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Fairness-Aware Optimal Power and Discrete Rate
Adaptation for K-user NOMA with Imperfect SIC
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Abstract—Practical physical layer limitations such as discrete
rate adaptation and imperfect successive interference cancella-
tion (SIC) fundamentally alter the spectral efficiency and fairness
of downlink non-orthogonal multiple access (NOMA). For K-
user downlink NOMA, we formulate the problem of jointly
choosing the modulation and coding schemes and powers of
the users to maximize a general weighted α-utility function
subject to constraints on the block error rate (BLER) and
minimum rate of each user. We account for imperfect SIC and
adapt the decoding order. This approach subsumes the weighted
sum rate maximization, proportional fairness, and max-min
fairness approaches considered separately in the literature. Due
to discrete rate adaptation, the optimization problem for any
decoding order is NP-hard. We present a novel search algorithm
that provably finds the optimal solution with one to five orders of
magnitude lower search complexity than exhaustive search. We
also propose an alternate approach that employs a smaller set of
BLER constraints to reduce complexity further. We derive novel
expressions for the outage probability, average sum rate, and
weighted α-utility of the optimal solution for two-user NOMA for
the farthest-to-nearest decoding order. The analysis is the first to
address the general weighted α-utility function. We also extend
our approach to account for imperfect channel state information.

Index Terms—Non-orthogonal multiple access, imperfect suc-
cessive interference cancellation, adaptive decoding, fairness,
adaptive modulation and coding, power allocation.

I. INTRODUCTION

Power-domain non-orthogonal multiple access (NOMA)
enables a base station (BS) to serve multiple users simultane-
ously in the same time-frequency resource. In the downlink,
the BS superimposes signals of the users with different
transmit powers and transmits them simultaneously. The users
employ successive interference cancellation (SIC) in their
receivers to retrieve their data in the presence of interference
from a subset of the other users’ signals. With power-domain
NOMA, 5G and beyond systems can address demands for
higher data rates and fair allocation of resources for cell-
center and cell-edge users while meeting their quality-of-
service (QoS) requirements. This translates to more connected
devices, lower latency, and massive connectivity.

The efficacy of NOMA crucially depends on the following
aspects. First, it depends on the system-wide utility function
that determines the powers and rates allocated to the users
by the NOMA resource allocation algorithm. The algorithm
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needs to account for the different signal strengths of the users,
who are at different distances from the BS and encounter fad-
ing, and the interferences their signals cause at the decoders
of the other users.

Sum rate, weighted sum rate, sum of the logarithms of
the users’ rates, which is also referred to as proportional
fairness (PF), and the minimum of the users’ rates, which
is referred to as max-min fairness, are examples of the
utility function [1, Ch. 2]. Maximizing the sum rate improves
spectral efficiency but results in an unfair allocation. This is
because users closer to the BS, who have larger signal-to-
noise ratios (SNRs), get assigned more or all resources. On
the other hand, proportional fairness and max-min fairness
result in a more fair allocation. However, the improvement in
fairness comes at the expense of a lower spectral efficiency.
This fundamental trade-off between spectral efficiency and
fairness is different for NOMA than for the conventional
orthogonal multiple access (OMA) scheme, which is used in
5G, as it serves only one user on a time-frequency resource.

Second, the efficacy of NOMA depends on the constraints
imposed by the physical layer. Specifically, the BS can
transmit packets to the users using only modulation and
coding schemes (MCSs) chosen from a pre-specified set,
which is also called discrete rate adaptation. For example, 5G
mandates the use of quadrature phase-shift keying (QPSK),
16-QAM (quadrature amplitude modulation), 64-QAM, and
256-QAM constellations with coding rates that lie in between
78/1024 and 948/1024 [2, Table 5.2.2.1-3]. The MCS chosen
must satisfy a constraint on the block error rate (BLER),
which is the probability that a user’s packet is decoded
incorrectly. Discrete rate adaptation fundamentally alters the
resource allocation problem compared to the widely studied,
but idealistic, continuous rate adaptation model for NOMA,
which is based on Shannon’s capacity formula and where the
user rate is any positive real number.

Third, the efficacy depends on the accuracy of SIC, which
is employed multiple times by each user. Ideally, SIC should
completely remove the interferences from users whose signal
have been cancelled. However, in practice, fading, noise, and
hardware impairments can lead to a packet decoding error. In
such a case, the interference cancellation in all the subsequent
stages is adversely affected.

Fourth, the efficacy depends on the order in which the user’s
signals are successively decoded. Fixed [3]–[16] and adaptive
orders [17]–[20], which depend on the users’ channel gains,
have been considered in the literature. The decoding order
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and imperfect SIC both need to be taken into account in the
very design of the resource allocation algorithm to ensure that
the BLER constraint of each user is satisfied.

A. Literature Survey

Given the extensive literature on NOMA, we focus on
works that address the following four aspects that are most
relevant to our work: fairness, rate adaptation, imperfect SIC,
and SIC decoding order. We refer the reader to the survey
articles in [21], [22] for a broad survey of NOMA.

a) Fairness: A joint user pairing and power allocation
algorithm to maximize the PF utility for uplink NOMA is
studied in [23]. A PF scheduler and a waterfilling-based power
allocation are considered for orthogonal frequency division
multiplexing-based downlink NOMA in [24]. A weighted
max-min fairness-based power and rate adaptation algorithm
is proposed for a vehicular NOMA network in [9]. Users to
be scheduled and their powers are numerically determined to
maximize the max-min fairness utility of downlink NOMA
with multiple transmit and receive antennas in [25]. Joint
power allocation and second user assignment to maximize
the minimum rate among secondary users are studied for
an underlay cognitive downlink network in [26]. An optimal
power allocation algorithm to maximize the total α-fairness
utility of downlink NOMA is presented in [27].

The optimal power allocation to maximize max-min fair-
ness, weighted sum rate, sum rate, and energy efficiency
for downlink NOMA is derived in [6]. A power allocation
method to maximize the minimum rate among the users
is proposed in [7], [8]. Reference [28] instead minimizes
the maximum average video quality degradation probability.
Matching theory is applied for power allocation and antenna
selection in [29] to balance throughput and fairness. Power
allocation is studied in [10]–[12] to maximize the weighted
sum rate and the α-fair utility in [30], [31]. The trade-
off between sum throughput and the ratio of the minimum
to maximum instantaneous rates of the users is studied for
downlink NOMA in [32]. However, all the above references
assume continuous rate adaptation.

b) Discrete Rate Adaptation: A joint adaptive modulation
and power assignment algorithm called dynamic power and
rate adaptation (DPRA) for two-user downlink NOMA to
achieve a minimum rate for one user and maximize the rate
of the other user subject to constraints on the bit error rate
(BER) is discussed in [14]. However, the focus is limited to
uncoded QAM and the algorithm provides no optimality guar-
antees. The allocation of powers that maximizes the mutual
information for a square-QAM constellation is studied in [33].
Power and uncoded QAM constellation size are adapted
in [16] to maximize the throughput. The sum throughput
versus fairness trade-off is numerically evaluated for 16-QAM
in [32]. However, all the above works limit their attention to
two-user NOMA and apply only to uncoded transmissions.
While [34] considers the general case of K-user NOMA, it
only characterizes the range of powers that can be assigned
to each user for uncoded QAM constellations. Sum rate or
fairness aspects are not addressed.

c) Imperfect SIC: The outage probability and ergodic rate
of a two-user NOMA-based spectrum sharing scheme with
imperfect SIC is analyzed in [35]. The outage probability of
an overlay cognitive two-user NOMA system with imperfect
SIC is analyzed in [36]. The powers allocated to the two
users are optimized to maximize the sum throughput. Multi-
cell uplink NOMA with imperfect SIC is investigated in [37].
The total power allocated to the users is minimized while
satisfying a minimum rate constraint for each user. Clustering,
beamforming, and power allocation under imperfect SIC are
jointly designed in [38] to maximize the sum rate of K-user
NOMA while satisfying a minimum signal-to-interference-
plus-noise ratio (SINR) constraint for each user.

However, the above works assume continuous rate adap-
tation and, with the exception of [38], focus on only two
users. Imperfect SIC is modeled by means of an interference
leakage term whose power is proportional to the signal power.
The applicability of this model is limited in practice for two
reasons. First, cyclic redundancy check (CRC) code is widely
employed in cellular systems to detect errors. Therefore, the
decoding of subsequent stages can be halted in the event of
an error. Second, no guidance is available about choosing the
specific value of the all-important proportionality constant,
which lies between 0 and 1.

d) SIC Decoding Order: The farthest-to-nearest (F2N)
decoding order, in which the farthest user’s signal is de-
coded first and the nearest user’s signal is decoded last after
cancelling the interference from all other users’ signals, is
considered in several works [3]–[16]. A two-user cooperative
NOMA system with untrusted users with adaptive decoding
order and imperfect SIC is analyzed in [17]. The goal is to
maximize the sum rate and the minimum secrecy rate of
two users. A dynamic ordered SIC receiver is introduced
in [18], and its outage probability is analyzed. A similar
approach under imperfect channel state information (CSI) is
further explored in [19]. However, [18], [19] focus on uplink
NOMA, while we focus on downlink NOMA. A sub-optimal
joint radio resource allocation and SIC ordering algorithm for
power-domain sparse code multiple access-based downlink is
proposed in [20].

B. Contributions
We see from the above survey that discrete rate adaptation

for general K-user NOMA has received limited attention
in the literature despite its practical relevance. Furthermore,
the practically important aspects that pertain to decoding for
discrete rate adaptation, namely imperfect SIC and decoding
order, have not been well-studied. Fairness in NOMA too has
not been studied with discrete rate adaptation or imperfect
SIC; the focus has primarily been on continuous rate adapta-
tion. We address these multiple gaps in the NOMA literature.
Table I contrasts the literature and our manuscript.

