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Abstract—Accurately characterizing the time-varying nature
of the aggregate interference from secondary users (SUs) is
essential in ensuring a successful deployment of a cognitive
radio (CR) network. This requires characterizing the probability
distribution and the time-varying nature of the aggregate inter-
ference from multiple SUs. We show that it is well modeled as
a shifted lognormal random process, and is more accurate than
the lognormal, Gaussian, and symmetric truncated stable models
considered in the literature even for a relatively dense deployment
of SUs. Our model accounts for the effect of imperfect spectrum
sensing, which depends on path loss, shadowing, and fading of the
link from primary transmitter to the SU, and the randomness
in the number of SUs and their locations. It also allows for
both interweave and underlay modes of CR operation. We also
demonstrate the relevance of the proposed analytically tractable
model in the design of the primary exclusive zone.

I. INTRODUCTION

A common paradigm of cognitive radio (CR) classifies

users as primary users (PUs), which have unfettered access to

the spectrum, and secondary users (SUs), which can use the

spectrum but under tight constraints on the interference their

transmissions cause to the PUs [1]–[4]. A successful design

and deployment of CR, therefore, requires an accurate model

for the aggregate interference. This characterization feeds into

the design of transmission policies for SUs and techniques to

help mitigate their interference.

A multitude of factors must be considered together in order

to arrive at an accurate statistical model for the aggregate

interference. It is affected by propagation characteristics of

the channels between the SUs and PUs, such as path loss,

shadowing, and fading. Furthermore, the number of SUs that

transmit and their locations themselves are random variables

(RVs) and affect the interference. Imperfect spectrum sensing

also directly affects the interference process as it determines

the SUs’ transmit powers and whether or not they transmit.

Given the importance of interference modeling in CR, one

of the approaches pursued for it is based on measurements.

In [5], co-channel and adjacent channel interference at a tele-

vision receiver from an SU transmitter (SU-Tx) are measured.

In [6], interference measurements for fixed indoor and outdoor

geometries are presented. In [7], interference cartography,
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which is a map of the interference measured over a region,

is presented. However, the above models, while accurate,

are very location-specific. Therefore, a second approach has

focused on developing statistical models [1]–[4]. However,

no closed form exists for the probability distribution function

(PDF) of the aggregate interference. Therefore, the following

approximate analytical models have been investigated.

Interference in Underlay Mode: In the underlay mode,

an SU can transmit even when it senses that the PU is

transmitting. However, it does so with a much lower power

in order to avoid excessive interference to the PU receiver

(PU-Rx). In [1], the aggregate interference at the PU-Rx

from a fixed number of SUs, which are distributed uniformly

over a region, is modeled as a lognormal RV. However, only

large-scale shadow fading is taken into account. A spatial

Poisson point process (SPPP) model is instead assumed for

the SU locations in [2], and the aggregate interference is again

modeled as a lognormal RV. However, in [1] and [2], the effect

of imperfect spectrum sensing by the SUs is not accounted for.

Interference in Interweave Mode: In the interweave mode,

an SU transmits only when it senses the PU to be off [8].

In [3], the aggregate interference is modeled as a symmetric

truncated-stable (STS) RV. Compared to the Stable distribution

model that had been used earlier in [9] to model the aggregate

interference, the STS model ensures that its second and higher

moments are finite. The SUs are distributed as per the SPPP

model and use an energy detector (ED) for spectrum sensing.

In [4], the aggregate interference is modeled as a shifted

lognormal (SLN) RV, again assuming an SPPP model for the

SUs. Spectrum sensing with and without cooperation using an

ED is considered.

