wireless communication.

Neelesh B. Mehta (Fellow, IEEE) received the
B.Tech. degree in electronics and communications
engineering from the Indian Institute of Technology
(IIT) Madras in 1996 and the M.S. and Ph.D. degrees
in electrical engineering from the California Institute
of Technology, Pasadena, USA, in 1997 and 2001,
respectively. He is currently a Professor and Chair
of the Department of Electrical Communication En-
gineering, Indian Institute of Science, Bengaluru.
He is a fellow of the Indian National Science
Academy, Indian Academy of Sciences, Indian Na-

tional Academy of Engineering, and National Academy of Sciences India. He
is a recipient of the J. C. Bose Fellowship, Shanti Swarup Bhatnagar Award,
Khosla Award, Vikram Sarabhai Research Award, and the Swarnajayanti
Fellowship. He served on the Board of Governors for the IEEE ComSoc
from 2012 to 2015. He served on the executive editorial committee for
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2014
to 2017 and served as the Chair from 2017 to 2018. He also served as the
chair of the journal’s steering committee. He currently serves on ComSoc’s
nominations and elections committee. He has served as an Editor for IEEE
TRANSACTIONS ON COMMUNICATIONS and the IEEE WIRELESS
COMMUNICATION LETTERS in the past.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2025.3644490

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 30,2025 at 04:53:52 UTC from IEEE Xplore.  Restrictions apply. 


