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Abstract—We propose a novel joint antenna selection and
power adaptation rule that maximizes the energy-efficiency
(EE) of an underlay spectrum sharing system. In an underlay
system, a secondary user shares the spectrum with a higher
priority primary user, but is subject to tight constraints on
the interference it generates. Our approach exploits the spatial
diversity benefits of multiple antennas to improve the secondary
user’s performance, but with a hardware complexity and cost
comparable to a single antenna system. We prove that the
proposed rule is EE-optimal for a secondary transmitter that is
subject to the interference-outage constraint, which generalizes
the widely used peak interference constraint, and the peak
transmit power constraint. It has a novel form different from
the conventional rules considered in the literature. We present
an insightful geometrical characterization that brings out the
dependence of the optimal power on the channel gains within
the secondary system and between the secondary and primary
systems. The proposed rule achieves a markedly higher EE
compared to conventional rules.

I. INTRODUCTION

Next generation wireless communication systems are ex-
pected to achieve higher data rates and support a variety of
new applications despite severe constraints on the spectrum
available and energy. For example, 5G systems are expected
to achieve 10 times higher spectral efficiency and 100 times
higher energy-efficiency (EE) [1]. The severe shortage of
spectrum has led to a rejuvenation of interest in spectrum
sharing by the regulators [2], [3]. Spectrum sharing makes
multiple systems share the same spectrum to improve its
utilization. In its underlay mode, secondary users (SUs) share
the spectrum used by higher priority primary users (PUs) [4],
[5]. However, to protect the PU, the SU is subject to tight
constraints on the interference it causes.

Multiple antenna techniques such as transmit antenna se-
lection (TAS) have attracted attention because of their ability
to improve the SU’s performance but with a low hardware
complexity [5]. In TAS, the secondary transmitter (STx)
dynamically selects one antenna and transmits to the secondary
receiver (SRx). By requiring only one radio-frequency (RF)
chain, TAS cuts down on components such as digital-to-analog
converter, mixer, filter, and amplifiers that contribute the most
to a multi-antenna system’s cost. For this reason, TAS has
been adopted in commercial standards such as 4G Long Term
Evolution [6].
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EE maximization for underlay spectrum sharing has been
studied in [7]–[9]. In [7], energy-efficient power adaptation
when the STx is subject to the average interference power
constraint and different combinations of peak and average
power constraints is studied. In [8], EE-maximizing power
adaptation when the STx is subject to both peak power
and average power constraints and the interference-outage
constraint, is studied. In [9], energy-efficient power adaptation
is studied for various combinations of peak and average power
constraints, and peak and average interference constraints.

TAS for underlay spectrum sharing has been explored
from different angles in the literature. For example, symbol
error probability-minimizing TAS rules for an STx that is
subject to interference-outage and transmit power constraints
are considered in [5], [10], and signal-to-interference-plus-
noise ratio (SINR)-maximizing TAS rules for an STx that is
subject to the peak interference constraint are studied in [4].
Rate-maximizing TAS rules for an STx that is subject to peak
interference and transmit power constraints are studied in [11].

A. Contributions

From the above discussion, we see that the design of an
optimal TAS rule that maximizes the EE of an underlay
spectrum sharing system is an open problem. We propose a
novel EE-optimal joint antenna selection and power adaptation
(EE-ASPA) rule for a secondary system that is subject to the
interference-outage constraint and the peak power constraint.
The interference-outage constraint limits the probability that
the interference power at the primary receiver (PRx) exceeds
a threshold. It generalizes the widely used peak interference
constraint [5], [10]. The peak power constraint limits the
transmit power of the STx, and arises due to power amplifier
limitations [5], [7].

EE-ASPA selects the antenna and sets its power to maximize
an instantaneous reward function that is parametrized by a
power penalty η and an interference penalty λ. Its mathe-
matical form is very different from the antenna selection and
power adaptation (ASPA) rules considered in the literature [5],
[12]–[14]. The form brings out how the interference constraint
makes the antenna selected and its power depend not only on
the STx-SRx channel power gain, but also on the interference
link gain from the STx to the PRx, and how the consideration
of EE affects the choice of the antenna and its power. We
propose an iterative algorithm to determine η and λ.

