
EESM-based Link Adaptation in OFDM: Modeling

and Analysis

Jobin Francis, Student Member, IEEE, and Neelesh B. Mehta, Senior Member, IEEE

Abstract—In orthogonal frequency division multiplexing sys-
tems, such as Long Term Evolution (LTE) and WiMAX, the
different subcarriers over which a codeword is transmitted
may see different signal-to-noise-ratios (SNRs). Thus, adaptive
modulation and coding (AMC) in these systems must be based
on a vector of subcarrier SNRs seen by the codeword, and is
considerably more involved. Exponential effective SNR mapping
(EESM) simplifies the problem by mapping the vector of SNRs
into a single equivalent flat-fading SNR. However, the analysis of
AMC using EESM is challenging owing to its non-linear nature
and because it uses an SNR scaling parameter that depends
on the modulation and coding scheme. We first propose a novel
statistical model for EESM based on the Beta distribution, which
is motivated by the central limit approximation for the sum
of random variables with finite support. Unlike several ad hoc
statistical models, which require three or more parameters to
be computed numerically, the proposed model requires only two
parameters, for which closed-form expressions are derived for
both correlated and uncorrelated subcarrier SNRs. Despite its
simplicity, it is as accurate as the ad hoc models. We then present
a novel, tight upper bound and an accurate approximation in
closed-form for the throughput of a frequency-selective system
that uses EESM for AMC.

I. INTRODUCTION

High data rate requirements coupled with scarcity of the

spectrum have driven the quest for techniques that improve

spectral efficiency. One important technique for doing so is

adaptive modulation and coding (AMC). In it, the transmitter

chooses its modulation and coding scheme (MCS) from a

finite set of MCSs depending on the channel conditions

to maximize the throughput, subject to a constraint on the

probability of error. AMC is an integral part of current and

next generation systems such as Long Term Evolution (LTE)

and IEEE 802.16e/m WiMAX, which are wideband in nature

and use orthogonal frequency division multiplexing (OFDM).

In OFDM, the available bandwidth is divided into orthog-

onal subcarriers over which the data is transmitted. In a

practical OFDM system, AMC is not done on a per-subcarrier

basis because of its significant feedback and control signal

overhead. Instead, the same MCS is used on all the subcarriers

assigned to a user. Due to the frequency-selective nature of the

wideband channel, the channel gains of these subcarriers can

be different. Thus, the MCS must be chosen as a function of

a vector of subcarrier gains. In principle, this requires an un-

wieldy multi-dimensional look-up-table, which is cumbersome
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to generate and store, and is seldom used. This is much more

involved than classical rate adaptation in narrowband fading

channels [1, Chap. 9]. Therefore, link quality metrics (LQMs)

have been proposed to simplify this problem and make it

similar to AMC over narrowband channels. An LQM maps

the vector of signal-to-noise-ratios (SNRs) to a scalar, which

is then easily mapped to block error rate (BLER) using a 1-

dimensional look-up-table.

A popular and accurate LQM is exponential effective SNR

mapping (EESM) [2]. It maps the vector of channel SNRs

into an effective SNR, which is interpreted as the equivalent

SNR in an additive white Gaussian noise (AWGN) channel

that results in the same BLER. If γi denotes the SNR of the

ith subcarrier, for 1 ≤ i ≤ N , then the effective SNR using

EESM, γ
(m)
eff , for MCS m is given by

γ
(m)
eff = −βm ln

(

1

N

N
∑

i=1

exp

(

−
γi

βm

)

)

, (1)

where βm > 0 is an MCS-dependent SNR scaling parameter.

Besides its use in AMC, EESM is widely used as a physical

layer abstraction tool in system-level simulations [3], [4].

EESM can be easily extended to handle hybrid automatic

repeat request (HARQ) and multiple antennas [5]. Further-

more, EESM can be used to generate channel quality indi-

cators (CQIs) [6], which are fed back to the base station for

enabling link adaptation and scheduling.

