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Abstract— A fundamental trade-off exists between the time and
energy allocated to pilots and data, accuracy of channel estimates,
and data rate in a reconfigurable intelligent surface (RIS)-
aided system. We optimize the above trade-off for a two-phase
training scheme. In the first phase, the base station (BS) estimates
the channel from the uplink pilots and configures the RIS.
In the second phase, the user equipment estimates the channel
from the downlink pilots and coherently demodulates the data.
We derive an expression for the achievable rate that accounts for
the impact of the channel estimation errors on the RIS phase-
shift configuration and data demodulation. Our analysis uses a
novel tractable approximation for the effective downlink channel
gain and a novel proof that it is asymptotically Gaussian even in
the presence of spatial correlation. Our analysis applies to the
scenario where enough pilots are sent to estimate the cascaded
channels and the cascaded channel grouping scenario that uses
fewer pilots. We also study two channel models that depend on the
location of the RIS relative to the BS. We derive insightful, closed-
form expressions for the optimal powers and training durations.
The optimal solution highlights the importance of boosting the
pilot powers.

Index Terms— Reconfigurable intelligent surface, channel esti-
mation, power allocation, pilots, achievable rate, grouping.

I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RISs) consist
of thin reflecting elements of metamaterials or patch-

arrays that can change the electromagnetic properties of the
impinging waves, such as phase, in a controllable manner [2].
RISs are easily deployable as no dedicated power supply is
required by them to transmit in their passive configuration [3].
An appropriately configured RIS can enhance coverage in
scenarios where the user equipment (UE) is blocked from its
base station (BS), enhance data rate by improving the signal-
to-noise ratio (SNR), or null an interferer [4], [5]. This makes
RIS an appealing technology for 6G [5].
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In order to benefit from the RIS, the reflection coefficients
of its elements need to be configured appropriately. Broadly,
three methods have been studied for configuring the RIS in the
literature. In the instantaneous channel state information (CSI)-
based methods, the instantaneous CSI of the direct channel
between the BS and the UE and the cascaded channels is
used to configure the RIS [6], [7], [8]. In codebook-based
methods, the best RIS phase-shift configuration is selected
from a set of predefined codebook of configurations [9],
[10]. In statistical CSI-based methods, the RIS configuration
is based on channel statistics such as covariance [11], [12],
[13]. The above methods vary in the training overhead they
require and the passive RIS beamforming gains they can
generate.

For the instantaneous CSI-based method, the channel train-
ing is based on the on/off method, in which the RIS elements
are turned on sequentially one at a time [7], [8], [14], [15],
or the discrete Fourier transform (DFT)/Hadamard matrix-
based method, in which the RIS configuration is chosen from
the columns of a DFT/Hadamard matrix [6], [7], [16]. In [6],
the least squares (LS) estimator and linear minimum mean
squared error (LMMSE) estimator-based cascaded channel
estimation is studied. The RIS phase-shifts and power allo-
cation are optimized to maximize the rate. In [7], pilot and
data power allocations are optimized to maximize the achiev-
able rate. In [8], an achievable rate-maximizing pilot power
allocation is investigated. Cascaded channel estimation when
the transmitter and receiver have multiple antennas is studied
in [16]. While the beamforming gain of the instantaneous-CSI
based methods is large, the training overhead is proportional
to the number of the RIS elements.

To reduce the training overhead, the cascaded channel
grouping technique, in which only the sum of cascaded
channels per group needs to be estimated, is studied in [14],
[15]. In [15], the focus is on optimizing the RIS configuration
and the transmit power to maximize the achievable rate. The
optimal grouping size that maximizes the achievable rate is
investigated in [14]. The channel estimation scheme proposed
in [17] makes use of the eigenvectors of the spatial correlation
matrix of the cascaded channel gain vector. As a result, the
pilot overhead is proportional to the rank of the correlation
matrix, which is smaller. Machine learning-based approaches
are studied for cascaded channel estimation in [18] and [19].
A convolutional neural network-based deep learning scheme
is proposed in [18], while a federated learning-based approach
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is studied in [19]. A compressed sensing-based two-stage
cascaded channel estimation method, which exploits the low-
rank nature of the sparse channel to reduce the training
overhead, is studied in [20].

In the codebook-based methods, the training overhead and
the beamforming gain depend on the size of the codebook [21].
Two codebook designs, one with random phase-shift entries
and the other in which the Euclidean distance between the
codes is maximized, are studied in [9], [10]. In [9], rate-
maximizing active and passive beamforming are studied. The
focus in [10] is on minimizing the transmit power.

In the statistical CSI-based methods, the training overhead
is lower when amortized over time since the channel statistics
vary slowly. However, the beamforming gain is also lower
due to the reduced degrees of freedom in configuring the
RIS. To configure the RIS reflection coefficients, a genetic
algorithm-based approach is studied in [12], a gradient
ascent algorithm is developed in [11], and a majorization-
minimization-based approach is employed in [13]. The above
three works focus on maximizing the uplink rate.

A. Contributions

We focus on the instantaneous CSI-based method because
it was among the first methods proposed for determining the
RIS phase-shift configuration and has attracted considerable
attention in the literature. In this method, noise during channel
estimation leads to channel estimation errors that affect the
RIS-aided system in multiple ways. First, the channel estima-
tion errors result in a sub-optimal configuration of the RIS
reflection coefficients. Furthermore, the estimation errors have
a non-linear impact on the phase-shifts of the RIS elements.
This alters the effective gain of the BS-to-RIS-to-UE channel,
as it is a function of the cascaded channel gains and reflection
coefficients of the RIS elements. Second, the errors lead to an
imperfect estimate of the above effective channel gain itself.
Increasing the pilot energy or training duration improves the
accuracy of the channel estimates that are used for configuring
the RIS phase-shifts and for demodulating the data symbols.
However, doing so reduces the number of data symbols that
can be transmitted in a coherence interval and the energy
available at the BS for transmitting them. We comprehensively
address the above fundamental trade-off and characterize the
cumulative impact of the channel estimation errors on the
downlink achievable rate for the data transmitted by the BS
to the UE via the RIS. We make the following contributions:

1) Comprehensive Channel Models and Training Scenarios:
We consider two channel models that depend on the location of
the RIS relative to the BS. In the first model, the BS-RIS link
is a deterministic line-of-sight (LoS) link. This arises when the
RIS is placed at a height close to the BS [6]. In the second
model, the BS-RIS link is a non-line-of-sight (NLoS) link [22].
This is suitable for an urban scenario where the LoS between
the BS and the RIS can be blocked. In both models, the RIS-
UE link is a NLoS link.

We study a two-phase training scheme that exploits channel
reciprocity of time-division duplex (TDD) systems. In the first
uplink training phase, the BS estimates the cascaded channel

gains from the uplink pilots and then configures the phase-
shifts of the RIS. In the second downlink training phase, the
BS sends pilots followed by data. The UE estimates the effec-
tive BS-UE channel gain and uses it to coherently demodulate
the data. Thus, no feedback from the BS to the UE is required.

Another comprehensive aspect of our study is that it covers
two training scenarios. In the first scenario, enough pilots
are sent to estimate each of the individual cascaded channel
gains. In the second scenario, which arises in cascaded channel
grouping, the number of pilots is less than the number of
reflecting elements.

2) Lower Bound on Achievable Data Rate: We derive a
novel lower bound on the achievable ergodic data rate for
the above training scheme that accounts for the training over-
heads and the combined impact of the imperfect phase-shift
configuration of the RIS, due to the uplink channel estimation
errors, and the downlink channel estimation errors on data
demodulation. To make the derivation tractable, we propose
a novel approximation for the effective BS-UE channel gain
with channel estimation errors.

3) Gaussianity of BS-UE Channel Gain for a Large RIS:
The above bound on the achievable rate assumes that the
effective BS-UE channel gain in the presence of channel
estimation errors is a Gaussian random variable (RV). This
is motivated by the central limit theorem. When a large
number of independent and identically distributed RVs are
summed, it is sufficient for the RVs to have a finite variance
for the central limit theorem to apply. However, this is no
longer sufficient when the RVs are correlated. Instead, our
proof employs more sophisticated ρ-mixing arguments [23].
We show numerically that this result also applies to planar
RISs with just a few elements. We note that the Gaussian
assumption has been employed in the RIS literature without
any such theoretical backing [7].

4) Numerical Results: Our numerical results show that
the proposed optimal scheme outperforms the allocation of
equal power for training and data transmission and the on/off-
based training scheme. We find that grouping of the RIS
elements significantly improves the achievable rate. We deter-
mine the optimal group size that maximizes the achievable
data rate. We note that a comprehensive comparison with the
codebook-based methods [9], [10] and statistical CSI-based
methods [11], [12], [13] is beyond the scope of this paper.
Such a comparison depends on several system variables, the
codebook size, and how often the channel gains and their
statistics change.

Comparison with Literature: There are fundamental differ-
ences between our system model, training model, and analysis
of the achievable rate and those considered in the literature.
In [7], the focus is on the uplink. As a result, the BS can
employ the same channel estimates to configure the RIS and
demodulate the data. In [8], the impact of noise on only the
phase-shift configuration is studied. However, the effective
channel gain is implicitly assumed to be perfectly known at
the UE when it demodulates the data. In [6], [15], [16], the
actual channel gain is replaced with the estimated gain in the
rate expression. The rate expression so obtained is neither
the channel capacity nor an achievable rate. In [14], [17],
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Fig. 1. System model showing an RIS-aided BS transmitting data to a UE.
Also shown are the uplink training, downlink training, and data transmission
phases, with the corresponding durations and transmit powers.