We then present an insightful and novel geometric charac-
terization of the optimal power as a function of the STx-SRx
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Fig. 1. System model showing an STx with Nt antennas and one RF chain
that transmits to an SRx using antenna s in the presence of a PRx.

and STx-PRx channel power gains of the selected antenna. We
also study the small peak power regime in which the optimal
transmit power adaptation simplifies to a simpler binary power
control. We present explicit expressions for the EE and the
interference-outage probability in this regime.

Our numerical results show that EE-ASPA achieves an EE
that is larger by up to 170% compared to the other rules in the
literature. The results also bring out how different rules trade
off between the spectral efficiency and the EE, and how EE-
ASPA optimally balances the two. On account of its optimality,
EE-ASPA provides a fundamental new benchmark for the EE
of TAS for underlay spectrum sharing.

B. Outline and Notations

Section II describes the system model. Section III presents
EE-ASPA and proves its optimality. Numerical results are
presented in Section IV. Our conclusions follow in Section V.

Notations: We show scalar variables in normal font, vector
variables in lowercase bold font, and sets in calligraphic font.
Pr (X) and E [X] denote the probability and the expectation,
respectively, of X . The indicator function is denoted by 1{a},
which equals one if a is true and is zero else. We denote
max {a, 0} by (a)+.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The system model is illustrated in Figure 1. It consists of
a primary system and a secondary system that share the same
spectrum of bandwidth B. The secondary system consists of
an STx with Nt transmit antennas and an SRx with a single
receive antenna.1 The channel power gains from the ith antenna
of the STx to the SRx and the PRx are denoted by hi and gi,
respectively. Let h , [h1, . . . , hNt ] and g , [g1, . . . , gNt ]. The
STx chooses an antenna s ∈ {1, . . . , Nt} and transmits with a
power Ps.

The STx knows h and g, as has been widely assumed
in the spectrum sharing literature [5], [7], [12]–[14]. In the
time division duplex mode, the STx can estimate h and g
using channel reciprocity by transmitting or receiving from the
antennas one by one. In the frequency division duplex mode,
the STx can estimate h via feedback from the SRx, and g using

1The results can be easily generalized for the scenario with multiple receive
antennas.

techniques such as hidden power feedback loop [15]. The SRx
performs coherent demodulation. For this, it only needs to
know the complex baseband channel gain from selected STx
antenna s to itself. The SRx can estimate it from the pilot
symbols transmitted along with the data [5].

EE Definition: The EE ηEE is defined as the ratio of average
rate to average power consumed at the STx. From Shannon’s
formula, the instantaneous rate is given by log

(
1 + Pshs/σ

2
)
,

and σ2 = σ2
p + σ2

n is the sum of interference power σ2
p at the

SRx from the primary transmitter (PTx) and the noise power
σ2

n at the SRx.2 σ2 is assumed to be known to the STx. The
instantaneous power consumed is equal to ξPs + Pc, where ξ
is the inverse of the power amplifier efficiency of the STx and
Pc is the constant power drain due to STx components such as
mixer, filter, and digital-to-analog converter [16]. Therefore,

ηEE =
BE

[
log
(
1 + Pshs

σ2

)]
E [ξPs + Pc]

bits/J. (1)

The expectations in (1) are taken over both h and g.
Constraints: The STx is subject to the following constraints:
1) Peak Power Constraint : The secondary transmit power

cannot exceed a peak transmit power Pmax.
2) Interference-Outage Constraint : An interference-outage

occurs when the interference power Psgs at the PRx
exceeds a threshold τ , which is a system parameter. The
constraint requires that an interference-outage should
occur with a probability at most Omax:

Pr (Psgs > τ) ≤ Omax. (2)

Problem Statement: An ASPA rule φ : (R+)Nt × (R+)Nt →
{1, . . . , Nt} × [0, Pmax] determines for each realization of h
and g the transmit antenna s ∈ {1, . . . , Nt} and its transmit
power Ps ∈ [0, Pmax]. Let D be the set of all ASPA rules. Our
aim is to find an optimal ASPA rule φ∗ that maximizes the EE
and satisfies the above constraints. Since B is a constant, our
stochastic, constrained optimization problem is as follows:

