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Abstract—In the widely used spatial channel model (SCM),
the millimeter wave channels encountered by a 5G system are
constructed using a stochasto-geometric approach. However, a
probabilistic characterization of the time evolution of the gain
of any transmit-receive beam pair is not available. We propose a
novel modified bivariate Nakagami-m (MBN) model that presents
such a characterization. It accurately captures the non-stationary
time-variation in the beam gain due to user mobility and user
device orientation changes. It applies to both positive and negative
correlations between the beam gains. We derive closed-form
expressions for the MBN parameters in terms of the SCM
parameters. We then apply this tractable model to develop a new,
effective, and robust beam selection rule. It predicts in closed-form
the signal-to-noise ratios of the beam pairs at the time a beam
pair is selected given the beam pair gain measurements that are
made at different times.

I. INTRODUCTION

5G cellular communication technology has moved towards
millimeter-wave bands, where larger bandwidths are avail-
able [1]. To overcome the severe propagation loss in these
bands, it employs high-gain narrow beams. As a result, many
transmit-receive beam pairs are needed to cover the complete
angular space. Thus, beam acquisition, which sounds the chan-
nel using different transmit-receive beam pairs at different times
to determine the best transmit-receive beam pair, can take a
considerable amount of time. Consequently, gain estimates for
different beam pairs are outdated by different extents in a
time-varying environment. In addition to user mobility, changes
in the user equipment (UE) device orientation cause these
variations. They also lead to beam misalignment and can make
the channel non-stationary [2], [3].

User mobility and user orientation changes make it necessary
to periodically reselect the transmit and receive beam pair. For
this, it is important to periodically estimate the beam gains of
the different beam pairs and also predict their evolution until
the time instant at which the beam pair is selected. Prediction
requires an accurate statistical model for the time evolution
of the beam gain of every beam pair. Specifically, it requires
the multivariate probability distribution of the beam gains of a
beam pair at two or more time instants.

The time evolution of the beam gain is captured in a differ-
ent stochasto-geometric manner in the spatial channel model
(SCM), which has been used extensively in the third generation
partnership project (3GPP) to evaluate 5G technologies [4].
SCM is based on real-world channels measured in many
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environments. It constructs the multiple-input-multiple-output
(MIMO) channel matrix by summing over the contributions
from different clusters, each of which consists of multiple paths.
This combined with the transmit and receive array gain vectors,
which depend on the beam pair, determines the gain of the beam
pair. However, SCM does not provide a statistical model for the
gain of a beam pair at one or more instants.

A. Contributions

We first show empirically that, in SCM, the beam gains at
two time instants can be positively or negatively correlated.
Negative correlation occurs, for example, for a beam that is
losing alignment between the first and second time instants. We
then propose a novel bivariate Nakagami-m (MBN) model to
accurately model the joint statistics of the gains of a beam pair
at any two time instants for positive and negative correlations.

For the positively correlated case, it models the joint proba-
bility density function (PDF) of the two beam gains using the
bivariate Nakagami-m model, which is known to accurately
model the channel measurements obtained from several prop-
agation scenarios. We derive closed-form expressions for the
mean beam power, power correlation coefficient, and Nakagami
parameter m in terms of the SCM parameters. While the
Nakagami-m model is a classical channel model, its bivariate
PDF for modeling the time-varying millimeter-wave channels
of SCM and the effect of user orientation changes has not been
employed in the literature, nor has its accuracy been verified.
The expressions for its parameters are also novel.

Second, for negatively correlated beam gains, for which the
conventional bivariate Nakagami-m PDF is not defined, MBN
employs a novel bivariate PDF. The PDF is obtained by means
of an affine transformation of the bivariate Nakagami-m PDF.
We numerically verify the accuracy of the MBN model for both
positive and negative correlations.

