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Abstract—This paper addresses the problem of finding optimal
power control policies for wireless energy harvesting sensor
(EHS) nodes with automatic repeat request (ARQ)-based packet
transmissions. The EHS harvests energy from the environment
according to a Bernoulli process; and it is required to operate
within the constraint of energy neutrality. The EHS obtains
partial channel state information (CSI) at the transmitter through
the link-layer ARQ protocol, via the ACK/NACK feedback
messages, and uses it to adapt the transmission power for
the packet (re)transmission attempts. The underlying wireless
fading channel is modeled as a finite state Markov chain with
known transition probabilities. Thus, the goal of the power
management policy is to determine the best power setting for the
current packet transmission attempt, so as to maximize a long-
run expected reward such as the expected outage probability.
The problem is addressed in a decision-theoretic framework by
casting it as a partially observable Markov decision process
(POMDP). Due to the large size of the state-space, the exact
solution to the POMDP is computationally expensive. Hence, two
popular approximate solutions are considered, which yield good
power management policies for the transmission attempts. Monte
Carlo simulation results illustrate the efficacy of the approach
and show that the approximate solutions significantly outperform
conventional approaches.

Index Terms— Energy harvesting sensors, Power control, ARQ,
Retransmission, POMDP.

I. INTRODUCTION

Wireless energy harvesting sensors (EHS) operate using
energy harvested from environmental sources such as solar,
wind, piezoelectric, etc. Due to their promise of a potentially
infinite life of operation, they are fast emerging as viable
options for a variety of sensing-related applications. However,
due to the sporadic/random nature of the harvesting process,
energy management becomes critical to ensure continuous and
reliable operation of these nodes.

The energy replenishment process of the natural phenomena
and the energy storage constraints of the node need to be
taken into consideration when designing efficient transmission
strategies. This requires a cross-layer, energy-aware protocol
design that optimizes energy consumption for reliable packet
transmission as a function of the statistics of the harvested
energy. Transmission policies for EHS have to satisfy the
constraint of energy neutrality: at every point in time, the total
energy consumed by a node cannot exceed the total energy
harvested by it. In addition, the transmission policy of the
EHS needs to be able to handle the randomness in the channel
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fading process. This motivates the use of an automatic repeat
request (ARQ)-protocol, as it resilient to channel variations
and is known to be energy efficient [1].

The problem of transmit power management in EHS nodes
was studied in [2], where deterministic models for energy
harvesting were proposed. A simple Bernoulli injection model,
in which the node harvests a fixed amount of energy with
some probability or does not harvest at all, was proposed
in [3]. Other models and metrics for EHS in the literature
include minimizing the transmission time [4]; maximizing the
short term throughput [5] or the quality of coverage [6]; and
throughput and delay-optimal policies [7].

In this work, we study the problem of finding optimal power
management policies with ARQ-based packet transmission,
where the EHS node makes at most K attempts to trans-
mit each packet. After each attempt, the node receives an
ACK/NACK depending on whether the packet is successfully
received or not. In the latter case, it retransmits the packet. If
the packet is not successfully delivered after the K attempts,
it is declared to be in outage. Our goal, in this context, is to
find the optimal transmit power for each packet transmission
attempt, given the history of packet transmission energy levels,
the ACK/NACK messages received, and the energy available
in the battery. Intuitively, receiving an ACK or NACK on a
packet transmitted at a certain power level provides the EHS
implicit information about the channel state, which can be
used to reduce the odds that the retransmitted packet also
suffers an outage. The knowledge of the time correlation of
the channel can also be exploited to judiciously increase or
decrease the power for the next transmission attempt. The
key tradeoff involved here is that increasing the transmission
power improves the odds of successful packet reception, but
drains energy from the battery and decreases the probability
that there will be sufficient energy to deliver future packets.
On the other hand, a conservative approach of transmitting
at a low or minimal power could lead to packet outages and
wastage of energy if the battery gets full and energy arrivals
occur after an ACK has been received.