We study joint optimal power and discrete rate adaptation
for downlink K-user NOMA with imperfect SIC and adaptive
decoding order. Our goal is to maximize a general fairness-
aware weighted α-utility function while satisfying a constraint
on the BLER of each user and a QoS constraint on the mini-
mum rate of each user. We make the following contributions.
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1) General Model and Novel Problem Formulation: For the
general case of K-user downlink NOMA, we present
a novel formulation of the problem of jointly choosing
the MCSs and powers of the users and the decoding
order to maximize a general weighted α-utility function
under imperfect SIC. For any decoding order, discrete
rate adaptation makes this problem a mixed-integer non-
linear programming (MINLP) problem, which is NP-
hard. The strength and novelty of this formulation lies
in its: (i) generality, as it handles any number of users
and any decoding order, and covers a large class of
utility functions that have been separately studied in the
literature, and (ii) practical relevance, as it accounts for
both imperfect SIC and discrete rate adaptation.

2) Novel Low Complexity Algorithm Based on Structural
Insights: We present a novel algorithm that provably
finds the optimal MCS choice and powers (OMCSP)
for any decoding order. We then determine the optimal
decoding order. The proposed algorithm relies on two
novel theoretical results about the structure of the optimal
solution. Our first result is a criterion that specifies
whether a feasible power allocation that meets the BLER
and QoS constraints exists for a given choice of MCSs
for the K users. Our second result eliminates potentially
many MCS choices once an MCS choice has been
determined to be infeasible. Our algorithm has one to
five orders of magnitude lower search complexity than
exhaustive search depending on K.

3) Reducing Complexity Further: We then propose an al-
ternate and novel formulation that reduces the O(K2)
BLER constraints, which arise due to the incorporation
of imperfect SIC in the original problem formulation, to
only O(K) BLER constraints for a given decoding order.
This then leads to an even lower complexity algorithm
to determine the MCSs and the powers. Our numerical
results show that this approach incurs a less than 2% drop
in the average weighted α-utility despite its simplicity.

4) Imperfect CSI: We then extend the problem formulation
and resource allocation algorithm to account for imper-
fect CSI that occurs in practice due to channel estimation
errors and leads to additional interference.

5) Analysis: We then derive lower bounds for the average
sum rate and average weighted α-utility for the optimal
choice of MCSs and powers for two-user NOMA with
imperfect SIC and the F2N order. The discrete nature of
rate adaptation makes the analysis fundamentally differ-
ent and novel compared to the analyses in the literature
for NOMA with continuous rate adaptation or OMA. Our
work is the first to analyze the general weighted α-utility
of NOMA with discrete rate adaptation, MCSs that use
error correction codes, and imperfect SIC. Our approach
leads to bounds whose terms are elegantly expressed in
terms of a single function. We also derive a novel upper
bound for the outage probability, which is the probability
that no feasible allocation of MCSs and powers exists for
any decoding order.

6) We present extensive numerical results to quantify the
impact of discrete rate adaptation, adaptive decoding,

imperfect SIC, and imperfect CSI. Our numerical results
indicate that the F2N order is near-optimal for K ≤ 3
users despite its lower complexity. For K ≥ 4, adapting
the decoding order achieves a higher sum rate, but at
the expense of a K! increase in complexity. We observe
that the continuous rate adaptation model overestimates
performance.

Comments: Our model and approach are comprehensive,
novel, and practically more relevant in the following respects:

1) We focus on discrete rate adaptation. While it has been
studied in the context of cooperative and cognitive com-
munications (see [39], [40] and the references therein),
it has received relatively limited attention in the context
of NOMA. In NOMA, the optimal solution and even the
existence of a feasible solution are different compared to
continuous rate adaptation.

2) The few papers in the literature on discrete rate adap-
tation for NOMA focus on uncoded QAM, which has
limited practical relevance [14], [16], [32]–[34]. Instead,
our model applies to the general class of MCSs employed
in cellular standards that use various constellations and
error correction codes with different rates.

3) We account for the impact of imperfect SIC in each
decoding stage on the BLER targets of the K users.
Combined with discrete rate adaptation, this leads to
an NP-hard MINLP problem, which differs from the
leakage interference-based models studied in [35]–[38]
that assume continuous rate adaptation. Our approach
also addresses imperfect CSI. Such a comprehensive
combination is not available in the NOMA literature to
the best of our knowledge.

4) We present the optimal solution for the general class of
weighted α-utility functions, which subsumes sum rate
(α = 0) [3], [4], PF (α = 1) [23], [24], [29], max-
min fairness (α = ∞) [6]–[9], [25], [26], [32], and
weighted sum rate [10]–[13], [41]–[43]. This enables us
to study the trade-off between sum rate and fairness in
a systematic and comprehensive manner.

5) Unlike [3]–[16], which assume a fixed SIC decoding
order, we determine the optimal decoding order to max-
imize performance.

6) Our approach applies to the general K-user case, un-
like [3], [6], [9], [10], [14], [16], [17], [24], [28], [33]–
[35], [37], [43], [44], which focus only on two users. Our
approach also incorporates the minimum rate and BLER
constraints. These aspects that have not been jointly
addressed in the existing literature.

7) No other performance analysis of NOMA covers discrete
rate adaptation and imperfect SIC for two-user NOMA.
Our analysis is also the first to cover the entire class of
weighted α-utility functions.

C. Outline and Notations

Section II describes the system model. Section III formu-
lates the optimization problem and presents our algorithm to
find the optimal allocation of MCSs, powers, and decoding
order and its simpler variant. It also presents the extension
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TABLE I
COMPARISON OF LITERATURE ON FAIRNESS, RATE ADAPTATION, MINIMUM RATE CONSTRAINT, GENERALITY, IMPERFECT SIC, AND ADAPTIVE

DECODING IN NOMA

Reference Utility Discrete rate Minimum rate General K-user Imperfect Adaptive
function adaptation constraint case SIC decoding

Shen et al. [3], Sum rate No Yes No (2-user) No No
Li et al. [4] Sum rate No No Yes No No

Zhu et al. [6] Sum rate, max-min, No Yes No (2-user) No No
weighted sum rate

Xiao et al. [7] Max-min No Yes Yes No No
Liu et al. [25], Xu et al. [26] Max-min No No Yes No No

Timotheou et al. [8]
Zheng et al. [9] Max-min No No No (2-user) No No
Van et al. [10] Weighted No No No (2-user) No No

sum rate
Wang et al. [12], Salaün et al. [13] Weighted No No Yes No No

sum rate
Wang et al. [11], Kim et al. [41], Weighted No Yes Yes Yes No

Randrianantenaina et al. [42] sum rate
Chen et al. [23], Youssef et al. [29] PF No No Yes No No

Hojeij et al. [24] PF No No No (2-user) No No
Xu et al. [27], Xu et al. [30] α-fair No No Yes No No

Zeng et al. [31] α-fair No Yes No (2-user) No No
Fang et al. [28] Min-max No No No (2-user) No No

Pastore et al. [32] Max-min No, Yes Yes No No
Uncoded 16-QAM

M. Chitra et al. [35], Luo et al. [36] - No Yes No (2-user) Yes No
Zeng et al. [37], Lim et al. [38] - No Yes Yes Yes No

Yu et al. [14] (DPRA) - Yes Yes No (2-user) No No
(Uncoded M-QAM)

Iraqi et al. [34], Choi et al. [33], - Yes No No (2-user) No No
Yahya et al. [16] (Uncoded M-QAM)
Sruthy et al. [43] Weighted sum rate Yes No No (2-user) No No
Amin et al. [17] Sum rate, max-min No No No (2-user) Yes Yes

Gao et al. [18], Gao et al. [19] - No No Yes No Yes
Zakeri et al. [20] Sum rate No No Yes No Yes
This manuscript Weighted α-utility Yes Yes Yes Yes Yes

(General MCSs)

to imperfect CSI. Section IV analyzes the average sum rate
and average weighted α-utility of the optimal solution, and
the outage probability. Numerical results are presented in
Section V. Our conclusions follow in Section VI.

Notations: Pr(A) denotes the probability of an event A, and
E[.] denotes the expectation. AC represents the complement
of the event A. The cumulative distribution function (CDF)
and probability density function (PDF) of a random variable
(RV) X are denoted by FX (.) and fX (.), respectively. X ∼
CN (0, σ2) means that X is a circularly symmetric complex
Gaussian random variable with variance σ2.

II. SYSTEM MODEL

Consider a downlink NOMA transmission in which the BS
transmits simultaneously to K users over a time-frequency
resource.1 Without loss of generality, we index the users in
the ascending order of their distances from the BS. Thus, user
1 is the nearest user to the BS and user K is the farthest. The
BS transmits the superimposed signals of the K users with a
total power of Ptot.

Let Γk = gkℓk/σ
2 denote the ratio of the channel power

gain to the noise power of the kth user. Here, gk is a unit-
power exponential random variable that models fading, ℓk
is the pathloss, and σ2 is the noise variance. Furthermore,
ℓk = κ (d0/dk)

η , where η is the pathloss exponent, d0 is
the reference distance, κ is a constant, and dk is the distance

1The design of the scheduler that selects the K users is beyond the scope
of this work.

between user k and the BS. We first assume perfect CSI at
the users and the BS to develop the key ideas. Thus, the
BS knows Γ1, . . . ,ΓK , as has also been assumed in [4], [7],
[8], [11]–[13], [18], [25], [26], [32]. We extend the model to
account for imperfect CSI in Section III-C.

Discrete Rate Adaptation and BLER: Let Ω =
{0, 1, . . . , L− 1} denote the discrete set of L MCSs that can
be used for transmission. The information rate of MCS m ∈ Ω
is rm bits/symbol. The MCSs are arranged in the increasing
order of their rates: 0 = r0 < r1 < r2 < · · · < rL−1. Here,
MCS 0 has a rate r0 = 0, i.e., no transmission occurs.