To demonstrate the MBN model’s utility and tractability, we
then apply it to improve the accuracy of beam selection. For a
general beam selection model, in which a beam pair is selected
periodically on the basis of the beam gain estimates that are
outdated by different extents, we propose a new beam selection
rule. It employs the MBN model to predict the signal-to-noise
ratio (SNR) at the time of beam selection. It differs from the
prevalent approach in the literature in which the beam pair with
the largest measured signal power is selected [5]–[7].

B. Outline and Notation

Section II presents the system model. In Section III, we
propose the MBN model and verify its accuracy. We apply
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the MBN model to improve beam selection in Section IV. Our
conclusions follow in Section V.

Notation: We denote the PDF and cumulative distribution
function (CDF) of a random variable (RV) X by fX (·) and
FX (·), respectively. Similarly, the conditional PDF and CDF
conditioned on an event A are denoted by fX (·|A) and
FX (·|A), respectively. The expectation with respect to an RV
X is denoted by EX [·], and the expectation conditioned on
an event A by EX [·|A]. The covariance of RVs X and Y is
denoted by Cov(X,Y ), variance by Var(·), transpose by (·)T ,
Hermitian transpose by (·)†, and real part by <{·}.

II. SYSTEM MODEL

We consider a millimeter-wave system in which the base
station (BS) is equipped with a uniform linear array (ULA)
that consists of Ntx antennas. It can transmit on one beam
from among BBS fixed directional beams in the azimuth direc-
tion. Similarly, the UE is equipped with a ULA that consists
of Nrx antennas. It can receive on one beam from among
BUE fixed directional beams in the azimuth direction. Let
BBS = {1, . . . , BBS} and BUE = {1, . . . , BUE} denote the set
of transmit and receive beams, respectively.

SCM: Let ψ (t) be the orientation of the UE with respect to
its antenna array at time t. As per SCM, the Nrx×Ntx MIMO
baseband channel matrix H(t, ψ (t)) between the BS and the
UE at time t with UE orientation ψ (t) is [4]

H(t, ψ (t)) =

√
KΛ

K + 1
urx(θrx

LoS + ψ (t))u†tx(θtx
LoS)

+

√
Λ

(K + 1)L

C∑
c=1

L∑
l=1

αc,l(t)urx(θrx
c,l + ψ (t))u†tx(θtx

c,l), (1)

where C is the number of clusters, L is the number of paths
per cluster, urx(·) is the array response at the receiver, utx(·)
is the array response at the transmitter, K is the Rician factor,
θtx
c,l and θrx

c,l are the angle of departure (AoD) at the BS and
angle of arrival (AoA) at the UE, respectively, for the lth path
in the cth cluster, θtx

LoS is the line-of-sight (LoS) AoD, θrx
LoS is

the LoS AoA, and Λ is the path-loss. For a ULA,

urx(θ) =
1√
Nrx

[
1, e−j2πµ

rx(θ), . . . , e−j2π(Nrx−1)µrx(θ)
]T
,

utx(θ) =
1√
Ntx

[
1, e−j2πµ

tx(θ), . . . , e−j2π(Ntx−1)µtx(θ)
]T
,

where µtx (θ) = dtx cos (θ) /λ, dtx is the transmit antenna
spacing, and λ is the wavelength. Similarly, µrx (θ) =
drx cos (θ) /λ and drx is receive antenna spacing. Lastly,
αc,l(t) = ᾱc,l exp (j2πfDt cos(ωc,l)), where fD = v/λ is the
maximum Doppler shift, v is the speed of the UE that moves at
an angle θv , ᾱc,l is a circularly symmetric complex Gaussian
RV with zero mean and variance γc (which is the relative power
of the cth cluster), and ωc,l = θrx

c,l − θv .
At time t, the beam gain gi,p (t) between the ith transmit

beam, which points in the direction θtx
i =π(i− 1)/BBS relative

to the BS, and the pth receive beam, which points in the
direction θrx

p =π(p− 1)/BUE relative to the UE, equals

gi,p (t) = |u†tx(θtx
i )H(t, ψ (t))urx(θrx

p )|. (2)