However, as can be seen from (1), EESM is a highly non-

linear function of the subcarrier SNRs. No exact closed-form

expression for its statistics is known. Thus, ad hoc distributions

have been used in the literature to approximately characterize

its statistics [6], [7]. Another critical issue is that the parameter

βm is different for different MCSs [8]. Thus, AMC using

EESM involves computing several effective SNRs, one for

each MCS, and then selecting an MCS using all of them.

Consequently, EESM-based AMC is more involved than AMC

in a narrowband system, and is the focus of this paper.

A. Literature on LQM-based AMC in OFDM

An optimal AMC algorithm using LQMs is detailed in [9]. It

proceeds as follows: A sequential search is initiated, starting

with the highest rate MCS. An LQM-based BLER estimate

is obtained for this MCS, and if it is less than the target

BLER, then this MCS is selected. Else, the next lower rate

MCS is considered, and so on. Thus, this scheme chooses the

MCS with the highest rate that satisfies the BLER constraint.

Its throughput has thus far been characterized using exten-

sive numerical simulations [9]–[12]. The approaches pursued
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in [10]–[12] can also be considered as providing bounds on

the throughput. However, they do not lead to analytically

insightful expressions for it.

B. Contributions

We first present a novel statistical model for EESM, in

which the quantity inside the logarithm in (1), is modeled

as a Beta random variable (RV). Moment-matching is used to

compute its parameters. The choice of the Beta distribution,

which has a compact support, is motivated by the popular

central limit approximation for RVs with finite support [13,

Chap. 11]. We show that its accuracy is better than that of

the lognormal model considered in [6] and is comparable to

the Pearson and generalized extreme value (GEV) distribu-

tions [7], which are analytically very involved and require eval-

uating more parameters. Secondly, we derive simple closed-

form expressions for the moments for both independent and

correlated subcarriers, which makes it easy to evaluate the

parameters of the Beta distribution. This is unlike the EESM

moments that are required by the lognormal, GEV, and Pearson

models, the expressions for which are extremely involved or

intractable [7].

Another key advantage is the analytical tractability of the

proposed model, as it yields closed-form expressions for the

throughput of AMC in an OFDM link. We present a novel,

tight upper bound and an accurate approximation for it. The

analysis covers different multiple antenna diversity modes and

easily accounts for the correlation among subcarriers.

We focus on EESM because it has a relatively simpler

definition than mutual-information based LQMs [2], [14], [15]

and is only marginally less accurate. Thus, EESM strikes a

good balance between the complexity required to compute it

and the accuracy of the BLER estimate obtained from it.

The paper is organized as follows. The point-to-point link

system model is described in Section II. A novel statistical

model for EESM is developed in Section III. Throughput

analysis and simulations are given in Section IV, and are

followed by our conclusions in Section V.

II. SYSTEM MODEL: POINT-TO-POINT LINK

We consider a point-to-point OFDM link where the trans-

mitted codeword is encoded acrossN subcarriers. The receiver

selects an MCS based on the N subcarrier SNRs and feeds it

back to the transmitter using a feedback channel. The feedback

is assumed to be error-free and the feedback delay is assumed

to be negligible. The transmitter then uses the reported MCS

for transmission.

Let hi(k, l) denote the complex baseband channel gain

between the lth transmit antenna and the kth receive antenna

of the ith subcarrier. The complex channel gains are identically

distributed and are circularly symmetric complex Gaussian

RVs with variance σ2 [1]. The channel gains between different

transmit-receive (Tx-Rx) antenna pairs are assumed to be

independent, i.e., hi(k, l) is independent of hj(m,n) if k 6= m

or l 6= n, for any i and j. This assumption is valid when

the antennas are sufficiently spaced apart in a rich scattering

environment. Let Nr and Nt denote the number of receive and

transmit antennas, respectively. Let γi denote the i
th subcarrier

SNR, for 1 ≤ i ≤ N . It depends on the antenna diversity mode

and is a function of hi(k, l) [6]. Let Γ denote the vector of

subcarrier SNRs: Γ = [γ1, γ2, . . . , γN ] .
Let Ω denote the set of L MCSs used for rate adaptation.