[18], [19], [20], the focus is on minimizing the mean squared
error (MSE) or the training overhead. The impact of channel
estimation error on the rate is not studied. Lastly, the cascaded
channel gains are assumed to be uncorrelated in [7], [8], [14].

B. Outline and Notations

Section II describes the system model, the training
scheme, and the achievable data rate-maximization problem.
In Section III, we prove the asymptotic Gaussianity of the
downlink channel gain, numerically verify it for smaller RIS
systems, and derive the optimal training durations and transmit
powers. We analyze the impact of grouping of RIS elements
on the data rate in Section IV. Numerical results and our
conclusions follow in Sections V and VI, respectively.

Notation: We show scalar variables in normal font and
matrices in bold font. E [X], E [X|Y ], Var [X], and FX (.)
denote expectation, expectation conditioned on Y , variance,
and cumulative distribution function (CDF) of X , respectively.
Cov [X,Y ] denotes the covariance between X and Y . The
operators |.|, ∠., (.)∗, ℜ [.], and ℑ [.] represent the absolute
value, angle, complex conjugate, real part, and imaginary part,
respectively. XH and XT denote Hermitian and transpose of
X, respectively. In denotes the identity matrix of order n. The
notation X ∼ CN

(
µ, τ2

)
means that X has a complex normal

distribution with mean µ and variance τ2. The (i, k)th element
of X is denoted as X (i, k).

II. SYSTEM MODEL AND PROBLEM FORMULATION

An RIS with N passive reflecting elements is deployed,
as shown in Figure 1(a). Let dH and dV be the width and
height of an RIS element normalized by the wavelength, and
NH and NV be the number of RIS elements in the horizontal
and vertical directions. Let N = NHNV. The reflection
coefficient of the ith reflecting element is ϕi = ejθi , where
θi ∈ [0, 2π) [6]. The BS configures the phases θ1, . . . , θN by
sending control signals over a wired link.

The channel coefficients from the BS to the ith element
of the RIS and from the ith element of the RIS to the
UE are denoted as vi and ui, respectively. The cascaded
channel gain hi between the BS and the UE through the ith

element of the RIS is hi = viui. Let v = [v1, . . . , vN ]T ,
u = [u1, . . . , uN ]T , and h = [h1, . . . , hN ]T . The direct
link between the BS and UE is assumed to be blocked by
obstacles. We consider a single-antenna BS and UE because
the cumulative impact of channel estimation errors on the
statistics of the effective channel gain and the achievable
rate, and the joint optimization of the training durations, pilot
power, and data power to address this impact are not fully
understood even for this model in the literature. In multiple
antenna systems, the training overhead is larger and the impact
of the channel estimation errors on the precoding vector at the
BS also needs to be considered.

The RIS-UE link is an NLoS Rayleigh channel. Then, u ∼
CN (0, βuR), where βu is the pathloss from the RIS to the UE.
Here, R = E

[
uuH

]
/βu denotes the spatial correlation matrix

of the RIS. We focus on the correlation model developed
in [22] for an isotropic scattering environment. In it, the
(i, k)th entry of R is given by R(i, k) = sinc (2di,k), where
di,k is the wavelength-normalized distance between the left-
bottom corners of the ith and the kth elements of the RIS.
Based on the nature of the BS-RIS link, we consider the
following two channel models.

1) LoS-NLoS Model: In this model, the BS-RIS link is
a deterministic LoS link. Let φaz and φel be the azimuth
and elevation angles of arrival at the RIS. Then, vi =√
βve

j2π[mod(i−1,NH)dH cos φel sin φaz+⌊(i−1)/NH⌋dV sin φel] for i ∈
{1, . . . , N} [22]. Here, βv is the pathloss in the BS-RIS
link. Thus, hi ∼ CN (0, βuβv). We note that βu and βv are
proportional to the area of the reflecting element [22].

2) NLoS-NLoS Model: In this model, the BS-RIS channels
undergo Rayleigh fading. Then, v ∼ CN (0, βvR). Further-
more, vi and ui are independent since the BS and the UE are
far apart [22]. Thus, E [hi] = 0 and Var [hi] = βuβv for all
i ∈ {1, . . . , N}.

A. Training Scheme

The proposed training scheme is shown in Figure 1(b).
A coherence block of length Tc symbols consists of the
following two phases.

1) Uplink Training Phase: The UE transmits TUL
p pilots in

the uplink with transmit power ρUL
p . Let xul

p (k) be the pilot
symbol in the kth transmission. Without loss of generality,
xul

p (k) = 1 for all k ∈
{
1, . . . , TUL

p

}
. Then, the received

signal vector yUL
p at the BS is given by

yUL
p =

√
ρUL

p ΦULh + nUL. (1)

Here, ΦUL ∈ CT UL
p ×N is the reflection coefficient matrix of the

RIS during uplink training and nUL ∼ CN
(
0, σ2IT UL

p

)
is the

additive white Gaussian noise (AWGN) at the BS. We choose
ΦUL such that

(
ΦUL

)H
ΦUL = TUL

p IN and |ΦUL (i, j) |2 =
1 for all i ∈

{
1, . . . , TUL

p

}
and j ∈ {1, . . . , N}. These require-

ments are fulfilled when ΦUL is constructed by taking, for
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example, N columns of a DFT matrix or a Hadamard matrix
of size TUL

p × TUL
p . This decorrelates the noise components

in the observations corresponding to each of the cascaded
channels [6], [24].

From yUL
p , the BS estimates h. Let the estimate of hi be

ĥi and let ĥ =
[
ĥ1, . . . , ĥN

]T
. The BS then configures the

reflection coefficients of the RIS elements as a function of ĥ
such that the effective channel strength is maximized. Thus,
it sets the reflection coefficient ϕ̂i of the ith reflecting element
as [8]

ϕ̂i = ej∠ĥ∗i . (2)

2) Downlink Training and Data Transmission Phase: After
configuring the RIS in the uplink training phase, the BS
transmits TDL

p pilots followed by TDL
d data symbols in the

downlink with powers ρDL
p and ρDL

d , respectively. The received
pilot signal vector yDL

p at the UE is

yDL
p =

√
ρDL

p g(ĥ)xDL
p + nDL

p , (3)

where the pilot vector xDL
p ∈ CT DL

p ×1 satisfies
(
xDL

p

)H
xDL

p =

TDL
p , nDL

p ∼ CN
(
0, σ2IT DL

p

)
denotes the AWGN vector at the

UE during pilot reception, and g(ĥ) is the effective channel
gain between the BS and UE. It is given by

g(ĥ) =
N∑

i=1

ϕ̂ihi. (4)

Notice that g(ĥ) is affected by the noise in the uplink training
phase.

The received data signal yDL
d (k) at the UE when the kth

data symbol xDL
d (k) is transmitted is

yDL
d (k) =

√
ρDL

d g(ĥ)xDL
d (k) + nDL

d (k) . (5)

Here, nDL
d (k) ∼ CN

(
0, σ2

)
is AWGN and E

[
|xDL

d (k) |2
]

=
1 for all k.

From yDL
p , the UE estimates g(ĥ). Let its estimate be

denoted by ĝ(ĥ). Then, the UE employs ĝ(ĥ) to coherently
demodulate xDL

d (k) from yDL
d (k). Thus, ĝ(ĥ) is affected by

the noise in the uplink and downlink training phases.

B. Problem Formulation

Our aim is to optimize the number of training symbols and
the transmit powers during training and data transmission to
maximize the ergodic rate, subject to the following constraints.

1) UE Energy Budget Constraint: The energy consumed
by the UE during the uplink training in a coherence block is
limited to EUE. Thus, ρUL

p TUL
p = EUE.

2) BS Energy Budget Constraint: The total energy consumed
by the BS during the downlink training and data transmission
phases in a coherence block is EBS. It can be written as
ρDL

d TDL
d = αEBS and ρDL

p TDL
p = (1− α)EBS. Here, the

energy allocation factor α ∈ [0, 1] is fraction of energy spent
on downlink data transmission and is a parameter that we shall
optimize.

Note: The above formulation does not combine the energy
budgets of the UE and the BS. This acknowledges the fact that
the energy expended on the uplink is by an energy-constrained
UE, while that on the downlink is by the BS, which is not
as constrained because it is often connected to the power
grid. A single total energy budget is a special case of this
formulation.

Additionally, the uplink and downlink training and the data
transmission must occur within the coherence interval. Let
C
(
α, TUL

p , TDL
p

)
denote the ergodic rate. Then, the ergodic

rate-maximization problem can be formulated as follows:

P0 : max
α∈[0,1],T UL

p ≥N,T DL
p ≥1

{
C
(
α, TUL

p , TDL
p

)}
, (6)

s.t. ρUL
p TUL

p = EUE, (7)

ρDL
d TDL

d = αEBS, (8)

ρDL
p TDL

p = (1− α)EBS, (9)

TUL
p + TDL

d + TDL
p = Tc. (10)

III. OPTIMAL SOLUTION

We first derive in Section III-A a tractable lower bound for
C
(
α, TUL

p , TDL
p

)
, which accounts for the channel estimation

errors in both uplink and downlink training phases, assuming
that g(ĥ) is a Gaussian RV. Next, in Section III-B, we derive
closed-form expressions for the mean and the variance of
g(ĥ). In Section III-C, we prove that g(ĥ) is asymptotically
Gaussian as N increases. In Section III-D, we solve P0.