A. Contributions and Comparisons with Existing Literature

We develop a model that captures the snapshot statistics,

i.e., PDF, as well as the time-varying statistics of the aggregate

interference. We show that the aggregate interference is well

modeled as an SLN random process (RP) except when it is

very small. Modeling the time-varying nature is important

because it affects the PU. For example, in [10], it has been

argued that long dips in the signal-to-noise-plus-interference-

ratio are detrimental to the PUs. Our model accounts for

imperfect spectrum sensing, which depends on the location

of the SU relative to the PU-Tx. Our model allows the SUs
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to operate in both the interweave and underlay modes. In

the interweave mode, interference occurs due to imperfect

spectrum sensing by the SUs, and in the underlay mode, it

occurs due to concurrent transmissions by the SUs when the

PU-Tx is transmitting. Also, it accounts for the combined

effect of time-correlated shadowing and small-scale Rayleigh

fading in the various links. The randomness in the SU locations

and numbers is also captured using the homogeneous SPPP

model. We also extensively benchmark the proposed model

with other statistical models proposed in the literature.

Another contribution of the paper is the application of

the proposed model for improving the design of the primary

exclusive zone (PEZ) [11], [12]. The PEZ is defined as the

region around the PU-Rx within which no SU is allowed to

transmit. Our redesign of the PEZ constrains not only the

probability that the aggregate interference exceeds a threshold

but also its average exceedance duration (AED). Thus, the

time-varying nature of the interference is also accounted for.

Comparisons and Comments: While the SLN model has

been considered before in the literature, its use and the

verification of its ability to model the aggregate interference

from the SUs when all the above physical layer effects are

accounted for is new and challenging, and is a contribution

of this paper. Our approach generalizes in several ways the

SLN model considered in [4]. It is also more general than the

level crossing rate (LCR) analysis in [13], which considers

a system with one SU and one PU, only models shadowing,

and assumes perfect spectrum sensing. While the aggregate

interference is instead modeled as a gamma RP in [14],

shadowing and imperfect spectrum sensing are not modeled

and the number of interferers is fixed.

While the Stable model [9] is provably exact in the asymp-

totic regime of a large number of SUs, generalizing it or

the STS model to incorporate the time-varying nature of

interference is an open problem. These two models also

require accurate, numerically stable techniques to compute

the PDF from the characteristic function that they analytically

characterize. Furthermore, we show that the STS model is less

accurate than the proposed SLN model, despite the latter’s

simplicity and tractability, except at very high SU densities.

Our PEZ design approach also differs from that in [11],

which did not consider imperfect spectrum sensing, shad-

owing, small-scale fading, and time-variations. Similarly, in

the PEZ design in [12], imperfect spectrum sensing and time

variations are not considered.

The paper is organized as follows. Section II describes the

system model. The aggregate interference process model is

developed in Section III. Simulation results and PEZ redesign

are presented in Section IV. Conclusions follow in Section V.

II. SYSTEM MODEL

We shall use the following notation. Expectation is denoted

by E[.] and the notation X(t) ∼ N (µX , σ2
X , CX(τ)) shall

mean that X(t) is a wide sense stationary (WSS) Gaussian

Correct
detection

SUs

R
PEZ

R

PU−Tx

Area A

Missed
detection

PU−Rx
p

Fig. 1. System model showing the SUs that are scattered over a region using
a homogeneous SPPP. Each SU performs spectrum sensing using an ED.

RP with mean µX , variance σ2
X , and covariance function

CX(τ). Similarly, X ∼ N (µX , σ2
X) denotes a Gaussian RV.

An exponential RV X with mean µ is denoted by X ∼ exp(µ).
System Layout: Figure 1 shows the system layout consid-

ered. The number and locations of the SUs is modeled as

a homogeneous SPPP, which is characterized by a density

parameter Υ. The number of SUs NCR that occur in a region

of area A = π
(

R2 − R2
PEZ

)

is a Poisson distributed RV with

mean ΥA. Here, RPEZ is the radius of the PEZ around the PU-

Rx, within which no SU is allowed to transmit [11], [12]. The

PU-Rx is located at the center of the region and the PU-Tx is

located at a distance p from the PU-Rx.