The information rate of MCS m is denoted by rm and m̂

denotes the selected MCS. BLERt denotes the maximum

allowable block error rate. The MCSs are indexed in the

increasing order of their rates, i.e., r1 ≤ r2 ≤ · · · ≤ rL.

A. Optimal AMC Using EESM

In order to maximize the average throughput, the MCS

should be chosen as a function of Γ as follows:

m̂ = argmax
m∈Ω

rm, (2)

s. t. BLER (Γ,m) ≤ BLERt, (3)

where BLER (Γ,m) is the BLER of MCS m with Γ as the

vector of subcarrier SNRs.

Using EESM, the BLER constraint in (3) can be mapped to

a constraint on the effective SNR as follows: Let Tm denote

the lowest SNR at which the BLER in the AWGN channel

using MCS m, BLERAWGN (Tm,m), is BLERt, i.e.,

BLERAWGN (Tm,m) = BLERt, m = 1, . . . , L. (4)

Thus, the BLER constraint is equivalent to having the effective

SNR of MCS m greater than or equal to Tm.

The optimal AMC scheme is now driven by the thresholds

T1, T2, . . . , TN , and proceeds as follows: It starts with the

highest MCS m = L. It is chosen if its effective SNR is

greater than or equal to TL, i.e., γ
(L)
eff ≥ TL. Else, the scheme

moves to the next highest MCS, and so on. If γ
(i)
eff < Ti, for

all i = 1, . . . , L, then no data transmission takes place.

B. Notations

Let In and 0n denote the n × n identity matrix and zero

matrix, respectively. The determinant of a matrix A is denoted

by det(A). The matrix diag(v) denotes a diagonal matrix

with elements of the vector v as its diagonal elements. Let
[

0, . . . , 0, s
(i)
, 0, . . . , 0

]

denote a vector whose ith element is s

and all other elements are 0. Re(C) and Im(C) denote the real
and imaginary parts of the complex number C, respectively.

Let E [X ] denote the expectation of the RV X .

III. STATISTICAL MODEL FOR EESM

In order to analyze the performance of EESM-based AMC,

a statistical model for EESM is required. Since, no closed-form

expression for the distribution of EESM is available owing

to its highly non-linear nature, we first present a novel and

tractable approximation for it.

Notice that e−
γi
βm ∈ [0, 1]. Thus, EESM involves taking

sums over N positive RVs with finite support. This motivates

a new statistical model for EESM based on the central limit

approximation for RVs with finite support, in which the
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sum of i.i.d. RVs with finite support is approximated by a

Beta distribution [13, Chap. 11]. Thus, we model the RV

Ym = 1
N

∑N
i=1 e

−
γi
βm as a Beta RV, whose probability density

function is given by

fYm
(y) =

y(am−1)(1− y)(bm−1)

B(am, bm)
, 0 ≤ y ≤ 1, (5)

where B(·, ·) is the Beta function [16]. In terms of the mean

µm and variance vm of RV Ym, the parameters am and bm of

the Beta distribution are given by

am =
µm(µm − µ2

m − vm)

vm
, (6)

bm =
(1− µm)(µm − µ2

m − vm)

vm
. (7)

Thus, the cumulative distribution function (CDF) of γ
(m)
eff ,

F
γ
(m)
eff

(x), is equal to P
(

Ym ≥ e
−x
βm

)

and is given by

F
γ
(m)
eff

(x) = 1−Bi

(

e−
x

βm , am, bm

)

, x ≥ 0, (8)

where Bi (·, ·, ·) is the incomplete Beta function [16].

Notice that we approximate the term inside the logarithm

in (1) as a Beta RV. A key advantage of this is the easy compu-

tation of its moments. It is unlike the lognormal, Pearson, and

GEV distributions, which often need numerical simulations to

compute the EESM moments for moment-matching [6].

A. Expressions for Mean and Variance of Ym

We see from (6) and (7) that the Beta distribution is

fully specified in terms of its mean and variance. Hence, we

now derive closed-form expressions for these for different

subcarrier correlations and antenna diversity modes.

