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ABSTRACT
The codebook-based scheme for intelligent reflecting surfaces
(IRSs) provides flexibility in controlling the training overhead.
In it, the reflection pattern with the largest received signal strength
is selected from a pre-specified codebook and configured at the
IRS. We analyze a training scheme that exploits a novel trade-off
between the powers allocated for selection pilots, which are used
to select the reflection pattern, and the demodulation pilot, which is
used to estimate the channel for demodulation. We develop a novel
selection-aware estimator of the beamforming gain of the selected
reflection pattern. We derive a tight bound for the achievable rate
and an elegant closed-form expression for the beamforming gain.
These account for the impact of imperfect channel estimates on the
selection of the reflection pattern and the coherent demodulation of
the data symbols. The proposed scheme achieves a higher rate than
conventional schemes by allocating substantially different powers to
the selection and demodulation pilots and data symbols.

Index Terms— Intelligent reflecting surface, estimation, train-
ing, beamforming, power adaptation.

1. INTRODUCTION

An intelligent reflecting surface (IRS) consists of many small, low-
cost passive elements, each of which can induce a controlled phase
shift to the incident electromagnetic signal. This controllability can
be exploited to improve throughput, coverage, and energy efficiency
of next-generation wireless communication systems [1, 2].

The transmitter or access point (AP) requires the estimates of
the cascaded channels from it to the user through each IRS element
to determine the optimal reflection pattern at the IRS [1,3,4]. Hence,
cascaded channel estimation plays a crucial role in an IRS-aided sys-
tem and has spurred a lot of research. In the classical on-off estima-
tion scheme [5,6], the IRS turns on one element at a time. However,
as many pilots as the IRS elements are needed. The discrete Fourier
transform (DFT)-based scheme [3, 7], in which different columns
of the DFT matrix are used as reflection patterns for different pilot
symbols, achieves a lower mean square error (MSE) than the on-off
scheme, but with the same training overhead. For IRSs with tens to
hundreds of elements, the training overhead can be large. To reduce
this overhead, IRS element grouping [3], active IRS elements [8],
and different machine-learning approaches [9–11] have been pur-
sued. However, these works do not consider pilot power adaptation.

An alternative to the above estimation-based schemes is the
codebook-based scheme [12–14]. In it, K pre-designed reflection
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patterns are used at the IRS, one for each pilot transmission. The
pattern that maximizes the received signal strength is selected and
configured at the IRS during data transmission. The codebook-based
scheme is practically appealing because its pilot overhead is fixed.
Its control signaling overhead, which the AP incurs to send the index
of the selected reflection pattern, is also significantly lower than that
of the estimation-based schemes, which need to communicate the
phase shift of each IRS element.

Imperfect channel estimates, which are inevitable in practice be-
cause of finite pilot powers, affect the codebook-based scheme in
two ways: i) they can cause a sub-optimal reflection pattern to be se-
lected, and ii) this sub-optimal pattern together with imperfect chan-
nel estimates affect demodulation and lower the data rate. Only a
subset of these effects are studied in the fixed pilot power schemes
in the literature on codebook-based training [12, 15–19].

1.1. Focus and Contributions

We analyze a codebook-based IRS-assisted communication system.
We account for imperfect channel estimates during the selection of
the reflection pattern and coherent demodulation. We leverage the
intuition that the former is more robust to the imperfect estimates.
This leads us to a novel trade-off between the powers allocated for
selection and demodulation, which we exploit to improve the rate.

We make the following contributions:
i) We propose a novel training scheme that separates the tasks

of selection of the reflection pattern and demodulation. In it, the AP
first sends K selection pilots to the user, one for each reflection pat-
tern configured at the IRS. The user selects the reflection pattern with
the highest received signal strength and feeds back its index to the
AP, which the AP forwards to the IRS. The AP then sends a demod-
ulation pilot to enable the user to estimate the effective channel gain,
followed by data. This scheme does not require channel reciprocity.