A. Tractable Lower Bound on C
(
α, TUL

p , TDL
p

)
Let ge(ĥ) be the estimation error in estimating g(ĥ). Thus,

ge(ĥ) = g(ĥ) − ĝ(ĥ). Then, we can rewrite the received
downlink data signal in (5) as

yDL
d (k) =

√
ρDL

d ĝ(ĥ)xDL
d (k) +

√
ρDL

d ge(ĥ)xDL
d (k) + nDL

d (k) .

(11)

Consider the downlink pilot signal in (3). Let ỹDL
p =(

xDL
p

)H
yDL

p /
(√

ρDL
p TDL

p

)
. Assuming that g(ĥ) is a Gaussian

RV, the minimum mean square error (MMSE) estimate ĝ(ĥ)
of g(ĥ) is given by [25, Ch. 12.3]

ĝ(ĥ) =
Cov

[
g(ĥ), ỹDL

p

]
Var
[
ỹDL

p

] ỹDL
p + E

[
g(ĥ)

]

−
Cov

[
g(ĥ), ỹDL

p

]
Var
[
ỹDL

p

] E
[
ỹDL

p

]
. (12)

Let E
[
g(ĥ)

]
= µg and Var

[
g(ĥ)

]
= σ2

g . We can show that

Cov
[
g(ĥ), ỹDL

p

]
= σ2

g , Var
[
ỹDL

p

]
= σ2

g + σ2/
(
ρDL

p TDL
p

)
, and

E
[
ỹDL

p

]
= µg . Substituting these expressions in (12) yields

ĝ(ĥ) =
σ2

g

σ2
g + σ2

ρDL
p T DL

p

ỹDL
p +

1−
σ2

g

σ2
g + σ2

ρDL
p T DL

p

µg. (13)
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Since ĝ(ĥ) is an MMSE estimate of g(ĥ),
we know that E

[
ge(ĥ)|ĝ(ĥ)

]
= 0 [26]. Furthermore,

E
[
xDL

d (k) g∗e (ĥ)|ĝ(ĥ)
]

= 0 since xDL
d (k) is independent of

ge(ĥ). Let xDL
d (k) ∼ CN (0, 1). Then, C

(
α, TUL

p , TDL
p

)
can

be lower bounded as [26], [27]:

C
(
α, TUL

p , TDL
p

)
≥ CLB

(
α, TUL

p , TDL
p

)
=
TDL

d

Tc
Eĝ(ĥ)

log2

1 +
ρDL

d |ĝ(ĥ)|2

ρDL
d E

[
|ge(ĥ)|2|ĝ(ĥ)

]
+ σ2

 ,
(14)

where the expectation is over ĝ(ĥ). The above expression
arises when the term

√
ρDL

d ge(ĥ)xDL
d (k) + nDL

d (k) in (11)
is treated as the effective noise, which is uncorrelated with
the first term given ĝ(ĥ).

Henceforth, we focus on the case where TDL
d > 1 since the

data rate in (14) scales linearly with TDL
d .

To further simplify (14), we compute E
[
|ge(ĥ)|2|ĝ(ĥ)

]
and

E
[
|ĝ(ĥ)|2

]
in closed-form below.

Lemma 1: E
[
|ge(ĥ)|2|ĝ(ĥ)

]
= σ2

gσ
2
/(
ρDL

p TDL
p σ2

g + σ2
)
.

And, E
[
|ĝ(ĥ)|2

]
= σ2

g −
σ2

gσ2

ρDL
p T DL

p σ2
g+σ2 + |µg|2.

Proof: The proof is given in Appendix A.
Applying Lemma 1 in (14) and simplifying yields

CLB
(
α, TUL

p , TDL
p

)
=
TDL

d

Tc
E
[
log2

(
1 + SNReff|ĝnorm(ĥ)|2

)]
,

(15)

where |ĝnorm(ĥ)|2 = |ĝ(ĥ)|2
/(

σ2
g −

σ2
gσ2

ρDL
p T DL

p σ2
g+σ2 + |µg|2

)
and

SNReff ≜
ρDL

d ρDL
p TDL

p σ2
g

(
σ2

g + |µg|2
)

+ ρDL
d |µg|2σ2

ρDL
d σ2

gσ
2 + ρDL

p TDL
p σ2

gσ
2 + σ4

. (16)

Since E
[
|ĝnorm(ĥ)|2

]
= 1, which follows from Lemma 1,

SNReff can be interpreted as the effective SNR in the downlink.
It is a function of TUL

p , TDL
p , and α.

B. Expressions for Mean µg and Variance σ2
g of g(ĥ)

Let ỹUL
p,i =

[
ΦUL (:, i)

]H
yUL

p

/(√
ρUL

p TUL
p

)
. Let ĥi be the

LMMSE estimate of hi. Then, as in (12), ĥi is given by

ĥi =
βuβv

βuβv + σ2

ρUL
p T UL

p

ỹUL
p,i . (17)

Substituting the simplified expression for ỹUL
p,i from (1) and

rearranging, we get

ĥi = γhi + ϵi, (18)

where γ = βuβv
/(
βuβv + σ2

ρUL
p T UL

p

)
and ϵi =

γ
[
ΦUL (:, i)

]H
nUL

/(√
ρUL

p TUL
p

)
. Note that ϵi and

ϵk are uncorrelated for all i ̸= k. This is because

Fig. 2. Normalized MSE of approximation of g(ĥ) as a function of
EUEβuβv/σ2

(
N = 64× 8, dV = dH = 1

4
, φaz = 36◦, and φel = 60◦

)
.

E [ϵiϵ∗k] = γ2σ2
[
ΦUL (:, i)

]H
ΦUL (:, k)

/(
ρUL

p

(
TUL

p

)2)
and the orthogonality of the columns of ΦUL implies that[
ΦUL (:, i)

]H
ΦUL (:, k) = 0 for i ̸= k.

From the definition of ϕ̂i in (2), we get

ϕ̂i =
ĥ∗i

|ĥi|
=

γh∗i + ϵ∗i
|γhi + ϵi|

. (19)

We note that noise appears in both the numerator and the
denominator of (19), which makes the derivation of µg and
σ2

g intractable. To get a tractable expression for ϕ̂i, we use the
following approximation, which is motivated by considering
the high SNR regime during the uplink training phase. In this
regime, γ → 1 and ϵi → 0. Then,

ϕ̂i ≈
γh∗i + ϵ∗i
|hi|

. (20)

We shall assess its accuracy in the low SNR regime below
and also in Section V. Substituting (20) in the expression for
g(ĥ) in (4) and rearranging terms yield

g(ĥ) ≈
N∑

i=1

(
γ|hi|+ ϵ∗i e

j∠hi
)
. (21)

An alternate approximation can be obtained by substituting
γ = 1 in the numerator as well as the denominator of (19).
However, it is less accurate.

1) Accuracy of Approximation: In Figure 2, we plot the

MSE E
[∣∣∣∑N

i=1
γh∗i +ϵ∗i
|γhi+ϵihi|hi −

∑N
i=1

(
γ|hi|+ ϵ∗i e

j∠hi
) ∣∣∣2]

between the unapproximated effective channel gain
g(ĥ) =

∑N
i=1

γh∗i +ϵ∗i
|γhi+ϵihi|hi, obtained by substituting (19)

in (4), and its approximation in (21) as a function of
EUEβuβv/σ

2 for the two channel models. It is normalized

by E
[∣∣∣∑N

i=1
γh∗i +ϵ∗i
|γhi+ϵihi|hi

∣∣∣2], which is the mean square

value of the unapproximated g(ĥ). The simulation is done
for N = 512 and (βuβv/σ

2) = 0 dB. The expectations
are computed numerically by Monte Carlo simulations
for 5 × 104 uplink noise samples and fading states. The
normalized MSE (NMSE) decreases as EUE increases for
both channel models. It is less than 10% when EUEβuβv/σ

2

is as small as 5 dB for both models.
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Fig. 3. Illustration of an RIS plane that shows indexing of reflecting elements
and their inter-element distance

(
N = 4× 4

)
.

2) Expressions: We now derive µg and σ2
g for the two

channel models.
Lemma 2: For the LoS-NLoS model, µg and σ2

g are given
by

µg =
√
π

2
Nγ
√
βuβv, (22a)

σ2
g =

π

4
γ2

N∑
i=1

N∑
k=1

βuβvF
(
−1

2
,−1

2
; 1; [R (i, k)]2

)
+N

γ2σ2

ρUL
p TUL

p
− π

4
N2γ2βuβv, (22b)

where F (.; .; .) is the hypergeometric function [28, Ch. 15].
For the NLoS-NLoS model, the corresponding expressions are

µg =
π

4
Nγ
√
βuβv, (23a)

σ2
g =

π2

16
γ2

N∑
i=1

N∑
k=1

βuβv

[
F
(
−1

2
,−1

2
; 1; [R (i, k)]2

)]2
+N

γ2σ2

ρUL
p TUL

p
− π2

16
N2γ2βuβv. (23b)

Proof: The proof is given in Appendix B.

C. Asymptotic Gaussianity of g(ĥ)
For ease of exposition, we focus on dH = dV = d̄. A similar,

but more involved, proof also holds for dH ̸= dV. Let the ith

summand of g(ĥ) in (21) be denoted by χi. Then,

χi = γ|hi|+ ϵ∗i e
j∠hi . (24)

Let di,k be the distance between the points(
mod (i− 1, NH) d̄, ⌊(i− 1)/NH⌋ d̄

)
and (mod(k − 1, NH)

d̄, ⌊(k − 1)/NH⌋ d̄) in the RIS plane. These points correspond
to the left-bottom corners of the ith and the kth RIS elements.
For example, d1,11 is shown in Figure 3.