An ad hoc approach to power management in EHS nodes
with fixed-size packets and ARQ-based retransmission was
studied in [8], where all the packets were transmitted at
the same power level. The packet transmission power was
restricted to be an integer multiple or integer fraction of
the harvested power. The wireless channel to the destination
either remained constant for all the transmission attempts of
a given packet, or it changed independently from one attempt
to the next. The outage probability analysis derived by the
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authors was useful in demonstrating that it is important to
correctly tune the communication parameters to obtain the
best possible link performance. However, the complexity of
the formulation made direct optimization of the parameters
analytically intractable. Also, the use of a fixed transmission
power precluded the EHS from exploiting the time correlation
of the channel or the information from previous ACK/NACK
messages in designing its transmission strategy. In this paper,
we overcome all of the aforementioned drawbacks.

A natural framework within which to handle the above
power management problem at the EHS is to formulate it as a
sequential decision process. Since channel state information
(CSD) is only partially available at the EHS through the
ACK/NACK information, we model the problem as a par-
tially observable Markov decision process (POMDP) [9]. This
makes our approach fundamentally different from past work
employing decision theory for EHS nodes to obtain decision
policies [6], [7], [10]-[12]. To the best of our knowledge,
this is the first time in the literature that the power manage-
ment problem in EHS with ARQ-based packet retransmissions
has been cast in a POMDP framework. Our study leads to
useful insights about optimal link-layer protocols for EHS
nodes. Moreover, packet retransmissions and power control
are already enabled in present-day low power communication
standards such as the IEEE 802.15.4 [13].

The POMDP formulation allows us to choose from a gamut
of available techniques for finding optimal and near-optimal
power management policies. Due to the large size of the
state-space, the exact solution to POMDP turns out to be
computationally infeasible. Hence, we consider two heuristic
solutions to the POMDP: the voting policy and the maximum
likelihood policy. Through simulations, we show that these
policies significantly outperform existing schemes.

The organization of the paper is as follows. Section II intro-
duces the system model and the problem definition. Section III
presents the POMDP formulation of the power management
problem. Section IV discusses the approximate solutions of
the POMDP. Section V presents simulation results, and con-
cluding remarks are offered in Section VI

II. SYSTEM MODEL

Consider an EHS node that transmits a packet of ¢ data bits
periodically once in a frame of duration T}, (s) to a destination
node over a wireless fading channel. Each packet transmission
attempt happens during a slot of duration 7, (s). The slot
duration includes sending the packet and receiving an ACK
from the destination. Time is discretized in multiples of T},
and let the integer K = |T,,/T,]| represent the maximum
number of transmission attempts in a frame. An Automatic
Repeat Request (ARQ) protocol is assumed at the link-layer.
If the EHS receives no acknowledgment (NACK) from the
receiver, it retransmits the packet until it receives an ACK, or
it is time to transmit the next packet. If it runs out of energy,
it suspends transmission till it harvests sufficient energy to
attempt transmission again. If it receives an ACK, the node
stops transmitting and just accumulates the energy harvested
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Fig. 1. Transmission timeline of the EHS for K = 4, showing the

random energy harvesting process (i) and periodic data arrivals (T
). The marker “X” denotes slots where the EHS does not transmit.

during the rest of the frame. An outage event is said to
occur if the receiver fails to successfully decode the packet
within the interval T,,,. Apart from the ACK/NACK, no CSI
is assumed to be available at the EHS. Fig. 1 illustrates the
packet transmission model.

For the energy harvesting process, an independent and
identically distributed Bernoulli model is considered, in which
an energy E is injected into the EHS node at the beginning
of every slot with probability p, and with probability 1 — p,
no energy is harvested [3]. Alternative models for the energy
harvesting process include the leaky-bucket model [2], switch-
based or vibration-based models [14], etc. While the above
Bernoulli model is simple, it does capture the sporadic and
random nature of energy availability at the EHS.