P0 : max
φ∈D

{
E
[
log
(
1 + Pshs

σ2

)]
E [ξPs + Pc]

}
, (3)

s.t. Pr (Psgs > τ) ≤ Omax, (4)
0 ≤ Ps ≤ Pmax, (5)
(s, Ps) = φ(h, g). (6)

III. EE-ASPA

We define the EE-ASPA rule φ∗ (h, g) as

(s∗, P ∗s∗) = argmax
Pi∈[0,Pmax], i∈{1,...,Nt}

{Ωi (Pi; η, λ)} , (7)

where Ωi (Pi; η, λ) is the instantaneous reward function of
antenna i when it transmits with power Pi. It is defined as

Ωi (Pi; η, λ)
4
= log

(
1 +

Pihi
σ2

)
− ηξPi − λ1{Pigi>τ}, (8)

2The interference from the PTx to the SRx is assumed to be Gaussian as
has been widely assumed in the literature due to its tractability [5].

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 23,2021 at 06:58:09 UTC from IEEE Xplore.  Restrictions apply. 



where η ≥ 0 and λ ≥ 0 are two constants. We do not explicitly
show the dependence of Ωi (Pi; η, λ) on hi and gi to keep the
notation simple.

Consider first the constrained regime in which the
interference-outage constraint is active. For this regime, we
now show that EE-ASPA is the optimal solution for the
problem P0 with the help of three lemmas.

Lemma 1: For a given η ≥ 0, let λ be chosen such that
Pr (P ∗s∗gs∗ > τ) = Omax, where (s∗, P ∗s∗) = φ∗(h, g). Then,
φ∗ solves the optimization problem P1(η), where

P1(η) : max
φ∈D

{
E

[
log
(

1 +
Pshs
σ2

)]
− ηE [ξPs + Pc]

}
,

(9)
s.t. (4), (5), (6).

Proof: The proof is given in Appendix A.
Lemma 2: Let η∗ be the value of the power penalty η

at which the maximum value of the objective function of
P1(η) is 0. For this value of η∗, let λ∗ be chosen such that
Pr (P ∗s∗gs∗ > τ) = Omax, where (s∗, P ∗s∗) = φ∗ (h, g). Then,
η∗ is the optimal EE of P0 and φ∗ solves P0.

Proof: The proof is given in Appendix B.
Lemma 2 implies that φ∗ is the optimal ASPA rule. How-

ever, the rule requires η∗ to be known. We determine it
iteratively. In the kth iteration, for a given η = η(k), let
λ(k) denote the corresponding interference penalty at which
Pr (Ps(k)hs(k) > τ) = Omax. Here, s(k) is the optimal antenna
and Ps(k) is its optimal power in the kth iteration. Recall that
s(k) and Ps(k) are functions of h and g. Then,

η(k+1) =
E
[
log
(

1 +
P
s(k)

h
s(k)

σ2

)]
E [ξPs(k) + Pc]

. (10)

We set η(0) as zero to initialize this iteration.
Lemma 3: The sequence η(0), η(1), . . . , η(k), . . . is a strictly

monotonically increasing sequence that converges to η∗.
Proof: Following the method in [17], we can show that

the sequence is strictly monotonically increasing. Also, we can
prove that the optimal value of P1(η) monotonically decreases
and becomes zero only when η = η∗.

We now present an explicit characterization of the optimal
transmit power and the optimal antenna.

Result 1: The optimal antenna s∗ is given by

s∗ = argmax
i∈{1,...,Nt}

{Ωi (P ∗i ; η∗, λ∗)} , (11)

where P ∗i is the optimal power of antenna i if it is selected.
It is given by

P ∗i =



min
{
P̃ (hi) , Pmax

}
, for R1, (12a)

P̃ (hi) , for R2, (12b)
argmax

Pi∈{P̃ (hi),τ/gi}
{Ωi (Pi; η

∗, λ∗)} , for R3, (12c)

argmax
Pi∈{Pmax,τ/gi}

{Ωi (Pi; η
∗, λ∗)} , for R4, (12d)