ii) For the above training scheme, we analyze the achievable rate
for orthogonal codebooks, which includes the DFT and Hadamard
matrix based codebooks [7]. The analysis accounts for the impact of
imperfect channel estimates on the selection of the reflection pattern
and demodulation, and the training, control signaling, and feedback
overheads. It relies upon two novel theoretical results. First, we
derive in closed form the probability density function (PDF) of the
effective channel gain corresponding to the selected reflection pat-
tern and its beamforming gain. Second, we derive a novel selection-
aware linear minimum mean square error (LMMSE) estimator of the
effective channel gain, which is used for coherent demodulation. It
exploits the fact that the statistics of the effective channel gain of the
selected pattern differ from those of an arbitrary pattern.

iii) Our numerical results show that the proposed scheme
achieves a higher rate than the conventional codebook-based and
estimation-based schemes in regimes of practical interest. The
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Fig. 1. System model and an illustration of the codebook-based
training and data transmission scheme.

reason behind this is its ability to allocate higher power to the de-
modulation pilot than a selection pilot. This advantage has not been
exploited in the literature [12–19].

1.2. Outline and Notations

The system model and the proposed transmission scheme are de-
scribed in Section 2. Section 3 derives an achievable rate expression
and optimizes it. Numerical results are presented in Section 4. Our
conclusions follow in Section 5.

Notation: We denote the probability of an event B by Pr (B)
and the expectation of a random variable (RV) X by E [X]. The
notation X ∼ CN (µ, σ2) means that X is a complex normal RV
with mean µ and variance σ2.

2. SYSTEM MODEL AND PROPOSED SCHEME

The system model is illustrated in Figure 1. A single antenna AP
transmits data to a single antenna user using an IRS with M ele-
ments. The direct link between the AP and the user is blocked due to
obstacles [1, 14]. Let gm and hm denote the complex channel gains
from the AP to the mth IRS element and from mth IRS element to
the user, respectively. We consider quasi-static flat fading channel
model. Let g = [g1, g2, . . . , gM ]T and h = [h1, h2, . . . , hM ]T ,
where (.)T denotes transpose.

For analytical tractability, we focus on the following model:
i) h1, h2, . . . , hM are independent [4, 6, 12]. ii) A dominant line-
of-sight (LoS) link exists between the AP and the IRS [12]. This
is justifiable when the AP is deployed on a tower and the IRS on a
rooftop. Hence, g is a deterministic LoS channel gain vector. iii) The
IRS-user link undergo Rayleigh fading with path-loss βh. Therefore,
h ∼ CN (0, βhIM ). Let βg denote the path-loss of the AP-IRS link.

We note that the achievable rate of codebook-based training has
not been analyzed even for the above model. While multiple anten-
nas have been considered at the transmitter in [12, 14–18], perfect
channel estimates are implicitly assumed for demodulation and in
the capacity expressions. Instead, in [3], the focus is on MSE and the
impact of imperfect estimates on demodulation is not considered.

When AP transmits symbol x and the reflection pattern ϕ =
[ϕ1, ϕ2, . . . , ϕM ]T is used, the signal y received by the user is [1]

y =

(
M∑

m=1

hmϕmgm

)
x+ n = rTϕx+ n, (1)

where r = [r1, r2, . . . , rM ]T = [h1g1, h2g2, . . . , hMgM ] is the
cascaded reflected channel gain vector and n ∼ CN (0, σ2) is ad-
ditive white Gaussian noise.

2.1. Proposed Training and Transmission Scheme

A codebook consisting of K ≤ M orthogonal reflection patterns
ϕ(1),ϕ(2), . . . ,ϕ(K) is used for generating the reflection coeffi-
cients at the IRS. Our scheme has following four phases:

i) Selection Phase: The AP sequentially transmits K selection
pilots, each with power Ps. When the ith pilot p = 1 is transmitted,
the reflection pattern at the IRS is ϕ(i). The signal yi at the user is

yi =
√
Psr

Tϕ(i)p+ ni =
√
Psheq(i)p+ ni. (2)

Here, n1, n2, . . . , nK ∼ CN (0, σ2) are independent and identi-
cally distributed (i.i.d.) additive white Gaussian noises, and heq(i) =
rTϕ(i) is the effective end-to-end AP-user channel.