The normalized correlation coefficient between χi and χk

is defined as

ρ (χi, χk) =
E [χi, χ

∗
k]− E [χi] E [χ∗k]√

Var [χi] Var [χk]
. (25)

Let

ρsup (n) ≜ sup
k∈Sn

{|ρ (χ1, χk) |} , (26)

where sup {.} denotes the supremum and Sn is the set of
indices of the RIS elements that satisfy d1,k ≥ nd̄. For
example, in Figure 3, S2 = {3, 4, 7, 8, . . . , 16}. Thus, when
ρsup (n) → 0, ρ (χ1, χk) → 0 for all k ∈ Sn.

Definition [23]: A sequence {χi}N
i=1 is said to be ρ-

mixing when χ1, . . . , χN are asymptotically independent, i.e.,
ρsup (n) → 0 as n→∞.

We now derive the expressions for ρsup (n).
Lemma 3: Let isup be the index of an RIS element such that

ρsup (n) = |ρ
(
χ1, χisup

)
|. Then, ρsup (n) for the LoS-NLoS

and NLoS-NLoS models is given by

ρsup (n)

=



πβuβv

[
F
(
− 1

2 ,−
1
2 ; 1; [R (1, isup)]

2
)
− 1
]

4
(
βuβv − πβuβv

4 + σ2

ρUL
p T UL

p

) ,

for LoS-NLoS model, (27a)

π2βuβv

[[
F
(
− 1

2 ,−
1
2 ; 1; [R (1, isup)]

2
)]2

− 1
]

16
(
βuβv − π2βuβv

16 + σ2

ρUL
p T UL

p

) ,

for NLoS-NLoS model. (27b)

Proof: The proof is given in Appendix C.
Using Lemma 3, we now prove that the sequence {χi}N

i=1
is ρ-mixing.

Lemma 4: The sequence {χi}N
i=1 is ρ-mixing when N →

∞.
Proof: The proof is given in Appendix D.

From [23, Th. 0], the sum of a ρ-mixing
sequence

∑n
i=1 χi becomes a Gaussian RV as

n → ∞ when the following three conditions hold:
(a) Var [χi] < ∞, (b) limn→∞ Var [

∑n
i=1 χi] → ∞,

and (c)
∑∞

i=1 ρsup
(
2i
)
<∞. Lemma 4 leads to the following

key theorem.
Theorem 1: g(ĥ) =

∑N
i=1 χi becomes a complex Gaussian

RV as N →∞.
Proof: The proof is given in Appendix E.

Note that the real and imaginary parts of g(ĥ) =
∑N

1 χi

are independent. This is because the real and imaginary parts
of χi are independent since hi and ϵi are independent of each
other and both are circularly symmetric.

1) Numerical Assessment: We first consider the
NLoS-NLoS model. Let E

[
ℜ
[
g(ĥ)

]]
= µR and

Var
[
ℜ
[
g(ĥ)

]]
= σ2

R. When ℜ
[
g(ĥ)

]
is Gaussian, we know

that Fℜ[g(ĥ)] (x) = 1−Q ((x− µR)/σR), where Q(.) is
the Gaussian-Q function. Figures 4(a) and 4(b) compare
Q−1

(
1− Fℜ[g(ĥ)] (x)

)
(denoted by NumericalCDFR) with

(x− µR)/σR (denoted by GaussianCDFR) for two values
of N . Here, Fℜ[g(ĥ)] (x), µR, and σR are determined
numerically from Monte Carlo simulations. The closer
Q−1

(
1− Fℜ[g(ĥ)] (x)

)
is to the straight line (x− µR)/σR,

the more Gaussian the distribution is. This method is referred
to as the Gaussian probability paper test [29, Ch. 6]. We see
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Fig. 4. CDF of real and imaginary parts of g(ĥ) on Gaussian probability
paper for two values of N (d̄ = 1/4).

that as N increases, the two curves are closer to each other
over a wider range.

The corresponding results for ℑ
[
g(ĥ)

]
are shown

in Figures 4(c) and 4(d). In them, we compare
Q−1

(
1− Fℑ[g(ĥ)] (x)

)
(denoted by NumericalCDFI)

with (x− µI)/σI (denoted by GaussianCDFI). Here,
E
[
ℑ[g(ĥ)]

]
= µI and Var

[
ℑ[g(ĥ)]

]
= σ2

I . We see
that NumericalCDFI converges to GaussianCDFI even
for small values of N . This follows from (21) because
ℑ[g(ĥ)] =

∑N
i=1ℑ

[
ϵ∗i e

j∠hi
]
, and hi and ϵi are independent

of each other and both are circularly symmetric. Thus,
Figure 4 shows that Theorem 1 can be applied even for small
N . Similar results arise for the LoS-NLoS model. We skip
them to conserve space.

D. Optimal Training Durations and Transmit Powers

We first find the optimal power allocation factor as a
function of TDL

d .
Lemma 5: Given TDL

d , the optimal value α⋆
(
TDL

d

)
of α is

given by

α⋆
(
TDL

d

)
= ζ

(
TDL

d

)
−
√
ζ (TDL

d ) [ζ (TDL
d )− κ], (28)

where

ζ
(
TDL

d

)
=
EBSσ

2
g + σ2

EBSσ2
g

TDL
d

TDL
d − 1

, (29)

κ =
EBSσ

2
g

(
σ2

g + |µg|2
)

+ |µg|2σ2

EBSσ2
g

(
σ2

g + |µg|2
) . (30)

Proof: The proof is given in Appendix F.
Substituting ρDL

d = α⋆
(
TDL

d

)
EBS/T

DL
d , ρDL

p TDL
p =[

1− α⋆
(
TDL

d

)]
EBS, and the expression of α⋆

(
TDL

d

)
from (28) in (15) yields

CLB
(
α⋆
(
TDL

d

)
, TUL

p , TDL
p

)
=
TDL

d

Tc
E

[
log2

(
1 + |ĝnorm(ĥ)|2

EBS
(
σ2

g + |µg|2
)

σ2 (TDL
d − 1)

×
[√

ζ (TDL
d )−

√
ζ (TDL

d )− κ

]2)]
. (31)

We prove the following monotonicity property of
CLB

(
α⋆
(
TDL

d

)
, TUL

p , TDL
p

)
.

Theorem 2: CLB
(
α⋆
(
TDL

d

)
, TUL

p , TDL
p

)
is a monotonically

increasing function of TDL
d .

Proof: The proof is given in Appendix G.
This can be explained as follows. When TUL

p decreases, the
uplink channel estimates become less accurate, due to which
the effective channel strength and SNReff decrease. However,
this decrease is within a logarithmic term. On the other hand,
the increase in TDL

d is in a pre-log factor in (15), which
dominates. The same logic applies to TDL

p .
It follows from Theorem 2 that the optimal uplink training

duration TUL
p,opt and the optimal downlink training duration TDL

p,opt
are given by

TUL
p,opt = N and TDL

p,opt = 1, (32)

as these are the minimum number of pilots required to estimate
N cascaded channel gains in the uplink and a single effective
channel gain in the downlink, respectively. Then, TDL

d = Tc−
N − 1.

Corollary 1: The optimal value αopt of the energy alloca-
tion factor is given by

αopt =
EBSσ

2
g + σ2

EBSσ2
g

ω − ψ, (33)

where ω = (Tc −N − 1)/(Tc −N − 2) and ψ =√
[EBSσ2

g+σ2]ω
EBSσ2

g

(
[EBSσ2

g+σ2]ω
EBSσ2

g
−EBSσ2

g(σ2
g+|µg|2)+|µg|2σ2

EBSσ2
g(σ2

g+|µg|2)

)
. Fur-

thermore, the optimal uplink pilot power ρUL
p,opt, the optimal

downlink pilot power ρDL
p,opt, and the optimal downlink data

power ρDL
d,opt are given by

ρUL
p,opt =

EUE

N
, (34)

ρDL
d,opt =

EBS

Tc −N − 1

(
EBSσ

2
g + σ2

EBSσ2
g

ω − ψ

)
, (35)

ρDL
p,opt = EBS

(
1−

EBSσ
2
g + σ2

EBSσ2
g

ω + ψ

)
. (36)

Proof: Equation (33) follows from (28). Simi-
larly, (34), (35), and (36) follow from the constraints in (7), (8),
and (9).

IV. IMPACT OF CASCADED CHANNEL GROUPING

In grouping, the N reflecting elements are divided into K
groups. Each group contains N/K elements. We assume N/K
to be an integer. All the elements in a group use the same
reflection coefficient [15]. The training and data transmission
phases are now as follows.

A. Uplink Channel Estimation and RIS Configuration

The UE sends TUL
p ≥ K pilots in the uplink with power

ρUL
p . Then, as in (1), the received pilot vector at the BS is

given by

yG =
√
ρUL

p ΦG [G1, . . . , GK ]T + nG. (37)
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Here, ΦG is a TUL
p ×K matrix, Gk =

∑
i∈Ck

hi is the effective
cascaded channel gain of the kth group, Ck is the set of indices
of the reflecting elements that belong to the kth group, and
nG ∼ CN

(
0, σ2IK

)
is AWGN. As before, (ΦG)H ΦG =

TUL
p IK and |ΦG (i, k) | = 1. It can be constructed by choosing
K columns of a DFT matrix or a Hadamard matrix of size
TUL

p × TUL
p .