A finite energy buffer (e.g., a battery) is used to store the
harvested energy, and it is assumed that there are no storage
inefficiencies in the buffer. Let B; denote the battery energy
level at the beginning of the i slot, and let F; < B; denote
the energy used for packet transmission. The battery energy
itself gets replenished whenever the node harvests energy, and,
consequently, obeys the following Markovian evolution:

min (Bz + Es - Ei, Bmax)
By =
Bi — Ez

w. prob. p 0
w. prob. 1 —p
where Bp,.x denotes the battery capacity.

For the foregoing POMDP formulation, we need the state-
space to be finite. To facilitate this, we discretize the channel
into N levels, 71, ..., vn. In the correlated channel model, we
model the channel as the finite state Markov chain (FSMC)
shown in Fig. 2, with known state transition probabilities’
Py k41, Py r—1 and Py j. Such a first-order model is known

'In this paper, for convenience, we use the notations P; ; and P%ﬂj
interchangeably, to represent the probability of going from state ~y; to ;.
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Fig. 2.

Finite state Markov model for Rayleigh fading channel

to be accurate for packet-level simulation studies [15] and
in cross-layer optimization [16], [17] with slowly-varying
channels. The channel levels vi,...,vy and the transition
probabilities can be computed based on the underlying fading
distribution and Doppler frequency, following the procedure
in [18], [19]. In the block fading channel model, we assume
that the channel remains fixed for the duration of a frame,
and changes independently and statistically identically from
one frame to the next. This assumption is valid when the
channel coherence time equals the frame duration, due to
which, the initial packet transmission and all of the retrans-
mission attempts see the same channel state [8]. To facilitate
comparisons, we assume that the stationary distribution of the
quantized channel is the same for the two channel models.

In a slot, the receiver may fail to decode the packet if
the EHS node does not have sufficient energy to transmit,
or if the transmitted packet is corrupted by the channel or
noise at the receiver. The packet error probability depends on
the modulation and coding scheme (MCS) used for packet
transmission. For example, with uncoded BPSK modulation
at a transmit energy E; per bit, and when the channel state is
vk, the packet error probability can be written as

L
P(Bisw) =1 - (1 —Q( 27]$0E>> @

where () is the standard Gaussian tail function and Ny is
the noise power spectral density. The extension to other
MCS is straightforward provided one has an expression that
analytically relates the packet error probability to the transmit
energy and the channel state.

The next section presents the POMDP formulation of the
problem considered in this paper.

III. POMDP FORMULATION

Our goal is to sequentially select the packet transmit power
levels based on the retransmission index, battery energy level,
and the history of transmission energies and ACK/NACK
messages received, to minimize the expected outage proba-
bility. The channel state ~; in the ™ slot is only partially
observed at the EHS transmitter through the ACK/NACK
messages. Hence, the sequential decision problem is cast as a
partially observable Markov decision process (POMDP). For
convenience, we normalize all energy values with respect to
a minimum possible transmit energy £, which is typically
imposed by the lower end of the linearity range of RF amplifier
on the EHS node. Let L £ E, /E be an integer with L > 1.
The POMDP consists of the following components:

a) State-Space: The finite set of system states denoted
by S £ B x G x K x U, where

e B 2 {0,1,..., Bnx} is the set of battery states, nor-
malized with respect to the minimum transmit energy F.
Recall that By« is the battery capacity.

e G is the set of channel states. Under the channel model
explained in the previous section, G = {y1,72,..., VN }.

o IC is the set of packet transmission attempt indices within
a frame, and, hence, £ = {0,1,..., K — 1}.

o U = {0,1} is set of packet reception states. The packet
reception state takes the value 1 when an ACK is received
by the EHS, and is 0 otherwise. At the beginning of the
frame, i.e., when the packet transmission attempt index
is k = 0, the EHS node is always in the packet reception
state 0, since an ACK has not yet been received. If the
receiver successfully decodes the current packet and an
ACK is received by the EHS, the packet reception state
changes to 1 for the rest of the frame. Irrespective of
the system state at k = K — 1, the packet reception
state is reset to O at the beginning of the next slot, as
it corresponds to the beginning of a new frame.