Its power correlation coefficient ρi,p (t, t+ τ) is defined as

ρi,p (t, t+ τ) ,

E
[
g2
i,p (t) g2

i,p (t+ τ)
]
− Ωi,p (t) Ωi,p (t+ τ)√

Var(g2
i,p (t))Var(g2

i,p (t+ τ))
. (3)

The AoA θrx
c,l of path l of cluster c is a Gaussian RV that is

wrapped over an interval of 2π radians. The Gaussian mean is
θ̄AoA,c and standard deviation is σAoA,c. Similarly, the AoD θtx

c,l

is also a wrapped Gaussian RV with mean θ̄AoD,c and standard
deviation σAoD,c. In SCM, the angular spread parameters σAoA,c
and σAoD,c are themselves exponential RVs with means ξAoA
and ξAoD, respectively.

III. MBN MODEL FOR SCM’S TIME-VARYING CHANNEL

We develop an analytically tractable, accurate model for
the joint statistics of the beam gains gi,p (t) and gi,p (t+ τ)
obtained from SCM, where τ is the time lag. We define
the normalized RVs X1 = gi,p (t) /

√
Ωi,p (t) and X2 =

gi,p (t+ τ) /
√

Ωi,p (t+ τ), where Ωi,p (t) is the mean beam
power at time t.

A. When ρi,p (t, t+ τ) ≥ 0

We propose modeling the bivariate PDF of X1 and X2 using
the bivariate Nakagami-m model as follows [8]

fX1,X2
(x1, x2) =

4mm+1xm1 x
m
2 [1− ρi,p (t, t+ τ)]

−1

Γ(m) (ρi,p (t, t+ τ))
m−1

2

×exp

[
−m(x2

1 + x2
2)

1−ρi,p (t, t+τ)

]
Im−1

(
2mx1x2

√
ρi,p (t, t+τ)

1−ρi,p (t, t+τ)

)
, (4)

where m is the Nakagami parameter and Im(.) denotes the mod-
ified Bessel function of the first kind of order m [9, (9.6.19)].
As per the maximum likelihood estimate given in [10], we set

m = Ω2
i,p (t) /Var(g2

i,p (t)). (5)

B. When ρi,p (t, t+ τ) < 0

The bivariate Nakagami-m PDF is not defined for
ρi,p (t, t+ τ) < 0. Therefore, an alternate model is needed.
We first make two numerical observations from SCM and then
develop the alternate model.

Figure 1 plots the level-set contours of the empirical bivariate
PDF of the RVs X1 and X2 for τ = 17 ms and 23 ms at
t = 20 ms. The power correlation coefficients for these two
lags turn out to be −0.81 and 0.83, respectively. They have
approximately the same absolute value but opposite signs. The
plots are generated from 100, 000 traces of gains of all beam
pairs for BBS = 18, BUE = 18, Ntx = Nrx = 20, drx = dtx =
0.25λ, v=2 m/s, and carrier frequency of 28 GHz. The SCM
parameters are K = 3, ξAoD = 10.2◦, ξAoD = 15.5◦, C = 4,
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Fig. 1. Level-set contour plot of the empirical bivariate PDF of RVs X1

and X2 for τ = 17 ms and 23 ms with ρi,p (t, t+ τ) = −0.83 and 0.81,
respectively, at ψ′ (t) = 60◦/s (K = 3, ξAoD = 10.2◦, ξAoA = 15.5◦,
C = 4, and L = 20, t = 20 ms). The PDF levels are 1, 4, and 8.

L = 20, and θv = 90◦, and the UE orientation change rate is
ψ′ (t) =60◦/s [4]. Each trace consists of 120 samples that are
spaced 1 ms apart. We make the following observations, which
hold for other parameter settings as well.

Numerical Observation 1: The level-set contours for the
positive power correlation coefficient are concentric, and so
are those for the negative power correlation coefficient. Fur-
thermore, all the level-set contours share the same center.