Channel Model: The large-scale shadowing is modeled as

a lognormal RP and the small-scale fading is modeled as a

Rayleigh RP [15]. Therefore, the power received at the PU-

Rx located at a distance ri(t) from the ith SU is given by

PK

(

d0

ri(t)

)η

eβXi(t)hi(t), (1)

where P is the transmit power of the SU. The path loss

component is K
(

d0

ri(t)

)η

, where K =
(

λ
4πd0

)2

, λ is the

carrier wavelength, d0 is the break point distance, and η is

the path loss exponent [16, Chap. 2].

The shadowing component is eβXi(t), where β = log 10/10
and Xi(t) ∼ N

(

0, σ2
xi

, Cxi
(τ)
)

. The covariance function

Cxi
(τ) is given by the modified Gudmundson’s model as [10]

Cxi
(τ) = σ2

xi
exp

(

−v2τ2

2D2

)

, (2)

where v is the speed of the SU and D is the decorrelation

distance. The Rayleigh fading component is hi(t) ∼ exp (1).
Its normalized covariance function Chi

(τ) is given as per the

Jakes’ fading model as [15]

Chi
(τ) = J2

0 (2πfmτ) , (3)

where fm is the maximum Doppler spread and J0 is the Bessel

function of the first kind of order zero [17]. The shadowing

and fading seen by different SUs on their links from the PU-Tx

and to the PU-Rx are independent and identically distributed.
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Spectrum Sensing (SS): The accuracy of SS by the SU

depends on the channel gain of the link from the PU-Tx to

the SU. We illustrate the dependence using the ED of [18]. If

the energy received by the SU from the PU-Tx over a time

T and bandwidth B exceeds a threshold ξ then the PU-Tx is

detected to be on.

The probability PFA of detecting the PU-Tx to be on given

that it is off is PFA = Q
(

ξ−N0TB

N2
0TB

)

, where N0 is the

noise power and Q is the standard Gaussian Q function. The

probability PD(qi, Yi, gi) of correctly detecting the PU-Tx to

be on given that it is on, depends on the signal-to-noise-

ratio (SNR) γ (qi, Yi, gi) at the ith SU, which is a function

of the distance qi of the SU from the PU-Tx, shadowing eβYi ,

and Rayleigh fading gi during the time duration of sensing.

Here, Yi ∼ N
(

0, σ2
yi

)

and gi ∼ exp(1). The expression for

PD(qi, Yi, gi) in terms of PFA is

PD(qi, Yi, gi) = Q

(

Q−1(PFA) − γ (qi, Yi, gi)
√

TB
√

1 + 2γ (qi, Yi, gi)

)

. (4)

Note that other models for SS can be used [19]; this only

changes the expressions of PFA and PD.

SU Transmission and Interference Model: If the SU detects

the PU-Tx to be on, which we refer to as hypothesis H1, then

it operates in the underlay mode and transmits with a lower

power Pu. Else, if the SU detects the PU-Tx to be off, which

we refer to as hypothesis H0, then it operates in the interweave

mode and transmits with a higher power Po. From (1), the

interference power Ii(t) at the PU-Rx from the ith SU, which

is ri(t) distance away, is

Ii(t)=







PuK
(

d0

ri(t)

)η

eβXi(t)hi(t), if H1 is detected,

PoK
(

d0

ri(t)

)η

eβXi(t)hi(t), if H0 is detected.
(5)

III. INTERFERENCE MODELING

The aggregate interference at the PU-Rx from the SUs is

IΣ(t) =

NCR
∑

i=1

Ii(t). (6)

Our goal is to accurately model IΣ(t) when the PU-Tx is

on. We model IΣ(t) as a WSS SLN RP, IΣ(t) ≈ eZ(t) + s,

where Z (t) ∼ N
(

µZ , σ2
Z , CZ(τ)

)

and s is called the shift

parameter. The parameters of Z (t) are obtained in terms of

the parameters of IΣ(t) by the moment-matching method [15]:

σ2
Z = log

(

1

4
Γ

2
3 + 4Γ−

2
3 − 1

)

, (7)

µZ =
1

2

(

log

(

κ2

eσ2
Z − 1

)