Fig. 2. Illustration of the four decision regions for antenna i depending on
the values of hi, gi, α2, and τ/Pmax with the optimal power in each region.

where

P̃ (hi) = σ2

(
1

α0
− 1

hi

)+

, (13)

and α0 = η∗ξσ2. The regions R1, R2, R3, and R4 are:

R1 =

{
(hi, gi) : gi ≤

τ

Pmax

}
, (14a)

R2 =

{
(hi, gi) : hi ≤ α1(gi), gi >

τ

Pmax

}
, (14b)

R3 =

{
(hi, gi) : α1(gi) < hi ≤ α2, gi >

τ

Pmax

}
, (14c)

R4 =

{
(hi, gi) : hi > α2, gi >

τ

Pmax

}
, (14d)

where

α1(gi) =
α0(

1− η∗ξτ
gi

)+ and α2 =
α0

(1− η∗ξPmax)
+ . (15)

Proof: The proof is given in Appendix C.
To understand the four regions, we first define five key

values of hi, namely, α0, α1(gi), α2, α3(gi), and α̃3(gi), at
which the behaviour of the reward function in (8) can change.
The point at which P̃ (hi) first becomes non-zero is α0. The
point at which P̃ (hi) = τ/gi is α1(gi). The point at which
P̃ (hi) = Pmax is α2.

The point at which Ωi (τ/gi; η
∗, λ∗) = Ωi

(
P̃ (hi); η

∗, λ∗
)

is α3(gi). Rearranging terms in the equation yields

α3(gi) =
α0(

ωλ∗ − η∗ξτ
gi

)+ , (16)

where ωλ∗ = −W0

(
−e−1−λ∗)

and W0(.) denotes the Lam-
bertW function on its principal branch [18].
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Lastly, the point at which Ωi (τ/gi; η
∗, λ∗) =

Ωi (Pmax; η∗, λ∗) is α̃3(gi). Rearranging terms in the
equation yields

α̃3(gi) =
σ2 − σ2e

−λ∗+η∗ξ
(
τ
gi
−Pmax

)
(
e
−λ∗+η∗ξ

(
τ
gi
−Pmax

)
Pmax − τ

gi

)+ . (17)

With the help of Result 1, we understand how the transmit
power changes as a function of the STx-SRx and STx-PRx
channel gains. In the following, an antenna i is outage-
inducing if P ∗i gi > τ , and is non-outage-inducing otherwise.

• In R1, from (12a), P ∗i = 0, for 0 ≤ hi ≤ α0, P ∗i =
P̃ (hi) > 0, for α0 < hi ≤ α2, and P ∗i = Pmax, for
hi > α2. Since Pmax ≤ τ/gi, antenna i is non-outage-
inducing in the entire region.

• In R2, from (12b), we have P ∗i = P̃ (hi) ≤ τ/gi and
antenna i is non-outage-inducing in this region.

• In R3, from (12c), it follows that P ∗i = τ/gi, for
α1(gi) < hi ≤ α3(gi), and P ∗i = P̃ (hi), otherwise.
Also, from (14c), we can show that τ/gi < P̃ (hi) ≤
Pmax here. Therefore, antenna i is outage-inducing when
hi > α3(gi) in R3.

• In R4, from (12d), it follows that P ∗i = τ/gi, for
α2 < hi ≤ α̃3(gi), and P ∗i = Pmax, otherwise. Also,
from (14d), we can show that τ/gi < Pmax < P̃ (hi) here.
Hence, antenna i is outage-inducing when hi > α̃3(gi).

Determining λ∗: Recall that in EE-ASPA, for a given
η∗, we need to find λ∗ such that the interference-outage
constraint in (4) is satisfied with equality. We find λ∗ it-
eratively using the sub-gradient algorithm [19, Ch. 3]. In
the `th iteration of the algorithm, λ is updated as λ(`) =[
λ(`−1) − t

(
Omax − P (`−1)

out

)]+
, where t is the step size and

P
(`−1)
out is the outage probability after the (` − 1)th iteration.

The algorithm stops when either P (`)
out = Omax or λ(`) = 0.