b) Observation Space: The observations are the
ACK/NACK messages received by the EHS node, after each
packet transmission attempt. The observation space is the finite
set O = {ACK,NACK}. Since errors in the ACK/NACK
messages are not modeled in this work, the observation always
matches the packet reception state of the system.

c) Action Space: An action a by the EHS node cor-
responds to sending a packet at power level aE. The ac-
tion space is the set of possible actions, and is denoted by
A=£1{0,1,...,B}, with B € B representing the battery level
in the current slot.

d) State Transition Function: Let two arbitrary states
in Sbes= (by,ku) and s = (b/,7,k',u’). The state
transition function is the probability that the system starts in
state s, takes an action a, and lands in state s’. Under the
correlated fading channel model, it is given by

T (s,a,8") = 6(K' ky) Py y b ((b,u) a, (V') k,y) ()

where k. = (k+ 1) mod K, §(k', k) is the Kronecker delta
function, and P, . is the channel transition probability as
defined in Section II. In the above, the term §(k’, k1) captures
the fact that the packet transmission index always increases by
one at a time until the end of the frame, when it resets to 0.
Also, 9 ((b,u) ,a, (b,u’), k, ) represents the probability that
the EHS node starts from battery state b and packet reception
state u, takes an action a, and lands in the state (&', ') when
the current channel state and packet transmission index are -y
and k, respectively. An expression for this term is provided in
the next page. In the block fading model, the state transition
function is given by

T(S, a, Sl) = é(k/a k+) C(’%’YI; k) 1/’ ((b7 u) ) (blau/) 7k77)

where ((v,7';k) = 6(v,7") when k # K — 1, i.e.,, when
not at the end of the frame, and = 7/, otherwise. Here, 7./
represents the stationary probability of the channel state ~'.
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In the previous page, ¢ ((b,u),a, (b',u'),k,v) is as fol-
lows. Define
n(b,a,b') 2 ps(V, b+ L —a)+ (1 —p)s(,b—a). (4)
Then, if ¥ = K — 1, it can be shown that
¥ ((b,u),a, (b)), K —1,7) = n(b,a,b') when v’ = 0,
and is 0 otherwise. If k& # K — 1, it can be shown that
w ((b7 u) ) a’ (b/7 u/) 7k7 ,Y)
n(b,a,b’)
_Juba )= PaBiy) @ =1u=0
) n(b,a,0)Pe(aFs ) u =0,u=0
0 else.

v =1u=1

The above expression is obtained by tracking the probabilities
of the following events: i) Whether energy has been harvested
in the current slot or not; ii) The packet reception state of
the system; iii) The probability of successful packet reception
at the receiver given the channel state and action. Also, the
expression in the k = K — 1 case arises because the packet
reception state always resets to zero at the end of the frame.
For example, to get the first term in (5), note that, when the
EHS has already received an ACK, it transits from battery state
b to b+ L — a upon taking an action a if it harvests energy
(which occurs with probability p). If it does not harvest energy,
it transits to the state b — a (which occurs with probability
1—p).

e) Observation Function: The observation function is the
probability of observing an ACK or a NACK given the current
state and action. Since this probability depends only on the
current channel state and action, it is given by

P (NACKla,7) = Fe(aE;7)
P(ACKla,y) = 1-Pe(aE;7)
where P.(aE;~) is given by (2).

f) Reward: Let s = (b,~, k,u) be the state of the system.
The expected immediate reward is defined as:

(6)

1—-P.(aE;y) a<bu=0
R(s,a) =4 —1 (a>bu=0)or (a#0,u=1)
0 else.

(N
The immediate reward of —1 is used to preempt the EHS from
using a non-zero energy when it has already received an ACK,
or from attempting to use more than the energy available in
the battery, to transmit a packet.
g) Objective: The objective is to maximize the expected
reward collected by the EHS node over an infinite time
horizon, and is given by

.1 i
J= AﬂnmmE{z_;R(S"’“")}

where n € {1,2,...} denotes the slot index, s,, is the state
sequence, and a,, is the action sequence. The expectation in
the above is over the distributions of the channel and energy
harvesting processes. The next section discusses the techniques
for solving the POMDP considered in this work.