We assume that G1, . . . , GK are statistically identical. This
is reasonable for large N . Then, E [Gk] = 0. Let σ2

grp =
Var [Gk] =

∑
i∈Ck

∑
i′∈Ck

E [hih
∗
i′ ]. For any 1 ≤ k ≤ K,

we can show that

σ2
grp

=


∑
i∈Ck

∑
i′∈Ck

βuviv
∗
i′R(i, i′), for LoS-NLoS model, (38)∑

i∈Ck

∑
i′∈Ck

βuβv [R(i, i′)]2 , for NLoS-NLoS model. (39)

As in (12), we can find the LMMSE estimate Ĝk of Gk from
ỹG,k = [ΦG (:, k)]H yG

/(√
ρUL

p TUL
p

)
as Ĝk = γGỹG,k, where

γG = σ2
grp

/(
σ2

grp + σ2

ρUL
p T UL

p

)
. Substituting the expression for

ỹG,k and simplifying yields

Ĝk = γGGk + ϵG,k, (40)

where ϵG,k = γG [ΦG (:, k)]H nG
/(√

ρUL
p TUL

p

)
. The BS now

sets the reflection coefficients of all the elements in group k

as ϕ̂k = ej∠Ĝ∗k , and the effective channel gain is given as

g(Ĝ) =
K∑

k=1

ϕ̂kGk =
K∑

k=1

ej∠Ĝ∗kGk, (41)

where Ĝ =
[
Ĝ1, . . . , ĜK

]T
. It is a function of the noise

during the uplink training phase.

B. Optimal Training Durations and α

We focus on the LoS-NLoS model. The derivation of
the mean and the variance of g(Ĝ) is intractable for the
NLoS-NLoS model because the correlation coefficient for the
envelopes among the effective channels of the groups are not
known to the best of our knowledge. For the LoS-NLoS model,
we have Gk ∼ CN

(
0, σ2

grp

)
for all k ∈ {1, . . . ,K}. As in

Section III-B, ϕ̂k ≈ (γGGk + ϵG,k) /|Gk|. Substituting this
in (41) and simplifying yields the following expression of
g(Ĝ):

g(Ĝ) ≈
K∑

k=1

(
γG|Gk|+ ϵ∗G,ke

j∠Gk
)
. (42)

This leads to the following result about the mean and the
variance of g(Ĝ).

Lemma 6: The mean and the variance of g(Ĝ) with group-
ing are given by

E
[
g(Ĝ)

]
=
√
πKγG

√
σ2

grp

2
, (43a)

Var
[
g(Ĝ)

]
=
π

4

K∑
k=1

K∑
k′=1

γ2
Gσ

2
grp

×F

−1
2
,−1

2
; 1;

[∑
i∈Ck

∑
i′∈Ck′

βuviv
∗
i′R(i, i′)

σ2
grp

]2


+K
γ2

Gσ
2

ρUL
p TUL

p
− π

4
K2γ2

Gσ
2
grp . (43b)

Proof: The proof is given in Appendix H.
Substituting (43a) and (43b) in (12) gives the linear esti-

mator for g(Ĝ). We can prove the asymptotic Gaussianity
of g(Ĝ) for sufficiently large K in a manner similar to
Section III-C. We skip the details to conserve space. With
grouping, the same expression for the achievable rate in (31)
applies except that µg and σ2

g are as given in (43a) and (43b),
respectively. Similar to Theorem 2, we can prove that the
achievable rate is an increasing function of TDL

d . Therefore,
the optimal uplink and downlink training durations are

TUL
p = K and TDL

p = 1. (44)

Substituting TDL
d = Tc −K − 1 in (28) yields the expression

for the optimal α.
Since K ≤ N , the rate-maximizing uplink training duration

is smaller than that without grouping. Thus, more time is
available for data transmission. However, as the number of
elements per group N/K increases, the SNR in the down-
link decreases since |g(Ĝ)|2 decreases. This is because of a
decrease in the degrees of freedom available for combining
the multiple reflected paths constructively.

V. NUMERICAL RESULTS

We quantify the dependence of the rate CLB
(
α, TUL

p , TDL
p

)
,

the optimal downlink pilot and data powers, and the extent
of grouping on various system parameters and the training
overhead. We consider the uniform planar array configuration
for the RIS. We set dH = dV = d̄ = 1/4, φaz = 36◦, and
φel = 60◦. For d̄ = 1/4, we set βuβv/σ

2 = 0 dB.
The analytical curves for the achievable rate are obtained

from (31), with the outer expectation being computed numer-
ically. They are compared with the value measured from
Monte Carlo simulations. In the simulations, ϕ̂i is computed as
per (2) (without any high SNR approximation), µg and σ2

g are
measured numerically from (4), and then the rate is computed
as per (15) for a fixed α. Then, the rate-maximizing α is
determined numerically by a bisection search method.

We benchmark the optimal power allocation in Section III-D
with the following schemes:
• Equal Power Allocation (EPA): The BS employs equal

power for the downlink data and the pilot transmis-
sions, i.e., ρDL

p = ρDL
d = EBS/(Tc −N) [26]. Here,

TDL
d and α are determined numerically to maximize
CLB

(
α, TUL

p , TDL
p

)
.

• On/off-Based Scheme: The RIS elements are turned on
sequentially one by one during the uplink training.
This scheme is employed in [7] and [8]. Then, we get
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Fig. 5. Rate as a function of EUEβuβv/σ2 for the two channel models(
N = 64× 8, EBSβuβv/σ2 = 10 dB, Tc = 800, and no grouping

)
.

γ = βuβv
/(
βuβv + σ2

ρUL
p

)
and ϵi = γnUL (i)

/√
ρUL

p .
We substitute these two expressions in (18). The rate is
computed numerically from (15).

• Genie-Aided Scheme: g(ĥ) is assumed to be perfectly
known to the UE and the entire BS energy is used for
the downlink data transmission. This assumption is made
in [8]. Then, from (5), the rate can be shown to be equal
to TDL

d Eg(ĥ)

[
log2

(
1 + ρDL

d |g(ĥ)|2/σ2
)]
/Tc, which we

compute numerically.
Figure 5 compares the rates of the optimal scheme,

EPA, on/off-based scheme, and genie-aided scheme for the
LoS-NLoS model in Figure 5(a) and for the NLoS-NLoS
model in Figure 5(b). For a given EUE, the accuracy of the
uplink estimates in the on/off-based scheme is lower compared
to DFT-based training. And, EPA requires a larger training
duration in the downlink than the optimal scheme, which
reduces the available time for data transmission. Hence, the
optimal scheme outperforms the on/off-based scheme and
EPA. The rate of the genie-aided scheme serves as an upper
bound because all the BS energy is spent on data transmission
and the channel estimate in the downlink is assumed to
be noise-free. As EUE increases, the rates of all schemes
increase because the channel estimates at the BS become
more accurate. The gap between the analysis and simulation
curves of the optimal scheme decreases as EUE increases and
becomes negligible for EUEβuβv/σ

2 ≥ 10 dB. For small
EUE, the analytical expression lower bounds the numerical
value. Similarly, as EBS increases, the rate increases since the
accuracy of the downlink channel gain estimate increases and
so does the effective SNR. We do not show the dependence of
the rate on EBS to avoid clutter. The trends are qualitatively
similar. Due to the deterministic nature of the BS-RIS link, the
LoS-NLoS model achieves a higher rate than the NLoS-NLoS
model.

The impact of grouping of the RIS elements on the rate
is shown for the LoS-NLoS model in Figure 6(a) and for
the NLoS-NLoS model in Figure 6(b). As K/N increases,
the rate initially increases because fewer elements per group
leads to an increase in the SNR. Then, the rate peaks and
decreases thereafter. This is because the increase in the training
overhead counteracts the increase in the SNR. The rate that
the optimum grouping size achieves is 230% of that without

Fig. 6. Rate as a function of the inverse of the group size
for different RIS planar sizes for the two channel models(
EBSβuβv/

[
(Tc −K) σ2

]
= ρUL

p βuβv/σ2 = 7 dB and Tc = 800
)
.

Fig. 7. Rate as a function of group size for different inter-element spacings(
N = 32 × 16, EBSβuβv/

[
(Tc −K) σ2

]
= ρUL

p βuβv/σ2 = 7 dB when
d̄ = 1/4, Tc = 800, and LoS-NLoS model

)
.

grouping (K/N = 1). The trends are qualitatively similar
for the two models. Figure 6(a) also plots the analytical
results. They match match well with the simulation results
for K/N ≥ 0.03. For smaller K/N , there is a gap between
the two because g(ĥ) does not contain sufficiently many terms
for the Gaussian approximation to be accurate.

Figure 7 plots the rate as a function of K/N for differ-
ent distances between the RIS elements. We see that as d̄
increases, the rate increases for all values of K/N . This is
because the pathloss βuβv is proportional to d̄4 [22]. This
dominates the decrease in the rate due to the decrease in
the spatial correlation. The optimal group size turns out to
be insensitive to d̄ except when d̄ is very small.

Figure 8 plots the normalized downlink pilot and data
powers ρDL

p,optβuβv/σ
2 and ρDL

d,optβuβv/σ
2 as a function of Tc for

two values of N . For both N , we see that substantially more
power is allocated to the downlink pilots than the data. The
data power is insensitive to both Tc and N because much more
time is available for data transmission compared to downlink
training, which needs only 1 symbol duration. Furthermore,
as N increases, both TDL

d and EBS decrease. Since TDL
p is

fixed, a smaller power is allocated during training because of
which ρDL

p,opt decreases as N increases.
In Figure 9, we study the impact of the training overhead

on the rate. We plot the rate as a function of the number of
downlink training symbols for different numbers of the uplink
training symbols. For a given TDL

p , as TUL
p increases from its

optimal value of 256, the rate decreases. When TUL
p increases,

the uplink channel estimates become more accurate and the
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Fig. 8. Comparison of optimal downlink pilot power and data power as a
function of Tc for different values of N

(
EBSβuβv/

[
(Tc −N) σ2

]
= 0 dB,

EUEβuβv/σ2 = 25 dB, no grouping, and NLoS-NLoS model
)
.