− σ2
Z

)

, (8)

s = κ1 − exp

(

µZ +
1

2
σ2

Z

)

, (9)

CZ(τ)=log
(

ΥAE[Ii(t)Ii(t + τ)] + e2µZ+σ2
Z

)

−
(

2µZ + σ2
Z

)

,

(10)

where Γ = 4κ3 + 4
√

4 + κ2
3 and κm is the mth cumulant of

IΣ(t), which can be shown to be κm = ΥAE[Ii(t)
m]. The

expressions in (7), (8), and (9) are derived in [20], and (10)

is derived in Appendix A.

Evaluation of the parameters of Z (t) requires expressions

for E[Ii(t)
m], for m = 1, 2, 3, and E[Ii(t)Ii(t + τ )]. As shown

in Appendix B, E[Ii(t)
m], for m ≥ 1, is given by

E[Ii(t)
m] ≈

2m!Pm
o Kmdmη

0

(

R2−mη
PEZ − R2−mη

)

(mη − 2) (R2 − R2
PEZ)

e
1
2m2β2σ2

xi

− 2m! (Pm
o − Pm

u )Km

√
πWc (R2 − R2

PEZ)
e

1
2 m2β2σ2

xi

Wh
∑

n1=1

wh (n1)

Wl
∑

n2=1

wl (n2)

×
Wc
∑

n3=1

∫ R

RPEZ

dmη
0

rmη−1
i

PD

(

q′i(ri,n3),
√

2σyi
ah (n1) ,al (n2)

)

dri.

(11)

Here q′i(ri, n3) =
√

r2
i + p2 − 2ripac (n3), wh (n) and

ah (n), for n = 1, . . . , Wh, denote the weights and the

abscissas, respectively, of Gauss-Hermite quadrature; ac (n),
for n = 1, . . . , Wc, denote the abscissas of Gauss-Chebyshev

quadrature; and wl (n) and al (n), for n = 1, . . . , Wl, denote

the weights and the abscissas, respectively, of Gauss-Laguerre

quadrature [17]. A key point to note is that the expressions are

accurate even with a few terms; for the range of parameters

that we consider, Wc = Wh = Wl = 6 suffice.

As shown in Appendix C, E[Ii(t)Ii(t + τ )] is given by1

E[Ii(t)Ii(t+τ)] ≈
P 2

o K2d2η
0

(

R2−2η
PEZ − R2−2η

)

(η − 1) (R2 − R2
PEZ)

× e
β2σ2

xi

(

1+exp
(

−
v2τ2

2D2

))

(

J2
0 (2πfmτ) + 1

)

− 2
(

P 2
o −P 2

u

)

K2

√
πWc (R2−R2

PEZ)
e

β2σ2
xi

(

1+exp
(

−
v2τ2

2D2

))

×
(

J2
0 (2πfmτ) + 1

)

Wh
∑

n1=1

wh (n1)

Wl
∑

n2=1

wl (n2)

×
Wc
∑

n3=1

∫ R

RPEZ

d2η
0

r2η−1
i

PD

(

q′i(ri, n3),
√

2σyi
ah (n1) , al (n2)

)

dri.

(12)

The expressions above in (11) and (12) cannot be simplified

further because of the presence of the PD term inside the

integrand. They are mathematically involved because they take

into account all the sources of randomness. However, as we

saw, they are in the form of the single integrals that are easily

evaluated numerically.

LCR and AED to Measure Time-varying Nature of Interfer-

ence: For the SLN RP IΣ(t), the LCR LIΣ(t)(Ith) and AED

1The analysis assumes that any abrupt changes in IΣ(t) caused by a change
in the decision of an SU about the PU-Tx being on or off is negligible.
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for a threshold Ith can be obtained along lines similar to [14],

[21], and can be shown to be

LIΣ(t)(Ith) =

√
ΩZ

2πσZ

e
−

(log (Ith−s)−µZ)2

2σ2
Z , Ith > s, (13)

AEDIΣ(t)(Ith) =
Q
(

log (Ith−s)−µZ

σZ

)

LIΣ(t)(Ith)
, Ith > s, (14)

where ΩZ = − d2

dτ2 CZ(τ)
∣

∣

∣

τ=0
is computed from (10) and (12).