For MCS m, the BLER as a function of the SINR γ, which
we denote by BLERm(γ), is given by [45]

BLERm(γ) =

{
ame−bmγ , γ ≥ λm,
1, else, (1)

where am > 0 and bm > 0 are MCS-specific constants and
λm = log(am)/bm. The above formula holds for general
constellations with error correction coding. The constants am
and bm are tabulated in the literature for different MCSs [45].2

Let Tm(ϵ) be the smallest SINR at which the BLER of
MCS m in an additive white Gaussian noise channel is equal
to ϵ. We shall refer to it as the decoding threshold of MCS
m. It follows from (1) that

Tm(ϵ) =
1

bm
log
(am

ϵ

)
. (2)

2These constants are determined empirically as analytical formulae for
them are available only for some uncoded constellations [46].
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TABLE II
MCSS FROM 5G NR STANDARD, THEIR RATES (IN BITS/SYMBOL), AND

THEIR DECODING THRESHOLDS [2, TABLE 5.2.2.1-3]

Decoding threshold (dB)
m Modulation rm Tm(0.1) Tm( 0.1

2
) Tm( 0.1

3
) Tm( 0.1

4
)

0 - 0 - - - -
1 QPSK 0.15 -7.24 -7.02 -6.90 -6.82
2 QPSK 0.23 -6.65 -6.45 -6.33 -6.25
3 QPSK 0.38 -3.93 -3.74 -3.63 -3.56
4 QPSK 0.60 -0.36 -0.16 -0.05 0.02
5 QPSK 0.88 1.41 1.63 1.76 1.85
6 QPSK 1.18 3.19 3.38 3.48 3.56
7 16-QAM 1.48 5.83 6.05 6.18 6.26
8 16-QAM 1.91 7.75 7.97 8.10 8.19
9 16-QAM 2.41 9.55 9.78 9.90 9.99

10 64-QAM 2.73 11.23 11.47 11.61 11.71
11 64-QAM 3.32 13.23 13.49 13.63 13.73
12 64-QAM 3.90 15.63 15.91 16.06 16.16
13 64-QAM 4.52 19.13 19.43 19.59 19.71
14 64-QAM 5.12 22.31 22.73 22.96 23.12
15 64-QAM 5.55 24.55 25.05 25.31 25.49

Table II shows the MCSs, rates, and decoding thresholds for
the MCSs employed in the 5G standard for different BLER
targets [2, Table 5.2.2.1-3]. We shall make the following
monotonicity assumption about the decoding thresholds:

Tm(x) < Tm+1(x), ∀ 0 ≤ x ≤ 1, (3)

i.e., a higher rate MCS has a higher decoding threshold for
the same BLER target. It can be numerically verified to hold
for the MCSs in Table II.

Weighted α-Utility Function: We consider the following
general utility function for a user assigned a rate r [1, Ch. 2]:

Uα(r) =


log(r), if α = 1,

r1−α

1− α
, if α ̸= 1 and α ≥ 0.

(4)

The weighted α-utility of the system is equal to∑K
k=1 wkUα(rmk

), where wk ≥ 1 is the weight for user k and
mk is the MCS assigned to user k. Intuitively, a larger weight
prioritizes the corresponding user. wK ≥ wK−1 ≥ · · · ≥ w1

ensures a fairer allocation to users further away from the BS.
The strength of our formulation is that it includes as special

cases various notions of fairness, which have been separately
considered in the literature and have led to limited insights
about the sum-rate versus fairness trade-off. It includes sum
rate maximization (α = 0 and unit weights) [3], [4], pro-
portional fairness (PF) (α = 1 and unit weights) [23], [24],
[29], α-fair optimization (unit weights) [27], [30], [31], and
max-min fairness (α = ∞ and unit weights) [6]–[9], [25],
[26], [32]. It also includes weighted sum rate fairness (α = 0
and different weights) [10]–[13], [41], [42]. The choice of
α and the weights enables the system designer to trade-off
between fairness and spectral efficiency depending on the
specific requirements and constraints of the NOMA system.

A. Decoding Order and SINRs

We first formally define the decoding order. We then specify
the SINRs of the K users in terms of the decoding order.

Decode user
’s signal

Decode
own signal

Decode
own signal

MCS table
mRate P[1],m[1]

P[K],m[K]

BS

g[1]

g[K]

[1]

[K]

1
2

L rL

r1
r2

Decode user
’s signal

[k]

Decode user
’s signal

Decode
own signal

g[k]

P[k],m[k]

[K − 1]

’s signal
Decode user

’s signal
Decode user

’s signal[K − 1]
Decode user Decode user

[j]’s signal [k]

ε[k],[K] ε[k],[K−1] ε[k],[j] ε[k],[k]

At user [k] :

BLER

[K]

[K]

[K]

Fig. 1. System model for NOMA with K users that illustrates the powers,
MCS indices, and channel gains of all users for a given decoding order
([1], [2], . . . , [K]). The MCS table used for discrete rate adaptation is also
shown. The multi-stage decoding by user [k] along with the BLER at each
stage is shown at the bottom.

Definition A decoding order π is a permutation of the set
{1, 2, . . . ,K}, where π(k) denotes the index of the user
whose signal is decoded in the (K− k+1)th decoding stage.

To keep the notation crisp, we shall denote π(k) by
[k]. A decoding order π is fully specified by the K-tuple
([1], [2], . . . , [K]); we shall use them interchangeably. For
exampe, the F2N order, which is assumed in [3]–[16], sets
[1] = 1, [2] = 2, . . . , [K] = K.3

The number of decoding stages at a user depends on the
decoding order. At user [1]’s receiver, user [K] is decoded
first, followed by user [K − 1], and so on until user [1]. At
user [2]’s receiver, user [K] is decoded first, followed by user
[K−1], and so on until user [2]. For example, under the F2N
order, user k decodes and cancels the data of the farther users
k+1, . . . ,K before decoding its own data. Consequently, user
k has K−k+1 decoding stages. The system model with the
above notation is shown in Figure 1.

Let Ξ denote the set of all decoding orders. It consists of
K! elements. For example, for K = 2, there are two possible
decoding orders: 1) [1] = 1 and [2] = 2 (F2N order), and 2)
[1] = 2 and [2] = 1, where the nearest user’s data is decoded
before that of the farthest user.

Let user k be allocated a power Pk, for 1 ≤ k ≤ K. The
SINR γ[k],[j] of user [k] for decoding user [j]’s data, after
canceling the signals of the users [j + 1], . . . , [K] is

γ[k],[j] =
P[j]Γ[k]

(P[1] + · · ·+ P[j−1])Γ[k] + 1
. (5)

For example, γ[1],[K] = P[K]Γ[1]/[(P[1]+· · ·+P[K−1])Γ[1]+1]
is the SINR at user [1] for decoding the farther user [K]’s data.
User [1] first decodes the data of user [K]. If the decoding is
successful, which can be determined using the CRC check,
then user [1] cancels user [K]’s data from its received signal.
It then decodes user [K − 1]’s data with SINR γ[1],[K−1] =
P[K−1]Γ[1]/((P[1]+· · ·+P[K−2])Γ[1]+1). The user repeats the

3The decoding order needs to be conveyed by the BS to the users along
with their MCSs and powers.
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cancellation and decoding steps until a decoding error occurs
or it decodes its own data. When it finally decodes its own
data, the SNR is γ[1],[1] = P[1]Γ[1]. In general, a user’s receiver
stops decoding subsequent stages once the CRC check fails.

B. BLER Constraints with Imperfect SIC

Imperfect SIC affects each stage of the decoding process
at the receiver of every user. Consider user [k] in Figure 1.
There are K − k+1 decoding stages at the user’s receiver. It
can decode its own data only after successfully decoding the
K − k signals of users [k + 1], . . . , [K]. A decoding failure
at any stage leads to user [k] failing to decode its own data.

Since the SIC error is random, we model it probabilistically.
Let ϵ[k],[j] denote the decoding error probability of user [k]
when it decodes user [j]’s data, where k ≤ K and j ≤ K.
Let the target BLER for user [k] be ε. Therefore, to ensure
that the BLER of user [k] does not exceed ε, we must have

ϵ[k],[K]+(1−ϵ[k],[K])ϵ[k],[K−1]+· · ·+(1−ϵ[k],[K]) . . . ϵ[k],[k]

≤ ε. (6)

Since 0 < ϵ[k],[K] ≪ 1, the above constraint simplifies to
ϵ[k],[K] + ϵ[k],[K−1] + · · ·+ ϵ[k],[k] ≤ ε. This constraint can be
satisfied by setting

ϵ[k],[K] = ϵ[k],[K−1] = · · · = ϵ[k],[k] ≤ ε/(K − k + 1). (7)

For example, no SIC occurs at user [K]’s receiver. There-
fore, its BLER constraint is given by ϵ[K],[K] ≤ ε. For user
[K − 1], which first decodes and cancels user [K]’s data and
then decodes its own data, the BLER constraint is given by
ϵ[K−1],[K] = ϵ[K−1],[K−1] ≤ ε

2 . Similarly, at user [1], which
has K decoding stages, we have ϵ[1],[K] = ϵ[1],[K−1] = · · · =
ϵ[1],[1] ≤ ε

K . Thus, the BLER constraint for a user that has
more decoding stages needs to be tighter to counteract the
cumulative effect of imperfect SIC. Note the dependence of
the BLER constraints on the decoding order.

C. Weighted α-Utility Maximization in NOMA: Formulation

Our goal is to jointly choose the MCSs of the K users,
their powers, and the optimal decoding order that maximize
the weighted α-utility function while meeting the BLER
and minimum rate constraints for each user. Let mk ∈ Ω
be the MCS of user k. For a given decoding order π =
([1], [2], . . . , [K]), the optimum MCSs and powers are the
solution to the following constrained optimization problem:

W0 : max
m1∈Ω,...,mK∈Ω,
P1≥0,...,PK≥0

{
K∑

k=1

wkUα(rmk
)

}
, (8)

s.t. BLERm[k]
(γ[1],[k]) ≤

ε

K
, . . . ,

BLERm[k]
(γ[k],[k]) ≤

ε

K − k + 1
,∀1 ≤ k ≤ K, (9)

K∑
k=1

Pk ≤ Ptot, (10)

rmk
≥ Rmin,∀1 ≤ k ≤ K. (11)

The constraint in (9) follows from (7) by substituting
ϵ[k],[j] = BLERm[j]

(γ[k],[j]) and rearranging terms. There

are a total of K(K + 1)/2 BLER constraints in W0. The
total power constraint is captured in (10) and Rmin in (11)
is the minimum rate required by each user.4 We note that∑K

k=1 w[k]Uα(rm[k]
) =

∑K
k=1 wkUα(rmk

) and
∑K

k=1 P[k] =∑K
k=1 Pk since the summation is over all the users.
From the definition of the decoding threshold Tm(.) in (2),

(9) is equivalent to γ[1],[k] ≥ Tm[k]
(ε/K), . . . , γ[k],[k] ≥

Tm[k]
(ε/(K − k + 1)). Let Ωmin ⊆ Ω be the set of MCSs

whose rate is greater than or equal to Rmin. Hence, W0 is
equivalent to the following optimization problem:

W1 : max
m1,...,mK ,

P1≥0,...,PK≥0

{
K∑

k=1

wkUα(rmk
)

}
, (12)

s.t. γ[1],[k] ≥ Tm[k]

( ε

K

)
, . . . ,

γ[k],[k] ≥ Tm[k]

(
ε

K − k + 1

)
,∀1 ≤ k ≤ K, (13)

K∑
i=1

Pk ≤ Ptot, (14)

mk ∈ Ωmin,∀1 ≤ k ≤ K. (15)

W1 is a MINLP problem. Even though the non-linearity is
confined to the objective function, this class of problems is
NP-hard [47, Ch. 15]. Alternatively put, the problem is com-
binatorial in nature due to discrete rate adaptation. Given the
channel gains, the problem requires comparing the weighted
α-utility of O(LK) feasible MCS choices and choosing the
best among them. When we solve W0 for the K! decoding
orders and choose the one that yields the largest weighted
α-utility function, the search complexity is O(K!LK).