The subgradient is bounded by Omax, which guarantees the
convergence of the algorithm to the neighbourhood of λ∗.
When the interference-outage constraint is inactive, λ∗ = 0.

Note that finding η∗ and the corresponding λ∗ needs to be
done only once. Given these two parameters, the proposed rule
requires O(Nt) comparisons every coherence interval.

1) Rate-Optimal Rule: It can be shown that setting η∗ = 0
leads to the following novel rate-optimal rule.

Corollary 1: The optimal ASPA rule that maximizes the
average rate subject to the interference-outage and peak power
constraints is as follows:

Pi =

{
τ
gi
, if Pmax ∈

[
τ
gi
, σ

2

hi
eλ
(

1 + τhi
σ2gi

)
− σ2

hi

)
,

Pmax, else,

s = argmax
i∈{1,...,Nt}

{
log
(

1 +
Pihi
σ2

)
− λ1{Pigi>τ}

}
, (18)

where λ is chosen such that Pr (Psgs > τ) = Omax.

A. Insights: Small Pmax Regime

In this regime, the interference-outage constraint is inactive
and λ∗ = 0 because the transmit power is small. Here, we
can show that the antenna with the largest STx-SRx channel
power gain is optimal. From (14), it is easy to see that (hi, gi)
for antenna i falls in region R1 with high probability in this
regime. Also, from the expressions for α0 and α2 in Result 1,
it follows that α2 → α0 as Pmax → 0. Hence, P ∗i = Pmax, for
hi > α0. Thus, from (12a), EE-ASPA simplifies to

s∗ = argmax
i∈{1,...,Nt}

{hi} and P ∗i =

{
0, if hi ≤ α0,
Pmax, else.

(19)
Therefore, binary power control is optimal for small Pmax.

For this policy, the outage probability Pout and the EE can
be analyzed. For Rayleigh fading, h1, . . . , hNt are independent
and identically distributed exponential random variables with
unit power, and so are g1, . . . , gNt .

Result 2: In the low Pmax regime, Pout is given in closed-
form by

Pout = Nte
− τ
Pmax

Nt−1∑
k=0

(
Nt − 1

k

)
(−1)

k

k + 1
e−(k+1)α0 , (20)

and η∗ is the solution of the following equation:

η = Nt

[
ξPmax

(
1−

[
1− e−ηξσ

2
]Nt
)

+ Pc

]−1
×
Nt−1∑
k=0

(
Nt − 1

k

)
(−1)k

k + 1

[
log (1 + ηξPmax) e−(k+1)ηξσ2

+e
(k+1)σ2

Pmax E1

(
(k + 1)σ2

[
1

Pmax
+ ηξ

])]
, (21)

where E1(x) =
∫∞
x
e−t/tdt is the exponential integral [20,

Ch. 5.1].
Proof: The proof is skipped to conserve space.

The expression in (20) brings out how Pout decreases as
Pmax decreases. Computing η∗ from (21) is much simpler than
computing it from the iterative approach discussed earlier.

IV. BENCHMARKING AND NUMERICAL RESULTS

We compare the EE, average rate, and average power con-
sumption of EE-ASPA with the rate-optimal rule, minimum
interference rule [12], maximum ratio rule [13], and maximum
signal power rule [14]. As originally proposed, the last three
rules set the power as Pi = min {Pmax, τ/gi} and have a
zero interference-outage probability. In order to enable the
secondary system to exploit the non-zero outage probability
Omax that is permitted and ensure a fair comparison, we modify
the power adaptation for these rules as follows: Pi = Pmax, if
gi ≤ τ/Pmax, else

Pi =

{
Pmax, with probability q,
τ
gi
, with probability 1− q, (22)

where q is set numerically such that Pr (Psgs > τ) =
Omax. The minimum interference rule selects antenna s =
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Fig. 3. EE comparison of various ASPA rules (Nt = 4, τ/σ2 = 3 dB, and
Omax = 0.05).

argmini∈{1,...,Nt}{gi}. The maximum ratio rule selects antenna
s = argmaxi∈{1,...,Nt} {hi/gi}. The maximum signal power
rule selects antenna s = argmaxi∈{1,...,Nt} {hiPi}.