We consider the cases where the subcarrier SNRs are inde-

pendent and where they are correlated. The former scenario

is simple and insightful, and occurs when the subcarrier

bandwidth is close to the coherence bandwidth of the channel.

It also arises if the subcarriers are noncontiguous, as is the

case in the full usage of subchannels (FUSC) or partial usage

of subchannels (PUSC) modes of WiMAX. Otherwise, the

subcarrier SNRs are correlated. This scenario occurs in LTE

and in the Band AMC mode of WiMAX, in which contiguous

subcarriers are allotted to a user.

We focus on single-input-single-output (SISO), single-

input-multiple-output (SIMO), and multiple-input-single-

output (MISO) multiple antenna diversity modes. The

multiple-input-multiple-output (MIMO) scenario is skipped

due to space constraints. Closed-form expressions can be

derived for single stream MIMO with independent subcarri-

ers [17], but, in general, one has to use numerical Monte Carlo

methods [18].

1) Independent Subcarriers: We first state the following

general result.

Result 1: The mean and variance of RV Ym when subcar-

rier SNR γi is equal to cXτ , where Xτ is a Chi-square RV

with τ degrees of freedom, are given by

µm =

(

βm

βm + 2c

)
τ
2

, (9)

vm =
1

N

[

(

βm

βm + 4c

)
τ
2

−

(

βm

βm + 2c

)τ
]

. (10)

Proof: The proof is relegated to Appendix A.

The mean and variance of RV Ym for SISO, SIMO, and

MISO antenna modes then follow from (9) and (10). For

SISO (Nt = Nr = 1), γi = |hi(1, 1)|
2. Thus, c = σ2

2
and τ = 2. For SIMO (Nt = 1, Nr > 1) with maximal

ratio combining, γi =
∑Nr

j=1 |hi(j, 1)|
2. Thus, c = σ2

2 and

τ = 2Nr. Similarly, for MISO (Nt > 1, Nr = 1) with

maximal ratio transmission, c = σ2

2 and τ = 2Nt. For MISO

with the Alamouti space-time code (Nt = 1, Nr = 2), c = σ2

4
and τ = 4 [1].

2) Correlated Subcarriers: In this scenario, the channel

gain between any two subcarriers for the same transmit-

receive antenna pair is correlated. Therefore, the vector hkl =
[h1(k, l), . . . , hN (k, l)]T is a circularly symmetric complex

Gaussian random vector with covariance matrix C. The (i,j)th

element Cij of C is defined as Cij = E [hi(k, l)hj(k, l)
∗].

We state the following general result.

Result 2: The mean and variance of Ym with correlated

subcarriers, for SISO (Nt = Nr = 1), MISO (Nt > 1, Nr =
1), and SIMO (Nt = 1, Nr > 1), are given by

µm =
(

det
(

I2N − 2KP(m)
))−

max(Nt,Nr)
2

, (11)

vm =
1

N2

N
∑

i=1

N
∑

j=1

[

(

det
(

I2N − 2KQ
(m)
ij

))−
max(Nt,Nr)

2

−
(

det
(

I2N − 2KP(m)
))−max(Nt,Nr)

]

, (12)

where P(m) =

[

R(m) 0N

0N R(m)

]

, Q
(m)
ij =

[

S
(m)
ij 0N

0N S
(m)
ij

]

,

R(m) = diag
([

−β−1
m , 0, . . . , 0

])

, K = 1
2

[

Re(C) −Im(C)
Im(C) Re(C)

]

,

S
(m)
ij = diag

([

0, . . . , 0,−β−1
m

(i)

, 0, . . . , 0,−β−1
m

(j)

, 0, . . . , 0

])

,

for i 6= j, and S
(m)
ii = diag

([

0, . . . , 0,−2β−1
m

(i)

, 0, . . . , 0

])

.

Proof: The proof is relegated to Appendix B.