Numerical Observation 2: The major axes of the level-
set contours for the positive and negative power correlation
coefficients are perpendicular to each other.

Explanation: fX1,X2 (x1, x2) in (4) is a symmetric function
of the variables x1 and x2. The positive correlation coefficient
implies that the major axis of the contours has a positive slope.
To ensure symmetry, it must be a 45◦ line. Thus, the major
axis is x1 = x2.

In Numerical Observation 1, the center c = (M1,M2) is
the point at which the bivariate Nakagami-m PDF is max-
imized. It is the solution of ∂

∂x1
fx1,x2

(x1, x2) = 0 and
∂
∂x2

fx1,x2 (x1, x2) = 0. When ρi,p (t, t+ τ) > 0, these are
non-linear coupled equations without a closed-form solution.
However, we have numerically observed that c is insensitive to
ρi,p (t, t+ τ).1 Thus, it is the same as that for ρi,p (t, t+ τ) =
0. In this case, M1 is the value of x1 at which the marginal
Nakagami-m PDF fX1 (x1) is maximized. It equals M1 =√

(2m− 1)/(2m) [8]. Similarly, M2 =
√

(2m− 1)/(2m).
For the negative correlation coefficient, we expect the bi-

variate PDF to remain a symmetric function of x1 and x2. The
negative correlation implies a negative slope. This coupled with
the symmetry and common center implies that the major axis is
a 135◦-line that passes through the point

(√
2m−1

2m ,
√

2m−1
2m

)
.

Thus, it is perpendicular to the line x2 = x1. After accounting

1Over a wide range of values of ρi,p (t, t+ τ), the two elements of c vary
by atmost 0.1% from those at ρi,p (t, t+ τ) = 0.

for the fact that it passes through c, the major axis is given by
x2 = 2

√
2m−1

2m − x1.

Using an affine transformation of variables that satisfies the
two observations, the bivariate PDF f̃X1,X2 (x1, x2) equals

f̃X1,X2 (x1, x2) =
4mm+1 (a− x1)

m
xm2

ζ(m, 2(2m− 1))(1− ρ)ρ
m−1

2

× exp

−m
(

(a−x1)
2
+x2

2

)
1− ρ

Im−1

(
2m
√
ρ (a−x1)x2

1− ρ

)
,

for 0 ≤ x1 ≤ a, x2 ≥ 0, (6)

where a =
√

2(2m− 1)/m, ζ(·, ·) is the incomplete gamma
function [11, (8.350.1)], and ρ > 0 is a parameter that affects
correlation. The incomplete gamma function arises because of
finite range of the PDF. The power correlation coefficient turns
out to be approximately −ρ.

C. Ωi,p (t) and ρi,p (t, t+ τ) in Terms of SCM Parameters

The pth receive beam directional coefficient at the UE
Z rx
p (θ) = u†rx(θtx

p )urx(θ) in the direction θ is given by

Z rx
p (θ) =

1

Nrx
exp

(
−j(Nrx − 1)π

[
µrx (θ)− µrx (θrx

p

)])
×

sin
(
Nrxπ

[
µrx (θ)− µrx

(
θrx
p

)])
sin
(
π
[
µrx (θ)− µrx

(
θrx
p

)]) . (7)

It follows that

∣∣Z rx
p (θ)

∣∣2 =
1

N2
rx

sin2
(
Nrxπ

[
µrx (θ)− µrx

(
θrx
p

)])
sin2

(
π
[
µrx (θ)− µrx

(
θrx
p

)]) . (8)

Similarly, for the ith transmit beam, the directional coefficient
Z tx
i (θ) = u†tx(θtx

i )utx(θ) in the direction θ is

∣∣Z tx
i (θ)

∣∣2 =
1

N2
tx

sin2 (Ntxπ [µtx (θ)− µtx (θtx
i )])

sin2 (π [µtx (θ)− µtx (θtx
i )])

. (9)

In the following results, we skip derivations to conserve space.
1) Mean Beam Power Ωi,p (t) = E