III. OPTIMAL MCS CHOICE, POWERS, AND DECODING
ORDER

We shall use the following terminology. Let ΩK
min ≜

Ωmin × . . .× Ωmin, where × denotes Cartesian product. For
a given MCS choice m = (m1,m2, . . . ,mK) ∈ ΩK

min, where
mk ∈ Ωmin, ∀k ∈{1, . . . ,K}, we say that a feasible power
allocation (P1, P2, . . . , PK) exists for a decoding order π if
it satisfies the constraints in (13) and (14). If such a feasible
power allocation exists, then m is feasible for π.

We present the OMCSP algorithm below that provably finds
the optimal solution of W1 (for a given decoding order).
It uses two results to reduce the search complexity. The
first result in Theorem 1 presents a closed-form criterion
to determine whether an MCS choice is feasible or not for
a given decoding order. The second result in Corollary 1
eliminates several other MCS choices from the search once
an MCS choice is determined to be infeasible for a given
decoding order. Then, we search over all decoding orders to
determine the optimal one.

When we optimize the decoding order, we call it the
OMCSP-Adaptive (OMCSP-A) algorithm. When we consider
only the F2N order, we call it the OMCSP-F2N algorithm.

Theorem 1: An MCS choice m ∈ ΩK
min, is feasible

for a given decoding order ([1], [2], . . . , [K]) if and only if

4The above formulation can be generalized to ensure that different users
have different minimum rate requirements.
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the following allocation of powers satisfies the total power
constraint

∑K
i=1 P

∗
[i] ≤ Ptot:

P ∗
[1] =

1

Γ[1]
Tm[1]

( ε

K

)
, (16)

P ∗
[k] = max

{
Tm[k]

( ε

K

)[k−1∑
q=1

P ∗
[q] +

1

Γ[1]

]
, · · · ,

Tm[k]

(
ε

K − k + 1

)[k−1∑
q=1

P ∗
[q] +

1

Γ[k]

]}
,∀2 ≤ k ≤ K.

(17)

Furthermore, any feasible power allocation must satisfy

P[1] ≥ P ∗
[1], . . . , P[K] ≥ P ∗

[K]. (18)

Proof: The proof is given in Appendix A.
We shall refer to (P ∗

1 , . . . , P
∗
K) as the minimum feasible

(MF) power allocation for the decoding order π. Implicit in
the above theorem statement is the fact that for an MCS
choice, the MF power allocation is not the only feasible solu-
tion. In fact, an infinite number of feasible power allocation
vectors can exist for a decoding order. The geometry of the
feasible power allocation vectors is described in Appendix A.
This non-uniqueness is an artifact of discrete rate adaptation.

Corollary 1: If an MCS choice m = (m1,m2, . . . ,mK) ∈
ΩK

min is infeasible for a given decoding order, then all MCS
choices of the form (m1 + i1,m2 + i2, . . . ,mK + iK),
∀i1, . . . , iK ≥ 0 are infeasible.

Proof: The proof is given in Appendix B.
We note that nothing can be stated in general about the

infeasibility of an MCS choice obtained by other operations
such as exchanging the MCSs among the users. Therefore,
such operations are not considered.

Infeasibility: It is possible that no feasible solution exists
for W1 for any decoding order. This depends on Γ1, . . . ,ΓK ,
and Ptot. In this case, the system is said to be in outage. We
analyze the probability of outage in Section IV-B.

A. OMCSP and OMCSP-A Algorithms

The pseudo-code of OMCSP is given in Algorithm 1 for a
given decoding order. The algorithm proceeds as follows. The
sets S and I keep track of the MCS choices that are feasible
and infeasible, respectively. The sets U and P keep track of
the weighted α-utilities and their corresponding MF power
allocation of the feasible MCS choices. Initially, S = ∅ and
I includes all MCS choices that do not meet the minimum
rate constraint of at least one user and are, thus, infeasible.

We start with an MCS choice m ∈ ΩK \ I. Using
Theorem 1, we check whether a feasible power allocation
exists for it. If m is feasible, then we include it in S. We find
its weighted α-utility and powers and include them in U and
P , respectively. Otherwise, we include all MCS choices of the
form (m1 + i1,m2 + i2, . . . ,mK + iK), ∀i1, i2, . . . , iK ≥ 0,
(which includes m) in I. We then pick another MCS choice
from ΩK\(I∪S) and repeat the above steps. The search stops
when no more MCS choices remain, i.e., I ∪S = ΩK . Since
Ω is finite, the search will terminate. Finally, we find Uopt as
the highest weighted α-utility from U . We declare mopt and

Algorithm 1: OMCSP
Input: π,Γ1, . . . ,ΓK , Ptot, α, w1, w2, . . . , wK ,Ωmin, ε
Initialize: mopt = (0, 0, . . . , 0), PMF = (0, 0, . . . , 0),

S = ∅, U = ∅, P = ∅, and
[1] = π(1), . . . , [K] = π(K)

Initialize: I = {(m1, . . . ,mK) : ∃k ∈{1, . . . ,K}
such that mk ̸∈ Ωmin}

for (m1,m2, . . . ,mK) /∈ I ∪ S do
if MF power allocation (P ∗

1 , P
∗
2 , . . . , P

∗
K) meets

total power constraint (use Theorem 1) then
S = S ∪ {(m1,m2, . . . ,mK)};
U = U ∪

{∑K
k=1 wkUα(rmk

)
}

;
P = P ∪ {(P ∗

1 , P
∗
2 , . . . , P

∗
K)};

else
I = I ∪ {(m1 + i1,m2 + i2, . . . ,mK +
iK), ∀i1, i2, . . . , iK ≥ 0};

end
end
Uopt ← Highest weighted α-utility in U ;
mopt ← MCS choice in S corresponding to Uopt;
PMF ← Power allocation in P corresponding to Uopt;

Algorithm 2: OMCSP-A
Input: Γ1, . . . ,ΓK , Ptot, α, w1, w2, . . . , wK ,Ωmin, ε
Initialize: T = ∅, M = ∅, and P = ∅
for π ∈ Ξ do

Find Uopt, mopt, and PMF using Algorithm 1
T = T ∪{Uopt};
M =M∪{mopt};
P = P ∪{PMF};

end
π∗ = argmax{T };
m∗

opt ← MCS choice in M corresponding to π∗;
P∗

MF ← Power allocation in P corresponding to π∗;

PMF as the MCS choice in S and the MF power allocation in
P , respectively, corresponding to Uopt. If no feasible solution
exists, then U = ∅.

Theorem 2: Given the decoding order, OMCSP finds the
optimal MCS choice and MF power allocation for W1.

Proof: The proof is given in Appendix C.
The pseudo-code for OMCSP-A is presented in Algo-

rithm 2. The sets T , M, and P store the highest weighted
α-utility Uopt, the corresponding MCS choice mopt, and the
associated MF power allocation, respectively, for a given
decoding order π. Initially, all three sets are empty. The
algorithm begins with a decoding order π and determines
Uopt, mopt, and PMF using Algorithm 1. These values are
added to T ,M, and P , respectively. This process is repeated
for all decoding orders. Finally, the optimal decoding order
π∗ is identified as the one yielding the highest weighted α-
utility in T . The optimal MCS for OMCSP-A, m∗

opt, is the
MCS choice corresponding to π∗ fromM, while the optimal
power allocation, P∗

MF, is the associated power assignment
from P .

Complexity: To find the optimum MCS choice for a given
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decoding order, exhaustive search has to check the feasibility
of O(LK) MCS choices. Each feasibility check requires
O(K2) computations in Theorem 1 because there are K − 1
such maxima to be evaluated. The kth one involves computing
the maximum of k numbers, which has O(k) complexity.
When the decoding order is optimized, the complexity in-
creases by a factor K!. With the MCS pruning of Algorithm 1,
the number of MCS choices whose feasibility needs to be
evaluated is lower for OMCSP. The reduction depends on sys-
tem parameters such as Ptot and also the channel realization.
We present the numerical complexity results in Section V.

Note: Compared to [15], [16], which also considered dis-
crete rate adaptation, our model and analysis are both dif-
ferent. First, [15], [16] consider only uncoded constellations.
Second, they assume per-symbol joint decoding and evaluate
the BER. However, we consider all MCSs specified in the
standard; these use error correction codes with different code
rates. We consider SIC and CRC-based error detection.

B. Lower-Complexity Approach
The optimization problem W0 has O(K2) BLER con-

straints for a given decoding order. It led to Theorem 1, where
K − 1 maxima each involving up to K terms needed to be
computed. Thus, evaluating the feasibility of an MCS choice
entails O(K2) calculations. We now propose an approach that
uses a tighter set of only K constraints and a computation-
ally simpler feasibility check. As we shall see, its average
weighted α-utility is within 1.8% of the optimal value.