®)

IV. SOLUTION TECHNIQUES

In a POMDP, the system state s is not fully observable.
However, given the history of actions and observations, a
so-called belief state ((s) can be computed, that represents
the probability that the system is in state s. It is known that
the belief state is a sufficient statistic for finding the optimal
policy [20]. The belief state can be updated at the end of each
slot based on the previous belief state, the current observation,
and the transition probability matrix. Then, the solution of the
POMDP is the solution of a fully observable Markov decision
process (MDP) on the belief states [9].

Although several exact algorithms [9] for solving the belief
MDP exist, these algorithms are computationally feasible only
when the cardinality of the state-space is of the order of ten
or so [21], [22]. Even approximate solution methods can only
handle a state-space with a cardinality of about a hundred [23].
In our case, the state-space is much larger, as it is indexed by
the number of battery energy levels, the number of channel
states, the packet retransmission index, and the ACK/NACK
state. As a result, finding an exact or even approximate
solution to the POMDP is computationally infeasible. Hence,
we explore two popular heuristic solutions for the POMDP.
For this, we first describe the solution to the MDP that is
obtained when the system state is fully observable; both the
heuristic methods rely on solving this underlying MDP.

The solution to the MDP when the system state is fully
observable yields an optimal policy, pympp, Which prescribes
the mapping from the state-space S to the action space A that
maximizes the expected long-term reward J defined in (8).
The optimal policy is the solution to the following Bellman
equation [24]

A"+ h*(s) = max

! * /
e hax R(s,a) + %T(& a,s )h*(s )]
9)

for all s € S, where A\* is the optimal average reward and h*
is an optimal reward vector satisfying the Bellman equation.
Here, with a slight abuse of notation, the battery energy level
is written as B(s) to indicate that it is one of the components
of the system state s.

The value iteration method [9] can be used to solve the
Bellman equation (9). This involves iteratively solving

Jrt1(s) =

max
acA,a<B(s)

R(s,a)+ > T(s,a,8")Ji(s)

s'eS
(10)
for all s € S, where J}, is the value function at the k™ iteration,

k=0,1,.... It can be shown that [24]
limM:A*, VseS. an
k—oo k

In practice, it is standard to use relative value iteration to solve
the MDP, which is a numerically stable version of the above
procedure [24]. We denote the solution to the MDP obtained
using the relative value iteration as pypp(s).
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The next step is to use the solution to the MDP obtained in
the fully observable case to solve the original POMDP. Recall
that, in our system model, the battery state, packet reception
state and the transmission attempt index are fully observable,
while the channel state component of the system state is
only partially observable, through the ACK/NACK messages.
Therefore, we maintain a belief 5(7) over the channel state of
the system, and use it to approximately solve the POMDP. The
update equations for the belief 3(y) are obtained as follows.

Let 0,, € O be the observation and let -y,, denote the channel
state component of the system state s,, at time-slot n, i.e., s, =
(bry Yns ki, un). Let B, () denote the belief of the channel
state v € G at time-slot n. In the correlated fading model, the
belief state update is given by

Bnl(v;) = Zi P’Yi7’YjP(0n—1|an—1v’Yi)ﬁn—l('%’)
B Ej > Pw,wg-P(On—ﬂan—h%‘)ﬁn—l(%‘)7

for j = 1,2,..., N, where P(o,|an,7;) is given by (6).
In the block fading model, P, ,, in the above is replaced
by ((7i,7;; k) defined in the previous section, and one also
needs to keep track of the retransmission index for the current
packet, k.

The final task is to use the channel belief state obtained
above to convert the POMDP to an MDP, and use the solution
to the MDP as an approximate solution the POMDP. To this
end, we present two popular heuristic approaches.