The user selects the reflection pattern index denoted by s as

s = argmaxi∈{1,2,...,K}{|yi|
2}, (3)

where |.| denotes the absolute value. The index s is fed back to
the AP using only ⌈log2 (K)⌉ bits, where ⌈.⌉ denotes the ceiling
function. The AP then sends s to the IRS via the control link, again
using ⌈log2 (K)⌉ bits. Let τf and τc denote the feedback and control
signaling durations, respectively.

ii) Estimation Phase: ϕ(s) is configured as the reflection pat-
tern at the IRS. The AP sends an extra demodulation pilot p = 1
with power Pc to enable the user to accurately estimate the selected
downlink channel gain heq(s) for coherent demodulation. The signal
yc at the user is

yc =
√
Pcheq(s) + nc, (4)

where nc ∼ CN (0, σ2) is additive white Gaussian noise.
iii) Feedback of Rate: Based on its estimate of heq(s), the user

feeds back to the AP a data rate R that it can receive. We derive the
expression for R below.

iv) Data Transmission Phase: The AP sends d downlink data
symbols to the user with power Pd and rate R.

Note that Ps, Pc, and Pd can be different.

3. PROBLEM FORMULATION AND ANALYSIS

We first develop a novel selection-aware LMMSE estimate for
heq(s) and then derive an upper bound on the achievable rate. We
then formulate our optimal pilots and data power allocation problem.

3.1. Selection-Aware Estimator for heq(s)

We employ the LMMSE estimator for estimating heq(s) from yc.
The estimate ĥeq(s) is given by [20, Ch. 12]1

ĥeq(s) = ayc + b, (5)

where

a =
Cov (yc, heq(s))

Var (yc)
and b =

(
1−

√
Pca
)

E [heq(s)] , (6)

Cov(., .) denotes covariance, and Var(.) denotes variance. To de-
rive a and b, we need the statistics of heq(s), which are different

1The two observations yc and ys can be used to obtain a more refined
channel estimate of heq(s). However, the gains turn out to be marginal.
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from that of heq(1), heq(2), . . . , heq(K) due to selection. Since
h1 . . . , hM are i.i.d., we can prove that heq(1), heq(2), . . . , heq(K)
are i.i.d. complex normal RVs with mean 0 and variance Mβgβh.
Let σ2

y = PsMβgβh + σ2 denote the variance of yi. The PDF of
heq(s) is as follows.

Theorem 1. The PDF of heq(s) = ers + jeis is given by

fers,eis(x, z) =
Kσ2

y

πMβgβh

K−1∑
l=0

(
K − 1

l

)
(−1)l

σ2
y + lσ2

× exp

(
−(l + 1)σ2

y(
σ2
y + lσ2

)
Mβgβh

(
x2 + z2

))
, x, z ∈ R. (7)

Proof. The proof is given in Appendix 6.1.

The symmetric form of the PDF in Theorem 1 implies that
E [heq(s)] = 0. Hence, b = 0. Thus, from (5) and (6), the selection-
aware estimator is given by

ĥeq(s) =

√
PcE

[
|heq(s)|2

]
PcE [|heq(s)|2] + σ2

yc. (8)

A selection-unaware approach would have instead led to the follow-
ing estimator: ĥeq(s) =

√
PcMβgβh

PcMβgβh+σ2 yc.
Theorem 1 leads to the following novel closed-form expression

for the passive beamforming gain Bg = E
[
|heq(s)|2

]
.

Corollary 1. The passive beamforming gain Bg is given by

Bg =
Mβgβh

(
PsMβgβh [ψ(K + 1) + γ] + σ2

)
PsMβgβh + σ2

, (9)

where ψ(.) is the digamma function [21, Ch. 6] and γ is the Euler-
Mascheroni constant [21, Ch. 6].

From (9), we can show that Bg is a concave function of Ps. It is
also a concave function of K. Thus, there is a diminishing increase
in the beamforming gain when Ps or K increase.