Lemma 1: The following constraints imply the constraints
in (13):

min{γ[1],[k], . . . , γ[k],[k]} ≥ max
{
Tm[k]

( ε

K

)
, . . . ,

Tm[k]

(
ε

K − k + 1

)}
, ∀1 ≤ k ≤ K. (19)

Proof: We skip the proof to conserve the space.
From (2), Tm[k]

(ε/K) ≥ Tm[k]
(ε/(K − k + 1)), ∀1 ≤

k ≤ K. In the F2N order, since user k is decoded before
users k − 1, . . . , 1, which are closer to the BS, we have
γj,k > γk,k with high probability. Hence, (19) simplifies to
γk,k ≥ Tmk

(ε/K). We extend this to all decoding orders to
simplify the above constraint. In this case, Lemma 1 leads to
the following optimization problem.

W2 : max
m1,...,mK ,

P1≥0,...,PK≥0

{
K∑

k=1

wkUα(rmk
)

}
, (20)

s.t. γ[k],[k] ≥ Tm[k]

( ε

K

)
,∀1 ≤ k ≤ K, (21)

K∑
k=1

Pk ≤ Ptot, (22)

mk ∈ Ωmin,∀1 ≤ k ≤ K. (23)

W2 is a tightening of W1 for the F2N order. Furthermore,
the tightening is exact for K = 2 under the F2N order because
γ1,2 > γ2,2 ≥ Tm2(ε/2) > Tm2(ε).

The equivalent of Theorem 1 for checking whether an MCS
choice is feasible in W2 is then as follows. We skip the proof
as it is similar to Appendix A.

Theorem 3: An MCS choice m ∈ ΩK
min, is feasible for

a given decoding order ([1], [2], . . . , [K]) if and only if the
following power allocation satisfies

∑K
i=1 P

∗
[i] ≤ Ptot:

P ∗
[1] =

Tm[1]
(ε/K)

Γ[1]
, (24)

P ∗
[k] =

Tm[k]
(ε/K)

[(
P ∗
[1] + · · ·+ P ∗

[k−1]

)
Γ[k] + 1

]
Γ[k]

,

∀2 ≤ k ≤ K. (25)

In the above theorem, the complexity of computing the
feasibility of an MCS choice decreases from O(K2) in
Theorem 2 to O(K). Specifically, OMCSP considers 3, 6, and
10 BLER constraints for K = 2, 3, and 4, respectively. On the
other hand, the corresponding number of BLER constraints
considered by the lower-complexity approach decreases to
2, 3, and 4. To determine the optimal MCS choice, power
allocations, and decoding order for the lower-complexity
approach, Algorithms 1 and 2 can be applied after replacing
Theorem 1 with Theorem 3.

C. Imperfect CSI

We now update the problem formulation and algorithm to
handle imperfect CSI. Let hk represent the complex baseband
fading channel for user k. Let ĥk be its estimate at the user.
Then,

hk =
√
ρkĥk +

√
1− ρkvk, (26)

where
√
ρk ∈ (0, 1] is the correlation coefficient between hk

and ĥk, and vk ∼ CN (0, 1) is the estimation error, which is
independent of ĥk. For example, in minimum mean square
error (MMSE) channel estimation, ρk = Ppℓk/(Ppℓk + σ2),
where Pp is the pilot power. As Pp/σ

2 →∞, we get ρk → 1
and |ĥk|2 → |hk|2, which implies perfect CSI.

Using this model, the received signal y[k] at user [k] is

y[k] =
√
ρ[k]ĥ[k]

(√
P[1]x[1] + · · ·+

√
P[K]x[K]

)
+
√
1− ρ[k]

(√
P[1]x[1] + · · ·+

√
P[K]x[K]

)
v[k] + n[k],

(27)

where x[k] is the data symbol for user [k] and n[k] ∼
CN (0, σ2) is the noise. The second term is additional inter-
ference due to imperfect CSI. The SINR corresponding to (5)
becomes

γ[k],[j] =
P[j]Γ̂[k](∑j−1

t=1 P[t]

)
Γ̂[k] +

(1−ρ[k])

σ2

(∑K
t=1 P[t]

)
+ 1

,

(28)
where Γ̂k = ρk|ĥk|2/σ2. Using this updated SINR definition,
the optimization problem W0 can be solved following the
approach in Section II-C. Here, the BS knows Γ̂k and (1 −
ρk)/σ

2, ∀1 ≤ k ≤ K.

IV. AVERAGE SUM RATE AND OUTAGE PROBABILITY
ANALYSIS (K = 2)

We now analyze the average sum rate of the optimal
solution and the outage probability of W1 with perfect CSI.
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The analysis is intractable for the general case of K users.
This is because for a given decoding order, an MCS choice
is optimal only if all MCS choices with a larger weighted
α-utility are infeasible. Since the number of such choices
scales as O(LK−1), the complexity grows exponentially with
K. We, therefore, focus on two-user NOMA and the F2N
order in this section. It serves as a bound for the case when
the decoding order is adapted. Such an analysis of two-user
NOMA with discrete rate adaptation and imperfect SIC is
novel compared to the literature. A new challenge that the
analysis circumvents is that the optimal MCS choice is not
known in closed-form.

A. Average Sum Rate
Let Pr (mopt = m) be the probability that MCS choice

m = (m1,m2) is the optimal MCS choice mopt that maxi-
mizes the weighted α-utility for the F2N order. For m, the
weighted α-utility ζm is ζm ≜ w1Uα(rm1) + w2Uα(rm2).

Our approach is as follows. We derive the average sum rate.
We first write it in terms of Pr (mopt = m). We then derive
expressions for Pr (mopt = m), where the utility function
subtly manifests itself.

From the law of total expectation, the sum rate, when
averaged over the channel gains of the users, is given by

E [rm1
+ rm2

] =
∑

m1∈Ωmin

∑
m2∈Ωmin

(rm1
+ rm2

)

× Pr (mopt = m) . (29)

For an MCS pair m, let Sm be the set of all MCS pairs
whose weighted α-utility exceeds ζm. The MCS pair m is
optimum if and only if it is feasible and every MCS pair in
Sm is infeasible. Thus,

Pr (mopt = m) = Pr(m is feasible, all the MCS pairs in
Sm are infeasible). (30)

The evaluation of Pr (mopt = m) is challenging for two
reasons. First, the events that mopt is feasible and an MCS
pair in Sm is infeasible are dependent. This is because the
occurrences of these events are determined by the same
three SINRs γ1,1, γ1,2, and γ2,2. Second, Sm has an in-
volved structure as we explain below. From Corollary 1, it
follows that all MCS pairs of the form (m1 + i1,m2 + i2),
∀i1 ≥ 0, i2 ≥ 0, i1 + i2 > 0, must be in Sm. However,
due to weighting and the non-linear form of the α-fair utility
function, other MCS pairs can also lie in Sm. This sets our
problem apart. We first illustrate this with an example and
make observations that lead us to the general analysis.

Example: Figure 2 shows the MCS pairs for Ω =
{0, 1, 2, 3} with rates r0 = 0, r1 = 0.15, r2 = 0.23, and r3 =
0.38 bits/symbol. These correspond to the first four MCSs in
Table II. The weighted α-utility of each MCS pair is shown
for α = 0, w1 = 1, w2 = 2, and Rmin = 0.1 bits/symbol.
Thus, Ωmin ={1, 2, 3}. Consider, for example, the MCS pair
(2, 1). Its weighted α-utility is 0.53. For it to be optimal,
the MCS pairs (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3) must
be infeasible since they clearly have a higher weighted α-
utility. However, in addition, the MCS pairs (1, 2) and (3, 1)
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0.45 0.53 0.68

0.61
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0.69

0.99

0.84

1.14
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m2
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(1, 2) (2, 2) (3, 2)

(1, 3) (2, 3) (3, 3)

MCS pair Sm

(1, 1) (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

(1, 2)

(1, 3)
(2, 1)

(2, 2)

(2, 3)
(3, 1)

(3, 2)

(3, 3)

(1, 3), (2, 2), (2, 3),(3, 1), (3, 2), (3, 3)

(2, 3), (3, 3)

(1, 2),(1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

(1, 3),(2, 3), (3, 3), (3, 2), (3, 3)

(3, 3)
(2, 2), (3, 2), (1, 3), (2, 3), (3, 3)

(1, 3),(2, 3), (3, 3)

Fig. 2. MCS pairs with Ω = {0, 1, 2, 3} and rates r0 = 0, r1 = 0.15,
r2 = 0.23, and r3 = 0.38 bits/symbol are shown. The weighted α-utility for
each MCS pair is shown for α = 0, w1 = 1, w2 = 2, and Rmin = r1. Also
illustrated is MCS pair (2, 1) and the MCS pairs that need to be infeasible
for it to be optimal. At the bottom of the figure, each MCS pair and its Sm

is shown. The infeasibility of the MCS pairs in blue ink does not follow from
Corollary 1.

also have a higher weighted α-utility and must, therefore, be
infeasible. Such MCS pairs need to be carefully enumerated
and accounted for in the analysis. Another observation we
shall exploit in our analysis is that it is sufficient to require
that the MCS pairs (1, 2) and (3, 1) are infeasible. Corollary 1
then automatically implies the infeasibility of all the above
MCS pairs.

The tight bounding approach that we present below ad-
dresses the above two challenges.

General Approach: The utility function in (8) is a mono-
tonically increasing function of the user rate. Therefore, if
m is optimum, then (m1 + 1,m2) and (m1,m2 + 1), whose
weighted α-utilities are greater than ζm, must be infeasible.
However, since the rates of the users are weighted differently,
even MCS pairs of the following forms can have a higher
weighted α-utility and must be infeasible5:

1) (m1 − u,m2 + 1) ∈ Sm, where u ≥ 0 is the largest
integer such that ζm1−u,m2+1 > ζm.

2) (m1 + v,m2 − 1) ∈ Sm, where v > 0 is the smallest
integer such that ζm1+v,m2−1 > ζm.

3) (m1 + 1,m2 − w) ∈ Sm, where w ≥ 0 is the smallest
integer such that ζm1+1,m2−w > ζm.

4) (m1 + x,m2 − 2) ∈ Sm, where x > 0 is the smallest
integer such that ζm1+x,m2−2 > ζm.