1) Maximum Likelihood (ML) Heuristic [25]: Here, at each
instant of time, we find the most probable channel state (i.e.,
the largest entry of the belief vector over the channel states),
ML = arg max ((7y) of the system. Then, the ML state of the

YEG
system is defined as sy = (b, Ymw, k, u), where b, u and k are
the current battery, packet reception and slot state, respectively.
The ML heuristic method adopts the action corresponding to
the solution of the MDP with the ML state as the solution of
the POMDP. Thus,

12)

13)

2) Voting Policy Heuristic [26]: Here, for a given b, u and
k, we consider the set of states s = (b, 7, k,u), v € G. Each
of these states votes for an action a, as determined by the
optimal policy pipp(s) of the underlying MDP corresponding
to that particular state. In any given time-slot, these votes are
weighed by the component of the belief state corresponding
to each v € G, and the sum of the weighted votes for each
action is determined. The action with the largest sum, denoted
by fivoting, is selected as the optimal action:

pML = Hypp(SML)-

Hvoting = arg max Z 6(5)6(MKADP(S)7 a)' (14)
acA _
s_(b,;yék,u)

The solution to the POMDP can be computed offline. The
online computations involve updating the belief using (12) and
adopting the heuristic policy in (13) or (14) corresponding to
the updated belief state. Hence, the computational overhead in
implementing the above power control policy is not a burden
on the EHS.
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Fig. 3. Block fading channel: Comparison of ML and voting policy
heuristic solutions against fixed-power transmission schemes.

V. SIMULATION RESULTS

In this section, we compare the performance of the heuristic
algorithms described in Sec. IV against the conventional fixed-
power retransmission scheme, through Monte Carlo simula-
tions. Let the fixed power be denoted by E, and define
W 2E, / Es. For comparison with past work [8], we assume
that IV is an integer multiple or integer fraction of F,.

Figure 3 shows the simulation results for the block fading
channel case. The following system parameters are used: K =
4, L =4, N =7, { = 50, E, = 12dB, Ny = 1, and
Brax = 20F;. In order to enable a comparison with the results
presented in [8], in this experiment, we use the uncoded on-off
keying modulation. In this case, the packet outage probability
in (2) is replaced with P.(aF;~v) = 1—(1—Q(\/aE~/Ny))*.
The outage probability of the system is plotted against the
probability of harvesting energy in a slot, p. The heuristic
solution of POMDP is compared against fixed-power scheme
with W = %7 1,2 and 3. The voting policy and ML policy
perform almost equally well, and significantly outperform the
fixed-power transmission scheme.

Figure 4 shows the simulation results for the correlated
channel case. The system parameters are the same as in
Fig. 3, except for K = 3 and Bpax = 10FE;. To capture
the time correlation, 7, = 10 ms and f;7, = 0.03 are
used as the parameters of the FSMC, where f; denotes the
Doppler frequency. Again the outage probability of the system
is plotted against p. As before, the ML heuristic and the voting
policy heuristic perform nearly equally well and outperform
the fixed-power transmission scheme. The ML heuristic is
simple to implement and would, therefore, be a good choice
for an EHS, given its limited hardware capabilities. Typically,
to achieve the same outage probability, the POMDP solution
requires only about 80% of the average energy harvesting rate
required by the fixed-power scheme. Finally, Fig. 5 shows how
the outage probability varies as a function of p with various
battery capacities. The plot highlights the role of the battery
capacity in improving the outage probability.
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VI. CONCLUSIONS

In this paper, we considered the problem of power man-
agement policies for EHS nodes with packet retransmissions.
Since the channel state is only partially observable through
the ACK/NACK messages, we formulated the problem as a
POMDP. Exact solutions were found to be computationally
infeasible, motivating us to explore two heuristic solutions:
the voting policy and the ML policy. The heuristic solutions
were obtained by solving MDPs based on the belief state
of the channel. Simulation results showed that the proposed
POMDP solution significantly outperforms existing fixed-
power retransmission schemes. Thus, the decision-theoretic
approach adopted in this paper is a promising technique for the
design of power management policies for EHS nodes that need
to operate under stringent energy constraints and yet achieve
high reliability or throughput.
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