IV. NUMERICAL RESULTS

We now evaluate the accuracy of the proposed model using

Monte Carlo simulations, which use 105 drops. In each drop

a random number of SUs and their locations are generated as

per the SPPP. Each SU moves with a fixed velocity v in a

random direction. Each SU performs SS as per Sec. II. The

aggregate interference from all the SUs at the PU-Rx is then

measured.

We use the following parameters in the simulations: PU-

Tx transmit power: PTx = 10 dBm, SU transmit power in

interweave mode: Po = 2 dBm, SU transmit power in underlay

mode: Pu = −6 dBm, noise power: N0 = −100 dBm, density

of SUs: Υ = 100 SUs/km2, system bandwidth: B = 1 MHz,

carrier frequency: fc = 900 MHz, radius of region considered:

R = 1000 m, PEZ radius: RPEZ = 200 m, distance between

PU-Tx and PU-Rx: p = 500 m, path loss exponent: η = 4,

standard deviation of shadow fading: σxi
= σyi

= 6, break-

point distance: d0 = 10 m, speed of SUs: v = 5 m/s, false

alarm probability: PFA =10%, and SS duration: T =50 µs.

Snapshot Statistics: Figure 2 compares the cumulative distri-

bution function (CDF) and the complementary CDF (CCDF)

of IΣ(t) using the proposed model. The CDF evaluates the

accuracy in matching smaller IΣ(t) values, while the CCDF

evaluates the accuracy in matching larger IΣ(t) values, where

the CDF saturates. Also shown are the corresponding results

using the Gaussian, lognormal, and STS [3] models. In the log-

normal model, log (IΣ(t)) is modeled as a Gaussian RP [21].

In the Gaussian model, which is motivated by the central limit

theorem, IΣ(t) is modeled as a Gaussian RP. We see that the

Gaussian and lognormal RP models are the least accurate. The

STS model matches the CCDF better, but its CDF is inaccurate

as it saturates for small values. For the given parameters, the

SLN RP model matches the CCDF well and is more accurate

than the other models for Ith > −90 dBm. This is because it

matches the skewness of IΣ(t) better than the other models [4].

Time-varying Behavior: To evaluate the accuracy in model-

ing the time-variations of the aggregate interference, we study

the LCR and AED of the various models. The LCR is shown

in Fig. 3. The maximum value of the LCR depends on the

velocity of the SUs, which can be inferred from the expression

in (13). The Gaussian RP model is again very inaccurate. For

Ith < −90 dBm, the lognormal RP model overestimates the

LCR while the SLN RP model underestimates it, which is in

line with Fig. 2. For Ith > −90 dBm, the proposed model
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Fig. 2. Comparison of CDF and CCDF of IΣ(t) from different models.
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Fig. 3. Comparison of LCR of IΣ(t) from different models.

matches the LCR accurately, and is the most accurate model.

As mentioned, corresponding results for the STS model are

not shown because a time-varying model for it is not known.

We now study in Fig. 4 the AED of IΣ(t) using the

various models. We observe that the AED curve monotonically

decreases as IΣ(t) increases from zero to ∞. As before,

the Gaussian RP model does not accurately track the AED

of IΣ(t) for smaller and larger values of Ith. As before,

the SLN model provides the best match for the AED for

Ith > −90 dBm. The above results hold true for larger and

smaller values of Υ, and for σxi
and σyi

up to 10.