MISO with the Alamouti space-time code is equivalent to

closed-loop MISO with half the transmit power [1]. Therefore,

the mean and variance expressions for the Alamouti space-time

code follow from (11) and (12), with K replaced by K
2 .

B. Empirical Verification of the Proposed Beta Distribution

We now compare the CDF and complementary CDF

(CCDF) obtained by the proposed model with the empirical

CDF and CCDF obtained from Monte Carlo simulations that

use 105 samples. The CDF captures the accuracy of the fit

for low γ
(m)
eff values. However, it saturates to 1 for large
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γ
(m)
eff values for any distribution. In this regime, comparing the

CCDF is more instructive. The average SNR σ2 of a transmit-

receive antenna pair link is 10 dB and βm is 5.

1) Independent Subcarriers: Figure 1 compares the empir-

ical CDF and CCDF with the CDF and CCDF obtained from

the proposed Beta model, for τ = 2 (SISO). Observe that the

Beta model is quite accurate for three orders of magnitude

of the CDF and CCDF values even for N = 4. Its accuracy

improves further as N increases.

10
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γ
eff
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D
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n
d
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C
D

F
 o

f 
γ

e
ff

(m
)

 

 

Simulation

Proposed CCDF

N=12

N=4

CDF

Fig. 1. Comparison of CDF and CCDF of EESM with the proposed Beta
model for independent subcarriers (τ = 2 (SISO), σ2 = 10 dB, and βm = 5).

Figure 2 compares the CDFs of the different approxima-

tions. A zoomed-in plot is shown in order to make the curves

discernible. GEV, Pearson and lognormal distribution parame-

ters are obtained by moment-matching, and numerical Monte

Carlo methods [18] are used to obtain the moments required by

them. Observe that the accuracy of the proposed Beta model is

comparable to the GEV and Pearson distributions, despite the

former’s simple form. The proposed model is more accurate

than the lognormal model.

2) Correlated Subcarriers: In order to understand the effect

of correlation, we set Cij = σ2ρ|i−j|, for 0 < ρ < 1 [6].

Figure 3 compares the CDFs of the different approximations,

with ρ = 0.4 and τ = 4 (1×2 SIMO). Note that the proposed

model tracks the empirical CDF well, and its accuracy is

again comparable to the more involved GEV and Pearson
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Fig. 2. Comparison of CDFs of different approximations with the empirical
CDF for independent subcarriers (τ = 2 (SISO), σ2

= 10 dB, βm = 5, and
N = 12).

distributions. The results are similar for the typical urban (TU)

and rural area (RA) channels [19].
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Fig. 3. Comparison of CDFs of different approximations with the empirical
CDF for geometrically correlated subcarriers (τ = 4 (1 × 2 SIMO), σ2

=

10 dB, βm = 5, N = 12, and ρ = 0.4).

IV. THROUGHPUT ANALYSIS

We now analyze the throughput of the optimal AMC

scheme detailed in Section II-A. It can be mathematically

formulated as follows: Let M denote the set of MCSs

whose effective SNRs exceed their corresponding thresholds.

Then, the optimal MCS m̂ is the maximum element of

M =
{

m ∈ {1, . . . L} : γ
(m)
eff ≥ Tm

}

. Therefore, the average

throughput R is given by

R =

L
∑

m=1

rm Pr{m̂ = m}. (13)

The probability that MCS m is chosen is

Pr{m̂ = m} = P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1, . . . ,

γ
(L)
eff < TL

)

. (14)

Hence, to compute (14), an (L − m + 1)-dimensional joint

distribution of the effective SNRs, which are correlated, is

needed. We tackle this difficult problem by coming up with a

novel upper bound and an approximation.

Result 3: The average throughput is upper bounded as

R ≤

L−1
∑

m=1

rm min

{

Bi

(

e−
Tm+1
βm , am, bm

)

−Bi

(

e−
Tm
βm , am, bm

)

, Bi

(

e
−

Tm+1
βm+1 , am+1, bm+1

)

−Bi

(

e
− Tm

βm+1 , am+1, bm+1

)

}

+ rLBi

(

e
−

TL
βL , aL, bL

)

.