Fig. 9. Rate as a function of the downlink training duration for dif-
ferent values of the uplink training duration (EBSβuβv/σ2 = 25 dB,
EUEβuβv/σ2 = 25 dB, Tc = 600, N = 64 × 4, NLoS-NLoS model,
and no grouping).

effective SNR SNReff in (15) increases. However, this increase
is within a logarithmic term, while the decrease in the data
duration due to the increased training overhead is in a pre-
log factor. The latter dominates. Similarly, for a given TUL

p ,
as TDL

p increases from its optimal value 1, the rate decreases.
This validates the optimality of the result in (32).

VI. CONCLUSION

We studied a training scheme for an RIS-aided TDD system,
in which both BS and UE estimated the channel gains. We did
so for two scenarios. While sufficient number of uplink pilots
were employed to estimate the cascaded channel gains in the
first scenario, fewer pilots were sent in the second scenario
that used cascaded channel grouping. We characterized the
effective downlink channel gain through the RIS in the pres-
ence of the channel estimation errors. For both LoS-NLoS and
NLoS-NLoS channel models, we saw that it had a Gaussian
distribution even in the presence of spatial correlation (due to
closely-spaced RIS elements) and channel estimation errors.
Following this, we derived a novel lower bound on the achiev-
able rate that accounted for the cumulative impact of the uplink
and downlink channel estimation errors on the RIS phase-
shift configuration and data demodulation. The closed-form
expressions for the optimal pilot durations and transmit powers
that maximized the achievable rate under energy constraints

at the BS and UE brought out the importance of boosting the
pilot powers relative to the data power.

The proposed scheme achieved a larger rate compared to
equal power allocation and the on/off-based scheme. Grouping
led to a higher rate as it incurred a lower optimal training
overhead and exploited spatial correlation. Extending this
study to other spatial correlation models and fading models,
such as Rician fading, is an interesting avenue for future
work. Another avenue is analyzing the impact of channel
estimation errors on multiple antenna, multi-user RIS systems
and systems with active RISs.

APPENDIX

A. Brief Proof of Lemma 1

Since ĝ(ĥ) and ge(ĥ) are independent, E
[
|ge(ĥ)|2|ĝ(ĥ)

]
=

E
[
|ge(ĥ)|2

]
. From [25, Ch. 12.3], we have E

[
|ge(ĥ)|2

]
=

Var
[
g(ĥ)

]
−
∣∣Cov

[
g(ĥ), ỹDL

p

] ∣∣2/Var
[
ỹDL

p

]
. Substituting the

expressions for each term from Section III-A and simplifying
yields E

[
|ge(ĥ)|2

]
= σ2

gσ
2
/(
ρDL

p TDL
p σ2

g + σ2
)
.

From g(ĥ) = ĝ(ĥ) + ge(ĥ), we get Var
[
ĝ(ĥ)

]
=

σ2
g − E

[
|ge(ĥ)|2

]
. Since ĝ(ĥ) is unbiased, E

[
ĝ(ĥ)

]
= µg .

Then, E
[
|ĝ(ĥ)|2

]
= Var

[
ĝ(ĥ)

]
+
∣∣∣∣E [ĝ(ĥ)

] ∣∣∣∣2 = σ2
g −

σ2
gσ2

ρDL
p T DL

p σ2
g+σ2 + |µg|2.

B. Proof of Lemma 2

Taking expectation on both sides of (21) yields

µg =
N∑

i=1

(
γE [|hi|] + E

[
ϵ∗i e

j∠hi
])

= γNE [|h1|] . (45)

The second equality follows because h1, . . . , hN are identi-
cally distributed, and, from Section III-B, ϵi is independent of
hi and is zero mean. Similarly, we can show that

σ2
g =

N∑
i=1

N∑
k=1

(
γ2E [|hi||hk|] + E [ϵ∗i ϵk] E

[
ej(∠hi−∠hk)

])
− |µg|2,

= γ2
N∑

i=1

N∑
k=1

E [|vi||vk|] E [|ui||uk|] +N
γ2σ2

ρUL
p TUL

p
− |µg|2.

(46)

Here, the second equality follows because |hi| = |vi||ui| and
vi and ui are independent. Furthermore, E [ϵ∗i ϵk] = 0 for i ̸= k
and E

[
|ϵi|2

]
= γ2σ2/

(
ρUL

p TUL
p

)
.

We now derive E [|h1|] and E [|hi||hk|] for the LoS-NLoS
and NLoS-NLoS models.

a) LoS-NLoS Model: In it, |h1| is a Rayleigh RV with mean√
πβuβv/2 [30, Ch. 1]. Substituting this in (45) yields (22a).
From Section II, we get E [|vi||vk|] = βv and E [uiu

∗
k] =

βuR(i, k). Then, from the expression for the correlation coef-
ficient for Rayleigh envelopes in [30, Sec. 1.3], we get

E [|ui||uk|] =
π

4
βuF

(
−1

2
,−1

2
; 1; [R (i, k)]2

)
. (47)
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Hence, E [|hi||hk|] = π
4βvβuF

(
− 1

2 ,−
1
2 ; 1; [R (i, k)]2

)
. Sub-

stituting this along with the expression for µg from (22a)
in (46) yields (22b).

b) NLoS-NLoS Model: In it, |vi| and |ui| are Rayleigh
RVs with means

√
πβv/2 and

√
πβu/2, respectively. Hence,

E [|h1|] = π
√
βvβu/4. Substituting this in (45) yields (23a).

As above, we can show that E [|vi||vk|] =
π
4βvF

(
− 1

2 ,−
1
2 ; 1; [R (i, k)]2

)
and E [|ui||uk|] =

π
4βuF

(
− 1

2 ,−
1
2 ; 1; [R (i, k)]2

)
. Thus,

E [|hi||hk|] =
π2

16
βvβu

[
F
(
−1

2
,−1

2
; 1; [R (i, k)]2

)]2
.

Substituting this and µg from (23a) in (46) yields (23b).

C. Proof of Lemma 3

From Section III-B, we have E
[
ϵisup

]
= E [ϵ1] = 0,

E
[
ϵ∗1ϵisup

]
= 0, and ϵ1 and ϵisup are independent of h1 and

hisup . This combined with the expression for χi in (24) imply

E
[
χ1, χ

∗
isup

]
= γ2E

[
|h1||hisup |

]
and E [χ1] = E

[
χisup

]
=

γE [|h1|]. Furthermore, Var [χ1] = γ2E
[
|h1|2

]
+ E

[
|ϵ1|2

]
−

γ2|E [|h1|] |2 = Var
[
χisup

]
. Substituting these in (25), we get

ρ
(
χ1, χisup

)
=

γ2E
[
|h1||hisup |

]
− γ2|E [|h1|] |2

γ2E [|h1|2] + E [|ϵ1|2]− γ2|E [|h1|] |2
. (48)

We now compute the terms in (48) for the LoS-NLoS and
NLoS-NLoS models.

a) LoS-NLoS Model: The expression for E
[
|h1||hisup |

]
is given in Appendix B. Substituting this along with
E [h1] =

√
πβuβv/2, E

[
|h1|2

]
= βuβv, and E

[
|ϵ1|2

]
=

γ2σ2/
(
ρUL

p TUL
p

)
in (48) and simplifying yields (27a).

b) NLoS-NLoS Model: Substituting the expression for
E
[
|h1||hisup |

]
from Appendix B, E [|h1|] = π

√
βuβv/4,

E
[
|h1|2

]
= βuβv, and E

[
|ϵ1|2

]
= γ2σ2/

(
ρUL

p TUL
p

)
in (48)

and simplifying yields (27b).

D. Proof of Lemma 4

From the definition of isup, we have, ρsup (n) =
|ρ
(
χ1, χisup

)
|. From the definition of ρsup (n) in (26), d1,isup ≥

nd̄. Hence, as n → ∞, d1,isup → ∞. Therefore, R(1, isup) =
sinc

(
2d1,isup

)
→ 0 and F

(
− 1

2 ,−
1
2 ; 1; [R (1, isup)]

2
)
→ 1.

Substituting this in (27a) and (27b), we get ρsup (n) → 0 as
n→∞ for both models.