3.2. Achievable Rate with Imperfect Channel Estimates

The achievable rate R in the presence of channel estimation errors,
after accounting for the training, control signaling, and feedback
overheads, is given by [22]2

R =
d

Tc
E

log2
1 +

Pd

∣∣∣ĥeq(s)
∣∣∣2

σ2 + Pdσ2
ĥeq(s)


 , (10)

where σ2
ĥeq(s)

= E

[∣∣∣heq(s)− ĥeq(s)
∣∣∣2] is the mean square error

(MSE) of the estimate of heq(s), d is the number of data symbols,
and Tc = d+K +1+2τf + τc is the coherence interval duration in
symbols. Using the Jensen’s inequality, we get the following bound:

R ≤ d

Tc
log2

1 +

PdE

[∣∣∣ĥeq(s)
∣∣∣2]

σ2 + Pdσ2
ĥeq(s)

 . (11)

2The achievable rate expression in (10) is an approximation because
heq(s) is not a complex normal RV. However, it is accurate for smaller K
and at lower SNRs.

We shall see in Section 4 that the above bound is tight for large M
due to channel hardening. From (4) and (8), we can show that

E

[∣∣∣ĥeq(s)
∣∣∣2] = PcB

2
g

PcBg + σ2
, σ2

ĥeq(s)
=

Bgσ
2

PcBg + σ2
. (12)

Substituting these in (11) yields the following result.

Theorem 2. The achievable rate of the codebook-based IRS-aided
system in the presence of channel estimation errors is bounded by

R ≤ d

Tc
log2

(
1 +

PdPcB
2
g

σ2 [(Pd + Pc)Bg + σ2]

)
, (13)

where Bg is given in (9).

The total power PT consumed for the pilot and data transmis-
sions is equal to KPs + Pc + dPd. Based on (13), the problem of
maximizing the upper bound on R subject to the total power con-
straint at AP can be stated as

max
Ps,Pc,Pd

{
PdPcB

2
g

σ2 [(Pd + Pc)Bg + σ2]

}
, (14)

s.t. KPs + Pc + dPd = PT, (15)
Ps ≥ 0, Pc ≥ 0, Pd ≥ 0. (16)

Note that the selection pilot power Ps appears implicitly throughBg.
We solve the above non-convex problem numerically.

4. NUMERICAL RESULTS AND DISCUSSIONS

We set M = 128 and consider Tc = 400 symbols. We con-
sider the simplified path loss model [6] with βg = −34 dB and
βh = −54 dB. The noise variance is σ2 = −113.8 dB. We set
τf = τc = 1. The results are averaged over 10000 fade realizations.
We consider a DFT-based codebook at the IRS.

We benchmark the proposed optimal power allocation-based
codebook scheme with the following:

i) Equal Power Allocation (EPA): The total power is equally al-
located to the pilots and data. Furthermore, the unordered statistics
of the beamforming gain are used to estimate heq(s). The training,
signaling, and feedback overhead is K + 1 + 2τf + τc.

ii) Estimation-based Scheme [3]: We use the DFT-based estima-
tion scheme since it outperforms the on-off scheme [3]. Its training,
signaling, and feedback overhead is equal to M +Mτc + 1 + τf .

iii) Genie-aided Scheme: The selection of reflection pattern is
taken to be noise-free and heq(s) is known perfectly to the AP and
the user. There is no training, signaling, and feedback overhead.

iv) Random Phase Shift (RPS): A random phase shift is config-
ured at each IRS element. Thus, no selection pilots are needed. The
training, signaling, and feedback overhead is 1 + τf .

Figure 2 plots the achievable rate of all the schemes as a func-
tion of the average SNR PTMβgβh/(Tcσ

2). The proposed scheme
achieves a higher rate than EPA and RPS for all SNRs. The gap
between it and the genie-aided scheme is small and decreases as
the SNR increases. Only at low SNRs, does the estimation-based
scheme marginally outperform the proposed scheme. This is because
the beamforming gain of the former is proportional toM2 [4], while
that of the latter is proportional to Mψ(K + 1) (see (9)). At high
SNRs, the large training and control overheads cause the estimation-
based scheme’s rate to be lower than even RPS.