(15)

Proof: The proof is relegated to Appendix C.

The key step in the proof is to upper bound (14) with

P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)

. This bound is tight be-

cause if reliable transmission with MCS m+1 is not possible,
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TABLE I
βm AND SNR THRESHOLDS FOR THE MCSS SPECIFIED IN

LTE (BLERt = 0.1) [8]

Information SNR
Index Modulation Code rate rate βm threshold

(bits/symbol) (dB)

1 QPSK 0.08 0.15 1.00 -9.48
2 QPSK 0.12 0.23 1.40 -6.66
3 QPSK 0.19 0.38 1.40 -4.10
4 QPSK 0.30 0.60 1.48 -1.80
5 QPSK 0.44 0.88 1.50 0.40
6 QPSK 0.59 1.18 1.62 2.42

7 16-QAM 0.37 1.48 3.10 4.49
8 16-QAM 0.48 1.91 4.32 6.37
9 16-QAM 0.60 2.41 5.37 8.46

10 64-QAM 0.46 2.73 7.71 10.27
11 64-QAM 0.55 3.32 15.50 12.22
12 64-QAM 0.65 3.90 19.60 14.12
13 64-QAM 0.75 4.52 24.70 15.85
14 64-QAM 0.85 5.12 27.60 17.79
15 64-QAM 0.93 5.55 28.90 19.81

then it is unlikely that MCSs with rates higher than rm+1 can

be transmitted reliably.

Result 4: The average throughput is approximated as

R ≈ rLBi

(

e
−

TL
βL , aL, bL

)

+

L−1
∑

m=1

rm

[

Bi

(

e−
Tm
βm , am, bm

)

−Bi

(

e
−

Tm+1
βm+1 , am+1, bm+1

)]

. (16)

Proof: The derivation is relegated to Appendix D.

Note that both the upper bound and the approximation can

be readily computed using the results in Section III.

A. Numerical Results

We now compare the analytical results with numerical

simulations. The maximum allowable block error rate, BLERt,

is 0.1 [20] and the number of subcarriers, N , is 24, which
is equal to two physical resource blocks (PRBs) in LTE.

For SIMO, the number of receive antennas, Nr, is 2. The

MCSs used are as per Table I. We consider the TU and RA

channels [19]. The TU channel is more frequency-selective

than the RA channel. We use 512-point FFT and the bandwidth

is 5 MHz. The sampling frequency is 7.68 MHz [3].

The throughput as a function of σ2 for different antenna

modes is plotted in Figures 4 and 5 for the RA and TU

channels, respectively. Notice the excellent match between the

proposed approximation and the simulation curves. Further,

the upper bound becomes tighter as we go from SISO to

SIMO, and marginally looser when the correlation across the

subcarriers decreases. This is because both the approximation

and the upper bound are exactly equal to the throughput in

the narrowband regime. The throughput for the RA channel

is higher than that for the TU channel. Thus, the throughput

increases as correlation across the subcarriers increases.

V. CONCLUSIONS

We presented a general mathematical framework for ana-

lyzing the average throughput of optimal EESM-based AMC
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Fig. 4. LTE: Average throughput versus average SNR of a transmit-receive
antenna pair link (σ2) for the RA channel.
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Fig. 5. LTE: Average throughput versus average SNR of a transmit-receive
antenna pair link (σ2) for the TU channel.

for OFDM systems in frequency-selective channels. To this

end, we proposed an analytically tractable statistical model for

EESM based on the Beta distribution. Its accuracy is compa-

rable to the more involved GEV and the Pearson distributions,

which have been proposed in the literature. Another advantage

is that the parameters of the Beta distribution can be evaluated

in closed-form for different multiple antenna diversity modes.

This model then led to a closed-form tight upper bound and

an accurate approximation for the average throughput of an

EESM-based rate-adaptive system.

The approach presented in this paper can be extended

to determine the throughput of systems that use other link

quality metrics. Future work involves incorporating correlated

antennas, HARQ, and channel imperfections in the framework.