E. Proof of Theorem 1

1) LoS-NLoS Model: The three parts of the proof are as
follows.

a) Proof of Var [χi] < ∞: From (24), Var [χi] =
γ2E

[
|hi|2

]
+ E

[
|ϵi|2

]
− γ2|E [|hi|] |2. Substituting

E [|hi|] =
√
πβuβv/2, E

[
|hi|2

]
= βuβv, and

E
[
|ϵi|2

]
= γ2σ2/

(
ρUL

p TUL
p

)
in the above expression,

we get

Var [χi] =

(
βuβv +

σ2

ρUL
p TUL

p
− πβuβv

4

)
γ2 <∞. (49)

b) Proof of limN→∞ Var
[∑N

i=1 χi

]
→ ∞: From (24),

this is equivalent to proving that limN→∞ σ2
g → ∞. Since

F
(
− 1

2 ,−
1
2 ; 1;x

)
≥ 1 for x ∈ [0, 1], it follows from (22b)

that σ2
g ≥ Nσ2/

(
ρUL

p TUL
p

)
. From this, it is easy to see that

Nσ2/
(
ρUL

p TUL
p

)
→∞ as N →∞. Hence, limN→∞ σ2

g →∞.
c) Proof of

∑∞
i=1 ρsup

(
2i
)
< ∞: F

(
− 1

2 ,−
1
2 ; 1;x

)
is a

convex function that monotonically increases from 1 to 4/π
for x ∈ [0, 1] [28, Ch. 15]. Thus,

F
(
−1

2
,−1

2
; 1;x

)
≤ 1 +

(4− π)x
π

for x ∈ [0, 1] . (50)

This implies that F
(
− 1

2 ,−
1
2 ; 1;x

)
≤ 1 + x, for x ∈ [0, 1].

Thus, applying F
(
− 1

2 ,−
1
2 ; 1; [R (1, isup)]

2
)

≤ 1 +

[R (1, isup)]
2 in (27a) and simplifying yields

ρsup
(
2i
)

= |ρ
(
χ1, χisup

)
| ≤

πβuβv [R (1, isup)]
2

4
(
βuβv − πβuβv

4 + σ2

ρUL
p T UL

p

)
=

πβuβvsinc2
(
2d1,isup

)
4
(
βuβv − πβuβv

4 + σ2

ρUL
p T UL

p

) . (51)

We know that sinc2
(
2d1,isup

)
≤ 1

4d2
1,isup

≤ 1

4(2id̄)2 since

d1,isup ≥ 2id̄. Hence,

ρsup
(
2i
)
≤ πβuβv

4
(
βuβv − πβuβv

4 + σ2

ρUL
p T UL

p

) 1
4i+1d̄2

. (52)

Since {1/4i}∞i=1 converges, we get

∞∑
i=1

ρsup
(
2i
)
≤

πβuβv
4

βuβv − πβuβv
4 + σ2

ρUL
p T UL

p

(
1

4d̄2

) ∞∑
i=1

1
4i
<∞.

(53)

2) NLoS-NLoS Model: As above, we can show that
Var [χi] =

(
βuβv + σ2

ρUL
p T UL

p
− π2βuβv

16

)
γ2 < ∞ and

Var
[∑N

i=1 χi

]
= σ2

g ≥ Nσ2
/(
ρUL

p TUL
p

)
→∞ as N →∞.

Applying F
(
− 1

2 ,−
1
2 ; 1; [R (1, isup)]

2
)
≤ 1 + [R (1, isup)]

2

in (27b) and simplifying yields

ρsup
(
2i
)
≤
π2βuβv

[(
[R (1, isup)]

2 + 1
)2

− 1
]

16
(
βuβv − π2βuβv

16 + σ2

ρUL
p T UL

p

) . (54)

Simplifying (54) and upper bounding along lines similar
to (52), we can show that

∞∑
i=1

ρsup
(
2i
)
≤ π2βuβv

16
(
βuβv − π2βuβv

16 + σ2

ρUL
p T UL

p

)
×

(
1

16d̄4

∞∑
i=1

1
16i

+
1

2d̄2

∞∑
i=1

1
4i

)
. (55)

Since both {1/16i}∞i=1 and {1/4i}∞i=1 converge, we get∑∞
i=1 ρsup

(
2i
)
<∞.
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F. Proof of Lemma 5

Substituting ρDL
d = αEBS/T

DL
d from (8) and ρDL

p TDL
p =

(1− α)EBS from (9) in (16) yields

SNReff =
EBS

(
σ2

g + |µg|2
)

σ2 (TDL
d − 1)

(
ακ− α2

ζ (TDL
d )− α

)
, (56)

where ζ
(
TDL

d

)
= EBSσ2

g+σ2

EBSσ2
g

T DL
d

T DL
d −1

and κ =[
EBSσ

2
g

(
σ2

g + |µg|2
)

+ |µg|2σ2
]
/EBSσ

2
g

(
σ2

g + |µg|2
)
.

By first order conditions, the optimal α satisfies
∂SNReff

∂α = 0. Solving this equation yields α =
ζ
(
TDL

d

)
±
√
ζ (TDL

d ) [ζ (TDL
d )− κ]. We now prove that

ζ
(
TDL

d

)
≥ κ, which implies that α is real. Since(

EBSσ
2
g + σ2

) (
σ2

g + |µg|2
)
≥ EBSσ

2
g

(
σ2

g + |µg|2
)

+ σ2|µg|2
and TDL

d EBSσ
2
g >

(
TDL

d − 1
)
EBSσ

2
g , it follows that[

TDL
d EBSσ

2
g

] (
EBSσ

2
g + σ2

) (
σ2

g + |µg|2
)
≥
(
TDL

d − 1
)

× EBSσ
2
g

(
EBSσ

2
g

(
σ2

g + |µg|2
)

+ σ2|µg|2
)
. (57)

Rearranging the terms in (57) and substituting the definitions
of ζ

(
TDL

d

)
and κ, we can show that ζ

(
TDL

d

)
≥ κ.

Furthermore, ζ
(
TDL

d

)
−
√
ζ (TDL

d ) [ζ (TDL
d )− κ] is the opti-

mal solution since α ∈ [0, 1].

G. Proof of Theorem 2

We shall prove that
∂CLB(α⋆(T DL

d ),T UL
p ,T DL

p )
∂T DL

d
≥ 0 for TDL

d > 1.
From (31), we get

∂CLB
(
α⋆
(
TDL

d

)
, TUL

p , TDL
p

)
∂TDL

d

=
E
[

T DL
d |ĝnorm(ĥ)|2

1+SNReff|ĝnorm(ĥ)|2
∂SNReff
∂T DL

d

]
log (2)Tc

+
E
[
log
(
1 + SNReff|ĝnorm(ĥ)|2

)]
log (2)Tc

. (58)

From the expression for SNReff in (31), we get
∂SNReff

∂TDL
d

= −
E2

BSσ
2
g

(
σ2

g + |µg|2
)

EBSσ2
gσ

2 (TDL
d − 1)

×

[√
ζ (TDL

d )−
√
ζ (TDL

d )− κ
]2

√
ζ (TDL

d ) [ζ (TDL
d )− κ]

∂ζ
(
TDL

d

)
∂TDL

d

+
[√

ζ (TDL
d )−

√
ζ (TDL

d )− κ

]2
E2

BSσ
2
g

(
σ2

g + |µg|2
)

× ∂

∂TDL
d

(
1

EBSσ2
gσ

2 (TDL
d − 1)

)
. (59)

Substituting
∂ζ(T DL

d )
∂T DL

d
= −ζ

(
TDL

d

)/[
TDL

d

(
TDL

d − 1
)]

, which
follows from the definition of ζ

(
TDL

d

)
in (30), and

∂
∂T DL

d

(
1

EBSσ2
gσ2(T DL

d −1)

)
= −1/

(
EBSσ

2
gσ

2
(
TDL

d − 1
)2)

in (59) and rearranging terms yields

∂SNReff

∂TDL
d

=
SNReff

TDL
d − 1

 1
TDL

d

√
ζ
(
TDL

d

)
ζ (TDL

d )− κ
− 1

 . (60)

Let ∆
(
TDL

d

)
= T DL

d
T DL

d −1

[
1− 1

T DL
d

√
ζ(T DL

d )
ζ(T DL

d )−κ

]
. Substitut-

ing (60) in (58) and rearranging yields

∂CLB
(
α⋆
(
TDL

d

)
, TUL

p , TDL
p

)
∂TDL

d

=
E
[
log
(
1 + SNReff|ĝnorm(ĥ)|2

)]
log (2)Tc

−
E
[

SNReff|ĝnorm(ĥ)|2

1+SNReff|ĝnorm(ĥ)|2
∆
(
TDL

d

)]
log (2)Tc

. (61)

From Appendix F, we know that ζ
(
TDL

d

)
− κ > 0.

Hence,
√
ζ (TDL

d )
/
(ζ (TDL

d )− κ) > 1, from which we get

1 −
√
ζ (TDL

d )
/[
TDL

d

√
ζ (TDL

d )− κ
]

<
(
TDL

d − 1
)/
TDL

d .
Rearranging this inequality yields ∆

(
TDL

d

)
< 1. Hence,

∂CLB
(
α⋆
(
TDL

d

)
, TUL

p , TDL
p

)
∂TDL

d

≥
E
[
log
(
1 + SNReff|ĝnorm(ĥ)|2

)]
log (2)Tc

−
E

[
SNReff|ĝnorm(ĥ)|2

1 + SNReff|ĝnorm(ĥ)|2

]
log (2)Tc

.

Applying log (1 + x) ≥ x/(1 + x), for x ≥ 0, in the above

expression yields
∂CLB(α⋆(T DL

d ),T UL
p ,T DL

p )
∂T DL

d
≥ 0.

H. Proof of Lemma 6

The net channel gains of all groups are statistically identical,
E [ϵG,k] = 0, and ϵG,k is independent of Gk. Therefore,
from (42), we get

E
[
g(Ĝ)

]
= γG

K∑
k=1

E [|Gk|] = KγGE [|G1|] . (62)

Since Gk ∼ CN
(
0, σ2

grp

)
, substituing E [|Gk|] =

√
πσ2

grp/2
in the above expression yields (43a).