A. Application to PEZ Design

We now use the interference model developed above to

redesign the PEZ based on two constraints. The first constraint

is the outage constraint, which mandates that the probability

that the aggregate interference IΣ(t) is greater than Ith should

not exceed 1−ρ [11]. The second constraint, which is new, is

the AED constraint. It mandates that the average time duration

for which IΣ(t) remains above Ith should not exceed δ. The

problem can be formulated as:

min RPEZ

subject to Pr (IΣ(t) > Ith) 6 1 − ρ, (15)

AEDIΣ(t)(Ith) 6 δ. (16)
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The optimal value of RPEZ that satisfies the constraints is

determined analytically from the proposed SLN RP model

and compared with Monte Carlo simulations, which use 5000
drops. Figure 5 plots RPEZ as a function of ρ for different δ
for Ith = −95 dBm. Only the outage constraint is active when

δ = ∞. As ρ increases, the outage constraint becomes tighter

and RPEZ increases. For δ = 40 ms, the AED is the active

constraint for ρ < 0.70. When δ is reduced to 20 ms, the

AED constraint is the active constraint for ρ as large as 0.97.

V. CONCLUSIONS

We saw that the shifted lognormal random process model

accurately characterizes the aggregate interference for inter-

ference values that exceed its shift. Our model takes into

account several sources of randomness such as imperfect SS,

time-correlated shadowing and fading, and randomness in the

number of SUs and their locations. It is considerably more

accurate than the Gaussian and lognormal RP models. It is

more accurate than the STS model, which only models the

PDF but not the time-variations. We saw that all the considered

models, including the proposed model, failed to accurately

model the low interference regime. Accurate modeling for this

remains an open problem. We also saw that the AED con-

straint, which the proposed model analytically characterizes,

increased the radius of the PEZ except when the interference

outage probability constraint was very tight. The proposed

model can be extended to also account for cooperative SS [22].

APPENDIX

A. Derivation of Covariance Functions CZ(τ) and CIΣ(τ)

To obtain CZ(τ), we match the covariance functions of

IΣ(t) and eZ(t) + s. It can be shown that the covariance

function of the latter is given by

CeZ(t)+s(τ) = e2µZ+σ2
Z+CZ(τ) − e2µZ+σ2

Z . (17)

The covariance function CIΣ(τ) of IΣ(t) is given by

CIΣ(τ)=E

[

NCR
∑

i=1

Ii(t)

NCR
∑

i=1

Ij(t + τ)

]

−
(

E

[

NCR
∑

i=1

Ii(t)

])2

.

(18)

Since NCR and Ii(t) are independent, we get

CIΣ(τ) = E[NCR] E[Ii(t)Ii(t + τ)] + E[NCR (NCR − 1)]

× E[Ii(t)] E[Ij(t + τ)] − (E[NCR] E[Ii(t + τ )])
2
. (19)

Using E[NCR] = ΥA and E
[

N2
CR

]

= ΥA + (ΥA)
2
, we get

CIΣ(τ) = ΥAE[Ii(t)Ii(t + τ)] . (20)

Upon equating (17) and (20), we get (10).

B. Derivation of mth Moment of Ii(t)

Recall that the ith SU transmits with power Po if it de-

tects the PU-Tx to be off, which happens with probability

PD(qi, Yi, gi). Else, it transmits with power Pu. From the law

of total probability and (5), we can write

E[Ii(t)
m] =

E

[(

PoK

(

d0

ri(t)

)η

eβXi(t)hi(t)

)m

(1 − PD(qi, Yi, gi))

]

+ E

[(

PuK

(

d0

ri(t)

)η

eβXi(t)hi(t)

)m

PD(qi, Yi, gi)

]

. (21)

Since Xi(t) is independent of the RVs ri(t), qi, Yi, and gi,

rearranging terms results in

E[Ii(t)
m] = Pm

o Km
E

[(

d0

ri(t)

)mη]

E

[

emβXi(t)
]

E[hi(t)
m]

− (Pm
o − Pm

u ) Km
E

[

emβXi(t)
]

E[hi(t)
m]

× E

[(

d0

ri(t)

)mη

PD(qi, Yi, gi)

]

. (22)