[
g2
i,p (t)

]
: It is given by

Ωi,p (t) =
Λ

K + 1

C∑
c=1

γcḠ
rx
p,c(t)Ḡ

tx
i,c(t)

+
KΛ

K + 1

∣∣Z rx
p (θrx

LoS + ψ (t))
∣∣2 ∣∣Z tx

i

(
θtx

LoS

)∣∣2 , (10)

where Ḡtx
i,c(t) =

∑GH
q=1 wq

∣∣Z tx
i

(√
2σAoD,cxq + θ̄AoD,c

)∣∣2 /√π,

Ḡrx
p,c(t) =

∑GH
q=1 wq

∣∣Z rx
p

(√
2σAoA,cxq+θ̄AoA,c+ψ (t)

)∣∣2 /√π,
wq and xq are the qth Gauss-Hermite (GH) weight and abscissa,
respectively, for 1 ≤ q ≤ GH [9, (25.4.46)].
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2) Power Correlation Coefficient ρi,p (t, t+ τ): In (3), the
denominator term Var(g2

i,p (t)) is given by

Var(g2
i,p (t))=

2Λ2

L(K + 1)2

(
C∑

c1=1

γ2
c1F

rx
p,c1(t)F tx

i,c1(t)

+2(L− 1)
C∑

c1=1

γ2
c1

(
Ḡrx
p,c1(t)

)2 (
Ḡtx
i,c1(t)

)2
+2L

[
C∑

c1=1

γc1Ḡ
rx
p,c1(t)Ḡ

tx
i,c1(t)

]
C∑

c2=1,c2 6=c1

γc2Ḡ
rx
p,c2(t)Ḡ

tx
i,c2(t)


+

2KΛ2 |Z tx
i (θtx

LoS)|2
∣∣Z rx
p (θrx

LoS+ψ (t))
∣∣2

(K + 1)2

C∑
c1=1

γc1Ḡ
rx
p,c1(t)Ḡ

tx
i,c1(t),

(11)

where F tx
i,c(t) =

∑GH
q=1 wq

∣∣Z tx
i

(√
2σAoD,cxq + θ̄AoD,c

)∣∣4 /√π
and F rx

p,c(t) =
∑GH
q=1wq

∣∣Z rx
p

(√
2σAoA,cxq+θ̄AoA,c+ψ (t)

)∣∣4/√π.
Replacing t with t+ τ yields Var(g2

i,p (t+ τ)).
In (3), the numerator E

[
g2
i,p (t) g2

i,p (t+ τ)
]

equals

E
[
g2
i,p (t) g2

i,p (t+ τ)
]

= TNLoS
i,p (t, τ) + T LoS

i,p (t, τ)

+ T LoS,NLoS
i,p (t, τ). (12)

Here, TNLoS
i,p (t, τ) captures the non-line-of-sight (NLoS) term

cross-products:

TNLoS
i,p (t, τ) =

Λ2

L(K + 1)2

[
2

C∑
c1=1

γ2
c1Ḡ

rx
p,c1(t)F tx

i,c1(t)Ḡrx
p,c1(t+ τ)

+L

[
C∑

c1=1

γc1Ḡ
rx
p,c1(t)Ḡtx

i,c1(t)

]
C∑

c2=1,c2 6=c1

γc2Ḡ
rx
p,c2(t+τ)Ḡtx

i,c2(t)

+(L− 1)
C∑

c1=1

γ2
c1Ḡ

rx
p,c1(t)

(
Ḡtx
i,c1(t)

)2
Ḡrx
p,c1(t+ τ)

+L

[
C∑

c1=1

γc1Θ
rx
c1(t, τ)Ḡtx

i,c1(t)

]
C∑

c2=1,c2 6=c1

γc2
(
Θrx
c2(t, τ)

)∗
Ḡtx
i,c2(t)

+(L− 1)
C∑

c1=1

γ2
c1Θrx

c1(t, τ)
(
Ḡtx
i,c1(t)