5Even MCS pairs of the form (m1 − 1,m2 + z) and (m1 − 2,m2 + z)
for some z > 2 can have a higher weighted α-utility. However, they do not
contribute much to the sum rate while making the analysis more involved.
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5) (m1−y,m2+2) ∈ Sm where y > 0 is the largest integer
such that ζm1−y,m2+2 > ζm.

Let E0 denote the event that m is feasible. Let Eu

denote the event that (m1− u,m2 +1) is feasible. Similarly,
Ev, Ew, Ex, and Ey denote the events that (m1 + v,m2 −
1), (m1+1,m2−w), (m1+x,m2−2), and (m1−y,m2+2),
respectively, are feasible. From Corollary 1, the above events
imply the infeasibility of many other MCSs.

Using Theorem 3 under the F2N order, E0 occurs when

Γ1 ≥
Tm1(Tm2 + 1)Γ2

Γ2Ptot − Tm2

& Γ2 ≥
Tm2

Ptot
. (31)

Eu occurs when

Γ1 ≥
Tm1−u(Tm2+1 + 1)Γ2

Γ2Ptot − Tm2+1
& Γ2 ≥

Tm2+1

Ptot
. (32)

Similarly, Ev , Ew, and Ex respectively occur when

Γ1 ≥
Tm1+v(Tm2−1 + 1)Γ2

Γ2Ptot − Tm2−1
& Γ2 ≥

Tm2−1

Ptot
, (33)

Γ1 ≥
Tm1+1(Tm2−w + 1)Γ2

Γ2Ptot − Tm2−w
& Γ2 ≥

Tm2−w

Ptot
, (34)

Γ1 ≥
Tm1+x(Tm2−2 + 1)Γ2

Γ2Ptot − Tm2−2
& Γ2 ≥

Tm2−2

Ptot
. (35)

Hence, the probability in (30) can be upper bounded as

Pr (mopt = m) ≤ Pr
(
E0 ∩ EC

u ∩ EC
v ∩ EC

w ∩ EC
x

)
. (36)

Using De Morgan’s laws, we get

Pr
(
E0 ∩ EC

u ∩ EC
v ∩ EC

w ∩ EC
x

)
= Pr (E0)−Pr (E0 ∩ Eu)

− Pr (E0 ∩ Ev)− Pr (E0 ∩ Ew)

− Pr (E0 ∩ Ex) + Pr (E0 ∩ Eu ∩ Ev)

+ Pr (E0 ∩ Eu ∩ Ew) + Pr (E0 ∩ Eu ∩ Ex)

+ Pr (E0 ∩ Ev ∩ Ew) + Pr (E0 ∩ Ev ∩ Ex)

+ Pr (E0 ∩ Ew ∩ Ex)− Pr (E0 ∩ Eu ∩ Ev ∩ Ew)

− Pr (E0 ∩ Eu ∩ Ev ∩ Ex)− Pr (E0 ∩ Ev ∩ Ew ∩ Ex)

− Pr (E0 ∩ Eu ∩ Ew ∩ Ex)

+ Pr (E0 ∩ Eu ∩ Ev ∩ Ew ∩ Ex) . (37)

We present expressions for each of the probability terms
in (37). We show that they can all be written in a
unified manner in terms of a common function Π(.),
which we first define below. Consider the M MCS pairs
n(1) =

(
n
(1)
1 n

(1)
2

)
, . . . ,n(M) =

(
n
(M)
1 n

(M)
2

)
. Let f2 =

max1≤i≤M

{
n
(i)
2

}
. Then,

Π(n(1),n(2), . . . ,n(M)) ≜

∞∫
Tf2
Ptot

σ2

ℓ2
exp

(
−σ2x

ℓ2

)

× exp

(
−σ2

ℓ1
max

1≤i≤M

{
T
n
(i)
1
(T

n
(i)
2

+ 1)x

xPtot − T
n
(i)
2

})
dx. (38)

The single integral can be simplified using Gauss-Laguerre

quadrature to the following easily computable form:

Π(n(1),n(2), . . . ,n(M)) ≈ exp

(
−Tf2σ

2

Ptotℓ2

) p∑
i=1

si

× exp

(
−σ2

ℓ1
max

1≤i≤M

{
η(qi)Tn

(1)
1
(T

n
(1)
2

+ 1)

η(qi)Ptot − T
n
(1)
2

})
, (39)

where η(x) = xℓ2
σ2 +

Tf2

Ptot
, p is the number of Gauss-quadrature

terms, and qi and si, for 1 ≤ i ≤ p, are the Gauss-Laguerre
quadrature abscissas and weights, respectively, which are
tabulated in [48, Table 25.9].6

We organize the terms in (37) on the basis of the number
of events they consist of. The probabilities of the one and two
event terms in (37) are given by

Pr (E0) = Π(m), (40)
Pr (E0 ∩ Eu) = Π(m, (m1 − u,m2 + 1)), (41)
Pr (E0 ∩ Ev) = Π(m, (m1 + v,m2 − 1)), (42)
Pr (E0 ∩ Ew) = Π(m, (m1 + 1,m2 − w)), (43)
Pr (E0 ∩ Ex) = Π(m, (m1 + x,m2 − 2)). (44)

The probabilities of the three event terms in (37) are given
by

Pr (E0 ∩ Eu ∩ Ev)

= Π(m, (m1 − u,m2 + 1), (m1 + v,m2 − 1)), (45)
Pr (E0 ∩ Eu ∩ Ew)

= Π(m, (m1 − u,m2 + 1), (m1 + 1,m2 − w)), (46)
Pr (E0 ∩ Eu ∩ Ex)

= Π(m, (m1 − u,m2 + 1), (m1 + x,m2 − 2)), (47)
Pr (E0 ∩ Ev ∩ Ew)

= Π(m, (m1 + v,m2 − 1), (m1 + 1,m2 − w)), (48)
Pr (E0 ∩ Ev ∩ Ex)

= Π(m, (m1 + v,m2 − 1), (m1 + x,m2 − 2)), (49)
Pr (E0 ∩ Ew ∩ Ex)

= Π(m, (m1 + 1,m2 − w), (m1 + x,m2 − 2)). (50)

The derivation of (40)–(50) is given in Appendix D.

The probabilities of the four event terms in (37) are given
by

Pr (E0 ∩ Eu ∩ Ev ∩ Ew) = Π(m, (m1 − u,m2 + 1),

(m1 + v,m2 − 1), (m1 + 1,m2 − w)), (51)
Pr (E0 ∩ Eu ∩ Ew ∩ Ex) = Π(m, (m1 − u,m2 + 1),

(m1 + 1,m2 − w), (m1 + x,m2 − 2)), (52)
Pr (E0 ∩ Ev ∩ Ew ∩ Ex) = Π(m, (m1 + v,m2 − 1),

(m1 + 1,m2 − w), (m1 + x,m2 − 2)), (53)
Pr (E0 ∩ Eu ∩ Ew ∩ Ex) = Π(m, (m1 − u,m2 + 1),

(m1 + 1,m2 − w), (m1 + x,m2 − 2)). (54)

6The approximation error decreases as p increases. We have found p = 7
to be sufficient for the range of parameters of interest.
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The probability of the five event term is given by

Pr (E0 ∩ Eu ∩ Ev ∩ Ew ∩ Ex) = Π(m, (m1 − u,m2 +1),

(m1 + v,m2 − 1), (m1 + 1,m2 − w), (m1 + x,m2 − 2)).
(55)

The derivation is similar to Appendix D and is skipped.
Similarly, we can show that

Pr (mopt = m) ≤ Pr
(
E0 ∩ EC

u ∩ EC
v ∩ EC

w ∩ EC
y

)
. (56)

An expression for Pr
(
E0 ∩ EC

u ∩ EC
v ∩ EC

w ∩ EC
y

)
can be

derived along similar lines as above. Combining (36) and (56)
leads to the following tighter bound:

Pr (mopt = m) ≤ min
{

Pr
(
E0 ∩ EC

u ∩ EC
v ∩ EC

w ∩ EC
x

)
,

Pr
(
E0 ∩ EC

u ∩ EC
v ∩ EC

w ∩ EC
y

)}
. (57)

Substituting the above equation in (29) gives an upper bound
for the average sum rate.

Asymptotic Insights: We consider the two regimes of small
and large Ptot to gain more insights.

• Ptot → ∞: In (38), the lower limit Tf2/Ptot in the
integral approaches 0. The second exponential term in
the integrand approaches 1 and, therefore, so does the
integral for any M MCS pairs. It can be shown that
the probabilities of all MCSs except MCS pair (L,L)
become 0, while that of MCS pair (L,L) becomes 1.
Hence, from (29), the average rate approaches rL.

• Ptot → 0: In (38), the lower limit Tf2/Ptot in the
integral approaches∞ and the integral is zero. Therefore,
so does the integral for any M MCS pairs. Hence,
Pr (mopt = m) = 0 for all MCS pairs. Hence, the
average rate approaches zero.

B. Average Weighted α-Utility and Outage Probability

Using the law of total expectation, the average weighted
α-utility is given by

E [ζm] =
∑

m1∈Qmin

∑
m2∈Qmin

ζmPr (mopt = m) . (58)

Substituting the expression for Pr(mopt = m) from Sec-
tion IV-A in (58) gives the formula for the weighted α-utility.

The outage probability O is given by

O = 1−
∑

m1∈Ωmin

∑
m2∈Ωmin

Pr (mopt = m) . (59)

Substituting the expression for Pr(mopt = m) from Sec-
tion IV-A in (59) gives the formula for O. Note that O is not
a function of α or weights since the existence of a feasible
solution for W1 depends only on its constraints and not its
objective function.

The analysis provides an independent validation of the
simulation results. It also brings out how the different system
parameters affect key performance metrics such as average
sum rate, average weighted α-utility, and O.

C. Comparison with OMA with Discrete Rate Adaptation

We now contrast the above analysis with the classical anal-
ysis for single-user OMA with discrete rate adaptation [49,
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Ch. 9]. The average rate of the user k is given by

E[rm] =

L∑
m=1

rmPr(Tm ≤ γk < Tm+1), (60)

=

L∑
m=1

rm

(
exp

(
−σ2Tm

Ptotℓk

)
− exp

(
−σ2Tm+1

Ptotℓk

))
.