Using E[hi(t)
m] = m!, the moment generating function

(MGF) of Xi(t), and the PDFs of Yi and gi, we get

E[Ii(t)
m] = m!Pm

o Kme
1
2m2β2σ2

xi E

[(

d0

ri(t)

)mη]

− m! (Pm
o − Pm

u )Kme
1
2m2β2σ2

xi
1

σyi

√
2π

∫

∞

−∞

e
−

y2
i

2σ2
xi

×
∫

∞

0

e−giE

[(

d0

ri(t)

)mη

PD(qi, yi, gi)

]

dgi dyi. (23)

Globecom 2013 - Wireless Communications Symposium

3764



Using Gauss-Hermite and Gauss-Laguerre quadratures [17] to

evaluate the integrals over yi and gi, respectively, yields

E[Ii(t)
m] ≈ m!Pm

o Kme
1
2m2β2σ2

xi E

[(

d0

ri(t)

)mη]

− m!√
π

(Pm
o − Pm

u ) Kme
1
2m2β2σ2

xi

Wh
∑

n1=1

wh (n1)

Wl
∑

n2=1

wl (n2)

× E

[(

d0

ri(t)

)mη

PD

(

qi,
√

2σyi
ah (n1) , al (n2)

)

]

, (24)

where qi =
√

ri(t)2 + p2 − 2ri(t)p cos θ and θ is uniformly

distributed over [0, 2π].
Substituting the PDF of θ and using Gauss-Chebyshev

quadrature [17] to evaluate the integral over θ yields

E[Ii(t)
m] ≈ m!Pm

o Kme
1
2m2β2σ2

xi E

[(

d0

ri(t)

)mη]

− m!√
πWc

(Pm
o − Pm

u )Kme
1
2m2β2σ2

xi

Wh
∑

n1=1

wh (n1)

Wl
∑

n2

wl (n2)

×
Wc
∑

n3=1

E

[(

d0

ri(t)

)mη

PD

(

q′i(ri(t), n3),
√

2σyi
ah (n1) , al (n2)

)

]

,

where q′i(ri(t), n3) =
√

ri(t)2 + p2 − 2ri(t)pac (n3). Given

the total number of SUs, the location of the ith SU is uniformly

distributed over the region for an SPPP. Writing in terms of

the PDF of ri(t) and simplifying yields (11).

C. Brief Derivation of Autocorrelation of Ii(t)

Along lines similar to Appendix B, the autocorrelation of

Ii(t) can be written as

E[Ii(t)Ii(t + τ )] = P 2
o K2

E

[

eβ(Xi(t)+Xi(t+τ))
]

× E[hi(t)hi(t + τ )] E

[(

d2
0

ri(t)ri(t + τ)

)η]

−
(

P 2
o − P 2

u

)

K2
E

[

eβ(Xi(t)+Xi(t+τ))
]

E[hi(t)hi(t + τ)]

× E

[(

d2
0

ri(t)ri(t + τ )

)η

PD(qi, Yi, gi)

]

. (25)

Since the distance ri(t) between the ith SU and the PU-

Rx is typically larger than the distance traveled by the SU

in a time duration τ , ri(t + τ ) ≈ ri(t). Rearranging terms

and substituting the joint MGF of Xi(t) and Xi(t + τ) (by

using (2)) and the autocorrelation of hi(t) and hi(t + τ), we

get

E[Ii(t)Ii(t + τ )] ≈ P 2
o K2e

β2σ2
xi

(

1+exp
(

−v2τ2

2D2

))

E

[

d2η
0

ri(t)2η

]

×
(

J2
0 (2πfmτ) + 1

)

−
(

P 2
o − P 2

u

)

K2e
β2σ2

xi

(

1+exp
(

−
v2τ2

2D2

))

×
(

J2
0 (2πfmτ) + 1

)

E

[

(

d0

ri(t)

)2η

PD(qi, Yi, gi)

]

. (26)

Averaging over the RVs Yi, gi, and θ, as in Appendix B,

substituting the PDF of ri(t), and simplifying yields (12).
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