)2 (
Θrx
c1(t, τ)

)∗]
, (13)

where

Θrx
c (t, τ) =

1√
π

GH∑
q=1

wqZ
rx
p

(√
2σAoA,cxq + θ̄AoA,c + ψ (t)

)
×
(
Z rx
p

(√
2σAoA,cxq + θ̄AoA,c + ψ (t+ τ)

))∗
× e4πjtfD sin(

√
2σAoA,cxq+θ̄AoA,c+

ψ(t)+ψ(t+τ)
2 −θv) sin(ψ(t+τ)−ψ(t)

2 )

× e−2πjτfD cos(
√

2σAoA,cxq+θ̄AoA,c+ψ(t+τ)−θv). (14)
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(a) ρi,p (t, t+ τ) = 0.81

0.4 0.6 0.8 1 1.2 1.4

Channel gain g
i,p

(t+ )

10
-2

10
-1

10
0

Empirical

Analytical

g
i,p

(t) = 1

g
i,p

(t) = 0.9

g
i,p

(t) = 0.8

(b) ρi,p (t, t+ τ) = −0.83

Fig. 2. Verification of the MBN model: Conditional CDF
FX2

(
x2|X1 = gi,p (t) /

√
Ωi,p (t)

)
for positive and negative power

correlation coefficients (t = 20 ms, ψ′ (t) = 60◦/s, K = 3, ξAoD = 10.2◦,
ξAoA = 15.5◦, C = 4, and L = 20).

T LoS
i,p (t, τ) captures the LoS term cross-products:

T LoS
i,p (t, τ) =

K2Λ2

(K + 1)2

∣∣Z rx
p (θrx

LoS + ψ (t))
∣∣2

×
∣∣Z rx
p (θrx

LoS + ψ(t+ τ))
∣∣2 ∣∣Z tx

i

(
θtx

LoS

)∣∣4 . (15)

T LoS,NLoS
i,p (t, τ) captures LoS and NLoS term cross-products:

T LoS,NLoS
i,p (t, τ) =

KΛ2 |Z tx
i (θtx

LoS)|2

(K + 1)2

×

[(
C∑
c=1

γcḠ
rx
p,c(t)Ḡ

tx
i,c(t)

)∣∣Z rx
p (θrx

LoS + ψ (t+ τ))
∣∣2

+

(
C∑
c=1

γcḠ
rx
p,c(t+ τ)Ḡtx

i,c(t)

)∣∣Z rx
p (θrx

LoS + ψ (t))
∣∣2

+ 2<

(
C∑
c=1

γcΘ
rx
c (t, τ)Ḡtx

i,c(t)

)

×
(
Z rx
p (θrx

LoS + ψ (t))
)∗
Z rx
p (θrx

LoS + ψ (t+ τ))

]
. (16)

D. MBN Model Verification

For different values of gi,p (t), Figure 2a plots the conditional
CDF FX2

(
x2|X1 = gi,p (t) /

√
Ωi,p (t)

)
for ρi,p (t, t+ τ) =

0.81. Figure 2b does the same for ρi,p (t, t+ τ) = −0.83. We
observe a good match over a three orders of magnitude range
between the empirically obtained conditional CDF and the one
derived from the bivariate PDFs in (4) and (6). In Figure 2a, the
conditional CDF shifts to the right as gi,p (t) increases because
ρi,p (t, t+ τ) is positive. On the other hand, in Figure 2b, the
reverse is true because ρi,p (t, t+ τ) is negative.

IV. APPLICATION OF MBN MODEL TO BEAM SELECTION

We consider a general measurement scheme, which is il-
lustrated in Figure 3. Time is divided into beam measurement
cycles. Each cycle is of duration Tmeas and consists of S < BUE
pilot bursts. Each pilot burst consists of BBS pilots and is of
duration Tp. The UE measures all the BBS pilots in a pilot burst
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Fig. 3. Model for beam measurement, selection, and data transmission

in a sequential order with one receive beam. Thus, SBBS beam
pairs are measured in a beam measurement cycle.