APPENDIX

A. Mean and Variance of Ym for Independent Subcarriers

The moment generating function (MGF) ΨX(t) of an RV X

is defined as ΨX(t) = E
[

etX
]

. When the N subcarriers are

i.i.d., the mean µm and variance vm of Ym can be expressed

in terms of the MGF of one of the subcarrier SNRs γi as

µm = Ψγi

(

−β−1
m

)

, (17)

vm =
1

N

(

Ψγi

(

−2β−1
m

)

−
[

Ψγi

(

−β−1
m

)]2
)

. (18)
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Since γi = cXτ , it can be shown that its MGF is given

by Ψγi
(t) = (1− 2ct)

− τ
2 . Substituting this in (17) and (18)

yields (9) and (10), respectively.

B. Mean and Variance of Ym for Correlated Subcarriers

The joint MGF of Γ, ΨΓ (t1, . . . , tN), is defined as

ΨΓ (t1, . . . , tN) = E

[

e
∑N

i=1 tiγi

]

. The mean µm and the

variance vm can be expressed in terms of ΨΓ as

µm = ΨΓ (t1, . . . , tN )

∣

∣

∣

∣

∣

t1=−β−1
m

tk=0, else

, (19)

vm =
1

N2





N
∑

i=1

N
∑

j=1,j 6=i

ΨΓ (t1, . . . , tN)

∣

∣

∣

∣

∣

ti, tj=−β−1
m

tk=0, else

+

N
∑

i=1

ΨΓ (t1, . . . , tN )

∣

∣

∣

∣

∣

ti=−2β−1
m

tk=0, else

]

− µ2
m. (20)

Since the channel gains of different transmit-receive antenna

pairs are i.i.d., ΨΓ simplifies to

ΨΓ (t1, . . . , tN ) =
(

E

[

e
∑N

i=1 ti|hi(1,1)|
2
])max(Nt,Nr)

,

=
(

E

[

eg
T
11Sg11

])max(Nt,Nr)

, (21)

where S =

[

diag([t1, . . . , tN ]) 0N

0N diag([t1, . . . , tN ])

]

and

g11 =
[

Re(h11)
T Im(h11)

T
]T
. Recall that h11 is defined

in Section III-A2. Since g11 is a zero-mean Gaussian ran-

dom vector with covariance matrix K, we can show that

E

[

eg
T
11Sg11

]

= det (I2N − 2KS)
− 1

2 . Substituting this in (21),

and then in (19) and (20) yields the desired expressions.

C. Upper Bound on Average Throughput

The probability of selecting MCS m is upper bounded by

P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1, . . . , γ

(L)
eff < TL

)

≤ P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)

. (22)

It can be shown that γ
(m)
eff is a strictly increasing function of

βm, except when γis are all equal [17]. It then follows that

P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)

= P
(

Tm ≤ γ
(m)
eff < γ

(m+1)
eff < Tm+1

)

,

≤ min
{

P
(

Tm ≤ γ
(m)
eff < Tm+1

)

,

P
(

Tm ≤ γ
(m+1)
eff < Tm+1

)}

. (23)

Equation (23) follows because both P
(

Tm ≤ γ
(m)
eff < Tm+1

)

and P
(

Tm ≤ γ
(m+1)
eff < Tm+1

)

are upper bounds. Substitut-

ing (23) in (13), and expressing the probabilities in terms of

the incomplete Beta function using (8) yields (15).

D. Averge Throughput Approximation

We lower bound the expression in (22) to obtain an approx-

imation. This is an approximation because it lower bounds an

upper bound. The lower bound is obtained as follows:

P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff < Tm+1

)

= P
(

γ
(m)
eff ≥ Tm

)

− P
(

γ
(m)
eff ≥ Tm, γ

(m+1)
eff ≥ Tm+1

)

,

≥ P
(

γ
(m)
eff ≥ Tm

)

− P
(

γ
(m+1)
eff ≥ Tm+1

)

. (24)

Substituting (24) in (13), and expressing the probabilities in

terms of the incomplete Beta function using (8) yields (16).
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