In the Monte Carlo simulations, we average over 105

realizations of Rayleigh fading channels. The parameters are
set such that the peak fading-averaged SINR Γ̄ = Pmaxµ/σ

2 is
7 dB. For example, this is achieved when Pmax = 15 dBm, the
path-loss for the STx-SRx link µ is −114 dB, the path-loss
for the STx-PRx link is −121 dB, σ2 is −106 dBm, and the
bandwidth is 1 MHz. Here, Pc = 98 mW and ξ = 2.86 [16].
We have found that atmost 4 iterations of η and atmost 1000
iterations of λ for a given η are required for the algorithm to
converge.

Figure 3 plots the EE in Mbits/J as a function of Γ̄ for
the aforementioned rules. For small Pmax, the peak power
constraint limits the EE. Increasing Pmax, therefore, leads to an
increase in the EE. However, for large Pmax, the interference-
outage constraint limits the EE, which then saturates for EE-
ASPA. However, for the other rules, the EE decreases for
larger values of Pmax. The rate-optimal rule and EE-ASPA
have the same EE for a Γ̄ up to 6 dB. This is because for small
values of Pmax, the average power consumption is dominated
by Pc, and maximizing EE and average rate are equivalent.

To better understand the trade-off between rate and power
consumed, Figure 4(a) plots the average rates of the EE-ASPA
and rate-optimal rules, and Figure 4(b) plots the average power
consumed by them. The average rate and average power of
EE-ASPA both increase as Γ̄ increase, and they eventually
saturate. EE-ASPA avoids larger rates because of the much
larger transmit powers they require. On the other hand, as Γ̄
increases, the average rate of the rate-optimal rule increases at
a logarithmic rate but its average power consumed increases
exponentially. Thus, its EE eventually decreases.

V. CONCLUSION

We proposed a novel and optimal ASPA rule that maximized
the EE of an underlay spectrum sharing system that was sub-
ject to the interference-outage and the peak power constraints.

0 4 8 12 16 20
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2

4

6

(a) Average rate.
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(b) Average power consumption.

Fig. 4. Trade-off between the average rate and the average power consumption
(Nt = 4, τ/σ2 = 3 dB, and Omax = 0.05).

The selected antenna and its power maximized a reward func-
tion that consisted of three terms and was parametrized by the
penalty constants η∗ and λ∗. These constants were determined
iteratively. We saw that the optimal power depended on which
of the four regions the STx-SRx and STx-PRx channel gains
lay in. The optimal rule achieved a much higher EE than the
ASPA rules proposed in the literature. Unlike these rules, its
average rate and power consumed both saturated as the peak
power increased. An interesting avenue for future work is to
consider imperfect channel state information at the STx.

APPENDIX

A. Proof of Lemma 1

We say that an ASPA rule is feasible when it satisfies both
constraints in (4) and (5). Consider any feasible ASPA rule
(s, Ps) = φ (h, g). From the definition of φ∗ in (7),

Ωs∗ (P ∗s∗ ; η, λ) ≥ Ωs (Ps; η, λ) . (23)

Averaging (23) over h and g, and rearranging terms that
constitute Ωi (Pi; η, λ) yields

E

[
log
(

1 +
P ∗s∗hs∗

σ2

)
− ηξP ∗s∗

]
≥ E

[
log
(

1 +
Pshs
σ2

)]
− ηξE [Ps]− λ

(
E
[
1{Psgs>τ}

]
− E

[
1{P∗

s∗gs∗>τ}
])
. (24)

We know that E
[
1{Psgs>τ}

]
= Pr (Psgs > τ) ≤ Omax since

φ is a feasible ASPA rule. Furthermore, from the choice of λ,
E
[
1{P∗

s∗gs∗>τ}
]

= Omax. Thus,

E
[
1{Psgs>τ}

]
−E

[
1{P∗

s∗g
∗
s>τ}

]
= Pr (Psgs > τ)−Omax ≤ 0.

Hence, E
[
log
(

1 +
P∗
s∗hs∗

σ2

)
− ηξP ∗s∗

]
≥ E

[
log
(
1 + Pshs

σ2

)]
− ηξE [Ps]. Thus, EE-ASPA solves the problem P1(η).