From (25), the normalized correlation coefficient between
Gk and Gk′ is given by

ρ (Gk, Gk′) =

∑
i∈Ck

∑
i′∈Ck′

viv
∗
i′E [uiu

∗
i′ ]

σ2
grp

, (63)

where E [uiu
∗
i′ ] = βuR(i, i′). As in Appendix B, we get

E [|Gk|, |Gk′ |] =
π

4
σ2

grpF
(
−1

2
,−1

2
; 1; ρ2 (Gk, Gk′)

)
. (64)

Also, since E
[
ϵG,kϵ

∗
G,k′

]
= 0 and E

[
|ϵG,k′ |2

]
=

γ2
Gσ

2/
(
ρUL

p TUL
p

)
, we get

Var
[
g(Ĝ)

]
= γ2

G

K∑
k=1

K∑
k′=1

E [|Gk|, |Gk′ |] +K
γ2

Gσ
2

ρUL
p TUL

p

−
∣∣∣E [g(Ĝ)

] ∣∣∣2. (65)

Substituting the expression for ρ (Gk, Gk′) in (64) and then
in (65) along with (43a) yields (43b).

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 14,2024 at 09:39:03 UTC from IEEE Xplore.  Restrictions apply. 



NADUVILPATTU AND MEHTA: OPTIMAL TIME AND POWER ALLOCATION FOR PHASE-SHIFT CONFIGURATION 9431

ACKNOWLEDGMENT

The authors would like to thank inputs from Sriram Gane-
san, which helped in improving the quality of their work.

REFERENCES

[1] S. Naduvilpattu and N. B. Mehta, “Insights into cumulative impact of
channel estimation errors on RIS phase-shift configuration and data
demodulation,” in Proc. IEEE ICC, Jun. 2024.

[2] Y. Liu et al., “Reconfigurable intelligent surfaces: Principles and oppor-
tunities,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546–1577,
3rd Quart., 2021.

[3] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116753–116773, 2019.

[4] M. Di Renzo et al., “Smart radio environments empowered by reconfig-
urable intelligent surfaces: How it works, state of research, and the road
ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525,
Nov. 2020.

[5] Q. Wu et al., “Intelligent reflecting surface-aided wireless communica-
tions: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351,
May 2021.

[6] Q. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and
M.-S. Alouini, “Intelligent reflecting surface-assisted multi-user MISO
communication: Channel estimation and beamforming design,” IEEE
Open J. Commun. Soc., vol. 1, pp. 661–680, 2020.

[7] B. Shamasundar, N. Daryanavardan, and A. Nosratinia, “Channel train-
ing & estimation for reconfigurable intelligent surfaces: Exposition of
principles, approaches, and open problems,” IEEE Access, vol. 11,
pp. 6717–6734, 2023.

[8] J. An, L. Wang, C. Xu, L. Gan, and L. Hanzo, “Optimal pilot power
based channel estimation improves the throughput of intelligent reflec-
tive surface assisted systems,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 16202–16206, Dec. 2020.

[9] J. An, C. Xu, L. Gan, and L. Hanzo, “Low-complexity channel
estimation and passive beamforming for RIS-assisted MIMO systems
relying on discrete phase shifts,” IEEE Trans. Commun., vol. 70, no. 2,
pp. 1245–1260, Feb. 2022.

[10] J. An, C. Xu, L. Wang, Y. Liu, L. Gan, and L. Hanzo, “Joint training
of the superimposed direct and reflected links in reconfigurable intel-
ligent surface assisted multiuser communications,” IEEE Trans. Green
Commun. Netw., vol. 6, no. 2, pp. 739–754, Jun. 2022.

[11] K. Zhi et al., “Two-timescale design for reconfigurable intelligent
surface-aided massive MIMO systems with imperfect CSI,” IEEE Trans.
Inf. Theory, vol. 69, no. 5, pp. 3001–3033, May 2023.

[12] K. Zhi, C. Pan, H. Ren, and K. Wang, “Power scaling law analysis
and phase shift optimization of RIS-aided massive MIMO systems with
statistical CSI,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3558–3574,
May 2022.

[13] K. Zhi, C. Pan, G. Zhou, H. Ren, M. Elkashlan, and R. Schober, “Is RIS-
aided massive MIMO promising with ZF detectors and imperfect CSI?”
IEEE J. Sel. Areas Commun., vol. 40, no. 10, pp. 3010–3026, Oct. 2022.

[14] N. K. Kundu, Z. Li, J. Rao, S. Shen, M. R. McKay, and R. Murch,
“Optimal grouping strategy for reconfigurable intelligent surface assisted
wireless communications,” IEEE Wireless Commun. Lett., vol. 11, no. 5,
pp. 1082–1086, May 2022.

[15] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting
surface meets OFDM: Protocol design and rate maximization,” IEEE
Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.

[16] Z. Zhou, N. Ge, Z. Wang, and L. Hanzo, “Joint transmit precoding and
reconfigurable intelligent surface phase adjustment: A decomposition-
aided channel estimation approach,” IEEE Trans. Commun., vol. 69,
no. 2, pp. 1228–1243, Feb. 2021.

[17] Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Exploiting array
geometry for reduced-subspace channel estimation in RIS-aided com-
munications,” in Proc. IEEE 12th Sensor Array Multichannel Signal
Process. Workshop (SAM), Jun. 2022, pp. 455–459.

[18] M. Xu, S. Zhang, C. Zhong, J. Ma, and O. A. Dobre, “Ordinary differ-
ential equation-based CNN for channel extrapolation over RIS-assisted
communication,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1921–1925,
Jun. 2021.

[19] A. M. Elbir and S. Coleri, “Federated learning for channel estimation in
conventional and RIS-assisted massive MIMO,” IEEE Trans. Wireless
Commun., vol. 21, no. 6, pp. 4255–4268, Jun. 2022.

[20] K. Ardah, S. Gherekhloo, A. L. F. de Almeida, and M. Haardt, “TRICE:
A channel estimation framework for RIS-aided millimeter-wave MIMO
systems,” IEEE Signal Process. Lett., vol. 28, pp. 513–517, 2021.

[21] J. An et al., “Codebook-based solutions for reconfigurable intelligent
surfaces and their open challenges,” IEEE Wireless Commun., early
access, Nov. 15, 2022, doi: 10.1109/MWC.010.2200312.

[22] E. Björnson and L. Sanguinetti, “Rayleigh fading modeling and channel
hardening for reconfigurable intelligent surfaces,” IEEE Wireless Com-
mun. Lett., vol. 10, no. 4, pp. 830–834, Apr. 2021.

[23] M. Peligrad, “On the central limit theorem for ρ-mixing sequences
of random variables,” Ann. Probab., vol. 15, no. 4, pp. 1387–1394,
Oct. 1987.

[24] C. Pan et al., “An overview of signal processing techniques for RIS/IRS-
aided wireless systems,” IEEE J. Sel. Topics Signal Process., vol. 16,
no. 5, pp. 883–917, Aug. 2022.

[25] S. Kay, Fundamentals of Statistical Signal Processing, Volume 1:
Estimation Theory. London, U.K.: Pearson, 1993.

[26] B. Hassibi and B. M. Hochwald, “How much training is needed in
multiple-antenna wireless links?” IEEE Trans. Inf. Theory, vol. 49, no. 4,
pp. 951–963, Apr. 2003.

[27] E. Bjornson, J. Hoydis, and L. Sanguinetti, Massive MIMO Networks:
Spectral, Energy, and Hardware Efficiency. Boston, MA, USA: Now
Foundations and Trends, 2017.

[28] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions:
With Formulas, Graphs, and Mathematical Tables. New York, NY, USA:
Dover, 1965.

[29] J. Chambers, Graphical Methods for Data Analysis. Boca Raton, FL,
USA: CRC Press, 1983.

[30] W. C. Jakes, Microwave Mobile Communications. Hoboken, NJ, USA:
Wiley, 1974.

Suji Naduvilpattu (Student Member, IEEE)
received the Bachelor of Technology degree
in electronics and communication engineering
from the Government College of Engineering,
Kannur, Kerala, India, in 2009, and the Master
of Technology degree in telecommunication from
the National Institute of Technology, Calicut,
Kerala, in 2012. She is currently pursuing the
Ph.D. degree with the Department of Electrical
Communication Engineering, Indian Institute of
Science, Bengaluru. Her research interests include

wireless communication, spectrum sharing, and reconfigurable intelligent
surfaces.

Neelesh B. Mehta (Fellow, IEEE) received the
B.Tech. degree in electronics and communications
engineering from the Indian Institute of Technology
(IIT) Madras in 1996 and the M.S. and Ph.D.
degrees in electrical engineering from the Cali-
fornia Institute of Technology, Pasadena, USA, in
1997 and 2001, respectively. He is currently a
Professor with the Department of Electrical Com-
munication Engineering, Indian Institute of Science,
Bengaluru. He is a fellow of the Indian National
Science Academy, Indian Academy of Sciences,

Indian National Academy of Engineering, and National Academy of Sciences
India. He was a recipient of the J. C. Bose Fellowship, Shanti Swarup
Bhatnagar Award, Khosla Award, Vikram Sarabhai Research Award, and
the Swarnjayanti Fellowship. He served on the Board of Governors for the
IEEE ComSoc from 2012 to 2015. He served on the executive editorial
committee for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
from 2014 to 2017 and served as the Chair from 2017 to 2018. He also
serves as the chair of its steering committee. He has served as an Editor
for IEEE TRANSACTIONS ON COMMUNICATIONS and the IEEE WIRELESS
COMMUNICATION LETTERS in the past.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 14,2024 at 09:39:03 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/MWC.010.2200312