(61)

We see that (61) is considerably simpler compared to the
expressions we derived for K = 2.

V. NUMERICAL RESULTS

We now present Monte Carlo simulation results to bench-
mark the performance and complexity of the proposed
method, verify the analysis, and characterize the influence
of key system parameters. The MCSs are from Table II [2,
Table 5.2.2.1-2]. We set w1 = 1, ε = 0.1, and Rmin =
0.38 bits/symbol. The results are averaged over 1, 000, 000
independent realizations of the channel gains of the users. In
the event of an outage, we assign zero power and zero rate
to all users.

Figure 3 plots the average weighted α-utilities of OMCSP-
A, OMCSP-F2N, and the corresponding lower-complexity
approaches as a function of Ptotℓ1

σ2 , which we shall refer to
as the peak SNR. It shows results for K = 2, 3, and 4 users.
For K = 2, the weighted α-utilities of the OMCSP-F2N and
the corresponding lower-complexity approach are identical,
as noted in Section III-B. For K = 3 and 4, the lower-
complexity approach under adaptive order remains within
1.6% and 1.8% of OMCSP-A across all peak SNRs, making
it a viable alternative to OMCSP-A.

The weighted α-utility of OMCSP-F2N is within 1.5% of
that of OMCSP-A for K = 2 and within 7.4% for K = 3.
Thus, it is sufficient to only consider the F2N order for K ≤
3. For K = 4, a significant gap emerges between the two
approaches. However, this comes at the expense of an increase
in complexity, which we study in a subsequent figure. As the
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Fig. 4. Benchmarking: Average weighted α-utility as a function of the peak
SNR, Ptotℓ1

σ2 , for two values of α (K = 2, ℓ1
ℓ2

= 10 dB, w1 = 1, and
w2 = 1).

peak SNR increases, the weighted α-utility increases for any
K as higher rate MCSs can be assigned to the users with
higher probabilities. Notice that it is better to serve fewer users
at lower SNRs. This is because the minimum rate constraint
can be met for fewer users at lower SNRs.

We benchmark the proposed method with the following:
1) Continuous Rate Adaptation (CRA) Model [3], [4], [6]–

[10], [13], [23]–[31], [35]–[38], [41], [42]: The rate
of a user is determined using the Shannon’s capacity
formula. It is a function of the user’s SINR. Each user’s
optimal power is numerically determined to maximize
the weighted α-utility subject to the total power con-
straint under perfect SIC.7

2) DPRA [14]: The far user is first assigned its minimum
rate and the least power required to support it. Then,
the near user’s rate is chosen to be as large as possible
with the remaining power. Lastly, the far user’s rate is
increased if any power is still left. However, DPRA is
designed for only K = 2 and w2 = w1.

3) Perfect SIC: Packet decoding errors are assumed to occur
only in the final stage of decoding. Thus, the maximum
allowed BLER for all users is the same and is ε = 0.1.
All other procedures for determining the optimal MCS
choice and power allocations are the same as the pro-
posed method. This idealized scheme helps understand
the impact of imperfect SIC in the intermediate stages
where other users’ signals are decoded.

We note that a comparison with [15], [16], [32]–[34], which
are the only other papers that consider NOMA with discrete
rate adaptation, is not possible. This is because the methods
in [16], [32], [33] apply only to uncoded constellations,
while [15], [34] focus on the BER of uncoded constellations
but not on the rate.

Figures 4(a) and 4(b) compare the average weighted α-
utilities of all approaches as a function of Ptotℓ1

σ2 . Results are
shown for K = 2 and two values of α. The weight w2 is set

7The BLER is assumed to be zero as it is based on Shannon-theoretic
capacity.
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= 20 dB).

to 1 as DPRA is designed only for this value. The average
weighted α-utility of OMCSP-F2N exceeds that of DPRA
by 51.2% for α = 0 and by 33.1% for α = 0.5 at a peak
SNR of 15 dB. We see that the CRA model significantly
overestimates the average weighted α-utility. Imperfect SIC
causes the average weighted α-utility to decrease by 30-40%
compared to perfect SIC. Thus, discrete rate adaptation and
imperfect SIC have a significant impact on the performance
of NOMA. For α = 0 and 0.5, the curves for OMCSP-A and
OMCSP-F2N are close to each other for all peak SNRs. As the
peak SNR increases, the average weighted α-utilities of all the
approaches increase because of the higher odds of assigning
higher rate MCSs to the users. The average weighted α-utility
is sensitive to α and exhibits a wide variation when α changes
from 0 to 0.5.

Figure 5 plots the number of MCS choices to be checked
for feasibility by OMCSP-A and exhaustive search as a
function of K for two values of the peak SNR. As the peak
SNR increases, the number of searches required for each
K increases due to the higher probability that a higher rate
MCS pair is feasible for a given decoding order. This leads
to fewer MCS choices being pruned based on Corollary 1.
For Ptotℓ1

σ2 = 10 dB, OMCSP-A requires a factor of 33.5,
963.6, and 179949.6 fewer searches than exhaustive search
for K = 2, 3, and 4, respectively. Thus, a noteworthy one to
five orders of magnitude reduction in the search complexity
is achieved by OMCSP-A. When only the F2N order is
considered, the corresponding reduction factor in the number
of searches is 21.4, 194.4, and 4231.2 (figure not shown due
to space constraints), which is also noteworthy.

Figure 6(a) shows the average rate of each user with
imperfect and perfect SIC under adaptive order for α = 0.9
and K = 4. Figure 6(b) presents the corresponding average
minimum feasible power allocated to each user. The nearest
user 1 has the highest average rate and ends up being assigned
the lowest power on average. The reverse is true for the
farthest user. This holds for both perfect and imperfect SIC.
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Fig. 7. Outage probability of OMCSP-A as a function of the peak SNR
Ptotℓ1
σ2 with perfect and imperfect SIC and adaptive and F2N order (K = 2).

The average rate with imperfect SIC is lower than with perfect
SIC for all users. This is because BLER constraints in (9) are
tighter than ε due to imperfect SIC. This also increases the
odds of an outage, in which case no power is assigned to the
users. As a result, the average power assigned to the users with
imperfect SIC is lower than with perfect SIC. One observation
that is counter-intuitive at first sight is that with imperfect
SIC lower powers are assigned to the users. This happens
because the lower rates have a smaller decoding threshold,
which requires less power for transmission.

Figure 7(a) plots the outage probability O of OMCSP-A
with perfect and imperfect SIC as a function of the peak
SNR Ptotℓ1

σ2 . We show results for three values of ℓ1
ℓ2

. As ℓ1
ℓ2

increases, which corresponds to an increase in the ratio of
the distances of the two users from the BS, O increases.
This is because the near user’s SNR is kept fixed and the far
user’s SNR decreases. O decreases as the peak SNR increases
because the power budget becomes sufficient to ensure that
both users can meet their minimum rate constraints. For all
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Fig. 8. Impact of utility function parameters: Average sum rate of OMCSP-
F2N as a function of the weight w2 for different α with imperfect SIC
(K = 2, Ptotℓ1

σ2 = 10 dB, and ℓ1
ℓ2

= 10 dB).

ℓ1
ℓ2

and peak SNRs, the outage probability with imperfect
SIC is greater, albeit marginally, than with perfect SIC.
Figure 7(b) compares the outage probabilities of OMCSP-
F2N from analysis and simulations. The analysis tracks the
simulation results well at all SNRs. The outage probability
of OMCSP-A is indistinguishable from that of OMCSP-F2N
and is not shown to avoid clutter.

Figure 8(a) studies the impact of the utility function pa-
rameters. It plots the average sum rate of OMCSP-F2N as a
function of w2 for different values of α. The simulation and
analytical results are in good agreement for all values of α
and w2. As w2 increases, the average sum rate decreases for
α = 0 and 1 and reaches a floor. The decrease occurs because
the far user is allocated higher rate MCSs, and a larger portion
of the power must be assigned to it and not the near user 1 to
support this. The floor occurs because most of the total power
budget is allocated to the far user, leaving no room for further
improvement. For the same reasons, the average sum rate
decreases when α increases from 0 to 1. However, the trends
reverse for max-min fairness (α =∞). As w2 increases, the
average sum rate of OMCSP-F2N increases. This happens
because the minimum of rm1

and w2rm2
becomes rm1

for
larger values of w2. Thus, as w2 increases, the algorithm
maximizes the near user’s rate, which increases the sum rate.
We also note the pronounced increase in the average sum rate
for α = ∞ at w2 = 1.3, 1.9, 2.3, 3.1, 3.7, and 4.9. This is
due to the discontinuous switch from one MCS to another
in discrete rate adaptation. Such discontinuities also occur for
α = 0 and 1, but they are not as visible. Figure 8(b) compares
the average sum rates of OMCSP-A and OMCSP-F2N for
different values of α. The two are close to each other. Thus,
the F2N order is near-optimal for all values of α for K = 2.

Imperfect CSI: Figure 9 plots the average weighted α-utility
of OMCSP-A as a function of the peak SNR for different
values of ρ ≜ ρ1 = · · · = ρK . As ρ decreases, i.e., the channel
estimation accuracy decreases, the average weighted α-utility
decreases. This is due to an increase in the power required due

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3572279

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 26,2025 at 05:35:45 UTC from IEEE Xplore.  Restrictions apply. 



14

7 8 9 10 11 12 13 14 15

Peak SNR (dB)

0

0.5

1

1.5

2

2.5
A

v
e
ra

g
e
 w

e
ig

h
te

d
 

-u
ti
lit

y

 = 1

 = 0.99

 = 0.98

 = 0.95

Fig. 9. Imperfect CSI: Average weighted α-utility of OMCSP-A as a function
of the peak SNR Ptotℓ1

σ2 for different ρ1 = · · · = ρK ≜ ρ (K = 2, α = 0,
w2 = 4, and ℓ1

ℓ2
= 10 dB).

to the additional estimation error-related interference term in
the SINR expression in (28). This also increases the outage
probability, which, lowers the average weighted α-utility.