To enable exploitation and exploration, the UE receives with
R shortlisted beams that had the largest beam gains in the
previous measurement cycle. These are denoted by [1], . . . , [R]
in the figure. The other S − R receive beams are drawn in a
sequential order from the remaining BUE − R receive beams.
When R is increased, more shortlisted beams are measured but
fewer other beams are measured.

Data transmission also occurs over the duration of a measure-
ment cycle. It occurs in N slots each of duration Tslot. These
are denoted by D in the figure. The kth slot starts at time tk.
In compliance with the 5G standard, the BS can adapt its rate
in each slot [5]. However, it can change its transmit beam only
once in a cycle because of constraints on how often a UE can
feed back its measurements. At the end of each measurement
cycle, the UE selects the beam pair (i∗, p∗), which is used to
transmit and receive data in the next cycle.

In general, let the UE measure the beam pair (i, p) at time
Ti,p and let the corresponding beam gain be gi,p (Ti,p). Then,
given the previous measurements, the expected SNR at the time
t at which the beam is selected is equal to Ptxdi,p(t)/σ

2, where

di,p(t) = EX2

[
g2
i,p (t)

∣∣X1 = gi,p (Ti,p) /
√

Ωi,p (Ti,p)

]
.

(17)
Using the MBN model, di,p(t) is given in closed-form as
follows:

a) ρi,p (t) ≥ 0: From (4), using the conditional
PDF fX2

(
x2

∣∣x1 = gi,p (Ti,p) /
√

Ωi,p (Ti,p)
)

and the iden-

tity
∫∞

0
rm+2
2 e−δr

2
2Im−1(νr2) dr2 = e−

ν2

4δ
νm−1(ν2+4δm)

(2δ)m+2 [11,
(6.631.1)] to evaluate the conditional expectation, we get

di,p(t) =
Ωi,p (t)

Ωi,p (Ti,p)
[(1− ρi,p (t)) Ωi,p (Ti,p)

+ρi,p (t) g2
i,p (Ti,p)

]
. (18)

b) ρi,p (t) < 0: Along similar lines as above, from the

bivariate PDF in (6), we can show that

di,p(t) =
Ωi,p (t)

Ωi,p (Ti,p)

[
(1− |ρi,p (t) |) Ωi,p (Ti,p)

+ |ρi,p (t) | (a− gi,p (Ti,p))
2 ]
. (19)

For ρi,p (t) ≥ 0, when gi,p (Ti,p) is large, the odds that the
beam pair (i, p) will be selected increase. The reverse is true
when ρi,p (t) < 0. As |ρi,p (t) | decreases from 1 to 0, the
weightage for the term that depends on gi,p (Ti,p) decreases.

Note from (10) and (3) that Ωi,p (t) and ρi,p (t, t+ τ) can be
calculated from the orientation ψ (t) of the UE and the Doppler
shift fD. The orientation can be tracked and predicted using
orientation sensors installed in the UE [2], [3] and fD using
level-crossing rate or the channel covariance methods.

Prediction-Based Rule (PBR): Using the above results, we
propose the following rule that calculates the expected data
rate from using the predicted SNRs using the Shannon capacity
formula:

(i∗, p∗) = arg max
i∈BBS,p∈BUE

{
1

N

N∑
k=1

log2

(
1 +

Ptxdi,p(tk)

σ2

)}
.

(20)
This captures the rate adaptation by the BS from one slot to
another and also the 5G constraint that it must use the same
beam to transmit data in a measurement cycle.