B. Proof of Lemma 2

We are given that the maximum value of the objective
function of P1(η∗) is 0. From Lemma 1, we know that
φ∗ in (7) maximizes the objective function of P1(η∗) when
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η = η∗. Let (s, Ps) = φ (h, g) be any feasible ASPA rule.
Hence,

E

[
log
(

1 +
Pshs
σ2

)]
− η∗E [ξPs + Pc] ≤ 0, for φ,

E

[
log
(

1 +
P ∗s∗hs∗

σ2

)]
− η∗E [ξP ∗s∗ + Pc] = 0, for φ∗.(25)

Rearranging terms, we get

η∗ =
E
[
log
(

1 +
P∗
s∗hs∗

σ2

)]
E [ξP ∗s∗ + Pc]

≥
E
[
log
(
1 + Pshs

σ2

)]
E [ξPs + Pc]

. (26)

Hence, the result follows.3

C. Brief Proof of Result 1

We consider the cases Pmax ≤ τ/gi and Pmax > τ/gi
separately below.

1) Pmax ≤ τ/gi: This corresponds to the region R1 in (14a).
In this case, for Pi ≤ τ/gi, we get

Ωi (Pi; η
∗, λ∗) = log

(
1 +

Pihi
σ2

)
− η∗ξPi. (27)

Thus, Ωi (Pi; η
∗, λ∗) is concave in Pi. From the first or-

der conditions, we can show that P̃ (hi) in (13) maximizes
Ωi (Pi; η

∗, λ∗). Combining this with the peak power con-
straint, we get P ∗i = min

{
P̃ (hi) , Pmax

}
.

2) Pmax > τ/gi: In this case, for Pi > τ/gi, we get

Ωi (Pi; η
∗, λ∗) = log

(
1 +

Pihi
σ2

)
− η∗ξPi − λ∗. (28)

The following three sub-cases arise depending on where
P̃ (hi) lies with respect to τ/gi and Pmax:

a) P̃ (hi) ≤ τ/gi < Pmax: Rearranging the terms in
P̃ (hi) ≤ τ/gi yields hi ≤ α1(gi), where α1(gi) is given
in (15). This corresponds to the regionR2 in (14b). The reward
function is given by (27), for Pi ∈ (0, τ/gi], and by (28),
otherwise. Since P̃ (hi) ≤ τ/gi, from the above discussion,
it maximizes Ωi (Pi; η

∗, λ∗). Also, P̃ (hi) < Pmax in R2.
Therefore, P ∗i = P̃ (hi). This yields (12b).

b) τ/gi < P̃ (hi) ≤ Pmax: From the definition of P̃ (hi)
in (13), it is easy to see that the condition τ/gi < P̃ (hi) ≤
Pmax is equivalent to α1(gi) < hi ≤ α2, where α2 is
given in (15). This corresponds to region R3 in (14c). Here,
Ωi (Pi; η

∗, λ∗) monotonically increases for Pi ∈ [0, τ/gi]. At
Pi = τ/gi, Ωi (Pi; η

∗, λ∗) drops by λ∗. It, then monotonically
increases for Pi ∈ (τ/gi, P̃ (hi)], and monotonically decreases
for Pi ∈ (P̃ (hi) , Pmax]. Hence, the reward function is maxi-
mized at either τ/gi or P̃ (hi). This yields (12c).

c) τ/gi < Pmax < P̃ (hi): It can be shown that the
condition Pmax < P̃ (hi) is equivalent to hi > α2. This
corresponds to the region R4 in (14d). Here, Ωi (Pi; η

∗, λ∗)
monotonically increases for Pi ∈ [0, τ/gi]. Then, as above, it
drops by λ∗ at Pi = τ/gi. It then monotonically increases for

3The proof uses ideas from [17]. Our problem is a stochastic fractional
programming problem which differs from that in [17].

Pi ∈ (τ/gi, Pmax]. Hence, the reward function is maximized
at either τ/gi or Pmax. This yields (12d).

Substituting P ∗i in (7) yields the optimal antenna in (11).
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