VI. CONCLUSIONS

We determined the optimal powers, MCSs, and decoding
order that maximized a general weighted α-utility function
of K-user downlink NOMA with discrete rate adaptation
and imperfect SIC. Our formulation subsumed the sum rate,
weighted sum rate maximization, PF, and max-min fairness
approaches considered separately in the literature. Imperfect
SIC with discrete rate adaptation for a given decoding order
led to tighter BLER constraints for users with more decoding
stages. To solve the resulting NP-hard optimization problem,
we presented a novel algorithm that provably found the
optimal MCSs and powers of the K users for a given decoding
order. We then determined the optimal decoding order. Our
approach had a significantly lower complexity than exhaustive
search. The complexity was further reduced by employing a
smaller set of BLER constraints. We saw that the F2N order
was as good as adapting the decoding order for K ≤ 3 users.
Imperfect CSI led to a lower average weighted α-utility.

We also derived novel bounds for the average weighted α-
utility, average sum rate, and the outage probability for two-
user NOMA and the F2N order. The expressions substantially
differed from for single-user OMA.

An interesting direction for future work is incorporating
hardware impairments into the system model. Another av-
enue is determining the optimal utility parameter values to
maximize the sum rate while meeting a specific fairness
target. Our methodology can be combined with the design
of the scheduler at the BS, which chooses the users to be
transmitted to. It can be used in system-level simulation that
evaluates the scheduler along with discrete rate adaptation.
Our framework can also be extended to coordinated direct
and relay transmission (CDRT) [50] and other NOMA-based
cooperative communication models.

APPENDIX

A. Proof of Theorem 1

The SINR constraint of user [1] in (13) becomes P[1]Γ[1] ≥
Tm[1]

(ε/K). In general, for user [k], the BLER constraints be-
come P[k]Γ[1] ≥ Tm[k]

(ε/K)[(P[1]+P[2]+ · · ·+P[k−1])Γ[1]+
1],· · · , P[k]Γ[k] ≥ Tm[k]

(ε/(K − k + 1))[(P[1] + P[2] + · · ·+
P[k−1])Γ[k] + 1]. Thus, all the inequalities in W1 can be
rewritten as linear functions of P[1], P[2], . . . , P[K].

From P[1]Γ[1] ≥ Tm[1]
(ε/K), it follows that the smallest

power P ∗
[1] required for user [1] is Tm[1]

(ε/K)/Γ[1], which
yields (16). In general, for user [k], its power must satisfy

P[k] ≥ max

{
Tm[k]

( ε
K )[(P[1] + · · ·+ P[k−1])Γ[1] + 1]

Γ[1]
,

· · · ,
Tm[k]

( ε
K−k+1 )[(P[1] + · · ·+ P[k−1])Γ[k] + 1]

Γ[k]

}
. (62)

Hence, the smallest power P ∗
[k] required for user [k] is

P ∗
[k] = max

{
Tm[k]

( ε
K )[(P ∗

[1] + · · ·+ P ∗
[k−1])Γ[1] + 1]

Γ[1]
,

· · · ,
Tm[k]

(
ε

K−k+1

)
[(P ∗

[1] + · · ·+ P ∗
[k−1])Γ[k] + 1]

Γ[k]

 .

(63)

The above powers must satisfy the sum power constraint
in (14). Thus, a feasible power allocation exists if and only
if
∑K

i=1 P
∗
[i] ≤ Ptot.

B. Proof of Corollary 1

If an MCS choice m = (m1,m2, . . . ,mK) is infeasible
for a decoding order ([1], [2], . . . , [K]), then it follows from
Theorem 1 that

∑K
j=1 P

∗
[j] > Ptot. Consider the MCS choice

m′ = (m1, . . . ,mk−1,mk + ik,mk+1, . . . ,mK), where ik >
0 for some k. Let k = [q] for the decoding order under con-
sideration. Let P̃ ∗

j , ∀j ∈ {1, . . . ,K}, denote the MF power
allocation for m′. Applying the monotonicity assumption of
decoding thresholds to the inequalities in Theorem 1, we get
P̃ ∗
[l] = P ∗

[l], for 1 ≤ l < q, and P̃ ∗
[l] ≥ P ∗

[l], for q ≤ l ≤ K.
Therefore,

K∑
j=1

P̃ ∗
[j] ≥

K∑
j=1

P ∗
[j] > Ptot. (64)

Hence, m′ is also infeasible. Applying this argument succes-
sively to different k completes the proof.

C. Proof of Theorem 2

The key observation is that Algorithm 1 moves an MCS
choice to I if and only if the choice is infeasible. The
infeasibility is determined using Theorem 1 or Corollary 1.
Therefore, all the remaining MCS choices must be feasible
and will get included in S when the search terminates. Their
weighted α-utility functions get included in U . Therefore, the
algorithm evaluates the weighted α-utility of every feasible
MCS choice and identifies the optimal one among them.
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D. Single, Two, and Three Event Probability Terms

a) Single Event Term: From (31), it follows that

Pr (E0) = Pr
(
Γ1 ≥

Tm1
(Tm2

+ 1)Γ2

Γ2Ptot − Tm2

,Γ2 ≥
Tm2

Ptot

)
. (65)

Conditioning on Γ2, we get

Pr (E0) = E
[

Pr
(
Γ1 ≥

Tm1(Tm2 + 1)x

xPtot − Tm2

∣∣∣∣ Γ2 = x

)
×1{

Γ2≥
Tm2
Ptot

}] . (66)

Writing the above expectation in terms of the CDF of Γ1

and the PDF of Γ2, we get

Pr (E0)

=

∞∫
Tm2
Ptot

[
1− FΓ1

(
Tm1

(Tm2
+ 1)x

xPtot − Tm2

)]
fΓ2

(x) dx. (67)

Since Γ1 and Γ2 are exponential RVs with means ℓ1/σ
2

and ℓ2/σ
2, respectively, we have

FΓ1
(x) = 1− exp

(
−σ2x

ℓ1

)
, for x ≥ 0, (68)

fΓ2
(x) =

σ2

ℓ2
exp

(
−σ2x

ℓ2

)
, for x ≥ 0. (69)

Substituting (68) and (69) in (67), we get

Pr (E0) =
σ2

ℓ2

∞∫
Tm2
Ptot

exp

(
−σ2x

ℓ2
− σ2

ℓ1

Tm1(Tm2 + 1)x

xPtot − Tm2

)
dx,

(70)
= Π(m), (71)

where Π(.) is defined in (38).
b) Two Event Terms: We first evaluate Pr (E0 ∩ Eu).

From (31) and (32), it follows that

Pr (E0 ∩ Eu) = Pr
(
Γ1 ≥ max

{
Tm1

(Tm2
+ 1)Γ2

Γ2Ptot − Tm2

,

Tm1−u(Tm2+1 + 1)Γ2

Γ2Ptot − Tm2+1

}
,Γ2 ≥

Tm2+1

Ptot

)
. (72)

Conditioning on Γ2, we get

Pr (E0 ∩ Eu) = E
[

Pr
(
Γ1 ≥ max

{
Tm1

(Tm2
+ 1)x

xPtot − Tm2

,

Tm1−u(Tm2+1 + 1)x

xPtot − Tm2+1

} ∣∣∣∣ Γ2 = x

)
1{

x≥
Tm2+1

Ptot

}
]
. (73)

In terms of the CDF of Γ1 and the PDF of Γ2, we get

Pr (E0 ∩ Eu) =

∞∫
Tm2+1

Ptot

[
1− FΓ1

(
max

{
Tm1

(Tm2
+ 1)x

xPtot − Tm2

,

Tm1−u(Tm2+1 + 1)x

xPtot − Tm2+1

})]
fΓ2

(x) dx, (74)

= Π(m, (m1 − u,m2 + 1)). (75)

In a similar manner, we can derive the expressions for

Pr (E0 ∩ Ev) ,Pr (E0 ∩ Ew) , and Pr (E0 ∩ Ex) in (42), (43),
and (44), respectively.

c) Three Event Terms: We first evaluate Pr (E0 ∩ Eu ∩ Ev).
From (31), (32), and (33), we get

Pr (E0 ∩ Eu ∩ Ev)

= Pr
(
Γ1 >

Tm1
(Tm2

+ 1)Γ2

Γ2Ptot − Tm2

,Γ2 ≥
Tm2

Ptot
,

Γ1 >
Tm1−u(Tm2+1 + 1)Γ2

Γ2Ptot − Tm2+1
, Γ2 ≥

Tm2+1

Ptot
,

Γ1 >
Tm1+v(Tm2−1 + 1)Γ2

Γ2Ptot − Tm2−1
,Γ2 ≥

Tm2−1

Ptot

)
. (76)

Since Tm2−1 < Tm2
< Tm2+1, (76) simplifies to

Pr (E0 ∩ Eu ∩ Ev) = Pr
(
Γ1 ≥ max

{
Tm1

(Tm2
+ 1)Γ2

Γ2Ptot − Tm2

,

Tm1−u(Tm2+1 + 1)Γ2

Γ2Ptot − Tm2+1
,
Tm1+v(Tm2−1 + 1)Γ2

Γ2Ptot − Tm2−1

}
,

Γ2 ≥
Tm2+1

Ptot

)
. (77)

Conditioning on Γ2, we get

Pr (E0 ∩ Eu ∩ Ev) = E
[

Pr
(
Γ1 ≥ max

{
Tm1

(Tm2
+ 1)x

xPtot − Tm2

,

Tm1−u(Tm2+1 + 1)x

xPtot − Tm2+1
,
Tm1+v(Tm2−1 + 1)x

xPtot − Tm2−1

}
∣∣∣∣ Γ2 = x

)
1{

Γ2≥
Tm2+1

Ptot

}
]
. (78)

Writing the above expectation in terms of the CDF of
Γ1 and PDF of Γ2, and simplifying along lines similar
to (67), (70), and (71), we get

Pr (E0 ∩ Eu ∩ Ev)

= Π(m, (m1 − u,m2 + 1), (m1 + v,m2 − 1)). (79)

Along similar lines, we can derive the expressions for
Pr (E0 ∩ Eu ∩ Ew), Pr (E0 ∩ Eu ∩ Ex), Pr (E0 ∩ Ev ∩ Ew),
Pr (E0 ∩ Ev ∩ Ex), and Pr (E0 ∩ Ew ∩ Ex) in (46), (47),
(48), (49), and (50), respectively.
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