Figure 3(a) plots the ratio of the optimal selection pilots’ power
to the total power as a function of the average SNR for different val-
ues of K. It compares them with EPA, where this ratio is equal to
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Fig. 2. Performance Benchmarking: Achievable rate as a function
of the average SNR (K = 25).
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Fig. 3. Pilot power allocation as a function of the average SNR.

K/Tc. For the proposed scheme, we see that the ratio decreases for
all K as the average SNR increases. At low SNRs or larger K, it
allocates relatively more power to the selection pilots to improve the
odds that the optimal reflection pattern is selected. At high SNRs, it
sets aside more power for the demodulation pilot and the data. Fig-
ure 3(b) plots the corresponding ratio of the optimal demodulation
pilot power to the total power. Notably, the proposed scheme allo-
cates 13 to 14 dB more power to the demodulation pilot than EPA at
all SNRs. Also, we observe that Pc ≫ Ps. For example, at K = 50
and SNR of 0 dB, Pc/Ps = 15.

Figure 4 plots the achievable rate and the upper bound in (13) as
a function of K for different Tc. We observe that the upper bound is
tight, which is due to channel hardening. For small K, the achiev-
able rate increases as K increases because the beamforming gain
increases. However, for larger K, the rate decreases because of the
increase in the training overhead. Only for large coherence interval
durations does the estimation-based scheme have a higher rate.

5. CONCLUSIONS

For the orthogonal codebook-based IRS system, we proposed a
novel training scheme that could allocate more power to the de-
modulation pilot than the selection pilots. We derived a tight upper
bound for its achievable rate and a closed-form expression for the
average beamforming gain. The analysis accounted for imperfect

2 20 40 60 80 100 120

4

6

8

10

12

Fig. 4. Achievable rate as a function of the number of reflection
patterns (K). The maximum rate is shown by the marker ‘x’.

channel estimates, which affected both selection and coherent de-
modulation. The proposed scheme achieved a higher rate than the
estimation-based scheme except at low SNRs or when the number
of IRS elements was comparable to the coherence interval duration.
Future research directions include considering multiple antennas,
and considering correlation between the cascaded channels. With
the direct link, an interesting problem is determining the pilot powers
as a function of the link’s strength relative to the cascaded links.

6. APPENDIX

6.1. Outline of Proof of Theorem 1

Due to space constraints, we only show the key steps. Let heq(m) =
erm + jeim, for m ∈ {1, 2, . . . ,K}. The cumulative distribu-
tion function (CDF) of heq(s) can be written as Fers,eis(x, z) =
Pr (ers ≤ x, eis ≤ z). It is given by

Fers,eis(x, z) =

K∑
i=1

Pr (ers ≤ x, eis ≤ z, s = i) , (17)

= KPr (er1 ≤ x, ei1 ≤ z, s = 1) . (18)

Let K1 = {2, 3, . . . ,K}. Using (3), conditioning on er1, ei1
and taking expectation over them, the probability in (18) can be writ-
ten as

E
[
1{er1≤x,ei1≤z,}Pr

(
|y1|2 > |yi|2, ∀i ∈ K1

∣∣∣er1, ei1)] , (19)

where 1{.} denotes the indicator function. Conditioned on er1, ei1,
we can show that |y1|2 is a non-central chi-square RV with PDF

e−(w+Pse
2)/σ2

I0
(√

4Pse2w/σ4
)/

σ2, for w ≥ 0, where e =√
e2r1 + e2i1 and I0(.) is the zeroth-order modified Bessel function

of the first kind [23, Ch. 5]. Using this, we can then show that

Pr
(
|y1|2 > |yi|2, ∀i ∈ K1|er1, ei1

)
=

1

σ2

∫ ∞

0

e
−w+Pse

2

σ2 I0

(√
4Pse2w

σ4

)(
1− e

− w
σ2
y

)K−1

dw. (20)

Expanding the term
(
1− exp

(
−w/σ2

y

))K−1 and using the identi-
ties in [24, (2) and (9)] and [25, (2.33)] simplifies (20). Substituting
it in (19) and averaging over er1 and ei1 yields the expression for
Fers,eis(x, z). Differentiating this with respect to x and z gives us
the expression for PDF in (7).
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