A. Numerical Results and Benchmarking

We illustrate the results for BBS = 18, BUE = 18, Ntx =
Nrx = 20, drx = dtx = 0.25λ, v = 3.85 kmph, and carrier
frequency of 28 GHz. Let η = Gtx

maxG
rx
maxPtxΛ/σ2 denote the

peak SNR when the transmit and receive beams are aligned,
where Gtx

max = 13 dB and Grx
max = 13 dB represent the peak

transmit and receive beam gains, respectively. For SCM, the
parameters are K = 3, ξAoD = 10.2◦, ξAoA = 15.5◦, C = 4,
and L = 20. The beam measurement and data transmission
parameters are Tslot = 0.125 ms and Tp = 5.14Tslot. We set
S = 6 and Tm = 20 ms. Thus, Tmeas = 120 ms.

We benchmark PBR with the following rules:

• Conventional Rule (CR) [5]–[7]: It is given by

(i∗, p∗) = arg max
i∈BBS,p∈BUE

{
g2
i,p (Ti,p)

}
. (21)

• Non-Causal Genie-Aided Rule: It is given by

(i∗, p∗) = arg max
i∈BBS,p∈BUE

{
N∑
k=1

log2

(
1 +

Ptxg
2
i,p (tk)

σ2

)}
.

(22)
It requires the UE to know at the time of selection the
gains for all the beams in the next N data slots. It provides
an upper bound on the average rate achievable by any
practical, causal rule.

Our results are computed from 30 SCM channel traces, which
are generated using (1) given the value of ψ′ (t). Each trace is of
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duration 12 s. We then use the beam selection rule to determine
the transmit-receive beam pair.2

B. Numerical Results

Figure 4 compares the average rates of PBR, CR, and genie-
aided rule as a function of the peak SNR η for ψ′ (t) = 60◦/s.
The average rate of CR for R = 1 is greater than that for
R = 3 for which the measurement cycle is longer. This shows
the importance of controlling the training overhead. This is not
the case for the PBR; the curves for R = 1 and 3 are now
indistinguishable. PBR achieves a markedly higher average rate
than CR; the gap between the two increases as η increases.
PBR’s average rate is close to that of the genie-aided rule.

To understand the above behavior, Figure 5 plots the top-R
probability, which is the probability that the best beam is in
the R shortlisted beams, as a function of the user orientation
change rate ψ′ (t). The higher this probability, the better is the
ability of the beam selection rule to shortlist the receive beams
that are likely to be selected and measure their beam gains.

2To compute Ḡrx
p,c(t), Ḡtx

i,c(t), F rx
p,c(t), and F tx

i,c(t), which are required
by PBR, we use GH = 24. To compute Θrx

c (t, τ), which shows oscillatory
behavior, we use GH = 8τfD , subject to a minimum of 24 terms and a
maximum of 63 terms. The computed values are accurate to within 0.1%.

This probability is always 100% for the genie-aided rule. For
R = 3, as ψ′ (t) increases, the top-R probability markedly
decreases for CR, while that of the PBR remains above 98%.
The behavior is similar for R = 1, except for an increase when
ψ′ (t) increases from 0◦/s to 10◦/s. This is because PBR is able
to shortlist with a higher probability the beam towards which
the UE is orienting itself. We do not observe this for R = 3 as
the probability is close to one. The top-R probability is lower
for R = 1 because the odds that the best beam pair will be
shortlisted decrease.

V. CONCLUSIONS

We proposed a novel and tractable MBN model for statis-
tically characterizing the time-evolution of the non-stationary
beam gains that arise in the widely used SCM. It accurately
captured the impact of user orientation changes and applied
to both positive and negatively correlated scenarios. It was
accurate over a two order of magnitude range of beam gains.

With the help of MBN, we proposed a new beam selection
rule for the practical scenario in which the beam gains of the
different transmit-receive beam pairs were measured at different
times and were outdated by different extents at the time the BS
selected the beam pair. The rule markedly increased the odds
that the best beam was shortlisted for measurement. Its data
rate was much more than that of the conventional rule and
indistinguishable from the non-causal genie-aided rule. It was
also robust to UE orientation changes. An interesting avenue
for research is to extend this work for wideband dual-polarized
channels and model the correlation of gains across different
beams.
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