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Abstract—In orthogonal frequency division multiplexing
(OFDM) systems, such as long term evolution (LTE) and
WiMAX, a codeword is transmitted over a group of subcarriers.
Since the subcarriers see different channel gains in a frequency-
selective channel, the modulation and coding scheme (MCS) of
the codeword must be selected based on the vector of signal-
to-noise-ratios (SNRs) of these subcarriers. Exponential effective
SNR mapping (EESM) simplifies this problem by mapping the
vector of SNRs into a single, equivalent flat-fading SNR. We de-
velop a new analytical framework to characterize the throughput
of EESM-based rate adaptation in such wideband channels in the
presence of feedback delays, which make the choice of the MCS
partially outdated by the time data transmission takes place. To
this end, we first propose a novel bivariate gamma distribution
to model the joint statistics of EESM at the times of estimation
and data transmission. We then derive a novel expression for
the throughput as a function of feedback delay. Our framework
works for both correlated and independent subcarriers and for
various multiple antenna diversity modes, and is accurate over
a wide range of delays.

I. INTRODUCTION

Next generation wireless systems, such as long term evo-

lution (LTE) and WiMAX, have been designed to meet the

ever growing demand for higher data rates. In these systems,

orthogonal frequency division multiplexing (OFDM) is the

physical layer access technology of choice because it avoids

inter-symbol and intra-cell interference. OFDM divides the

available bandwidth into narrowband orthogonal subcarriers.

To efficiently utilize the scare bandwidth, adaptive modulation

and coding (AMC), in which rate is adapted based on the

channel state information (CSI), is used.

In these OFDM systems, a codeword is transmitted over a

group of subcarriers. Due to the frequency-selective nature

of the channel, different subcarriers see different gains. In

general, this depends on the number of subcarriers assigned

to the codeword and the power-delay profile of the channel.

Thus, the AMC scheme must select the modulation and coding

scheme (MCS) based on the vector of signal-to-noise ratios

(SNRs) of the subcarriers to be assigned to the codeword. This

is unlike the well studied AMC over narrowband channels, in

which the MCS choice is based on just one SNR [1].

A practical issue that arises in such systems is feedback

delay, which is due to the delay between the time of estimation

of the channel gains and the time of data transmission. This
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delay is of the order of milliseconds or tens of milliseconds [2].

It degrades the throughput for two reasons. Firstly, the AMC

scheme may overestimate the rate the channel can support,

which results in an outage because the transmitted codeword

cannot be decoded correctly. Secondly, the AMC scheme may

underestimate the rate resulting in a lower spectral efficiency.

A. Related Literature

We now present a brief survey of the prior works on

adaptation in OFDM systems with and without feedback delay.

In [3], the performance of an OFDM system with various

feedback reduction schemes, frequency-domain scheduling,

and feedback delay is analyzed. However, in it, the frequency

response is assumed to be flat across a resource block (RB),

which is the basic scheduling and feedback unit. Although

multiple RBs can be allotted to a user, no coding across RBs

is assumed. Hence, the rate adaptation model is similar to

that for narrowband fading. The effect of channel estimation

errors, quantization errors, feedback errors, and feedback delay

on throughput is analyzed in [4]. In it, the rate for every

subcarrier is assumed to be adaptable. Consequently, the rate

adaptation model is similar to that in narrowband channels. A

similar subcarrier-specific adaptation with feedback delays is

also considered in [5], [6].

LQM-based Adaptation: In order to simplify the problem

of link adaptation over wideband fading channels, link quality

metrics (LQMs) such as exponential effective SNR mapping

(EESM) have been proposed [7]–[9]. EESM maps the vector

of subcarrier SNRs seen by the codeword into an effective flat-

fading SNR, which is interpreted to be the equivalent SNR in

an additive white Gaussian noise (AWGN) channel. If γi(t)
denotes the SNR of the ith subcarrier at time t, for 1 ≤ i ≤
Nsc, then the effective SNR γ

(m)
eff (t) for MCS m is defined as

γ
(m)
eff (t) = −βm log

(

1

Nsc

Nsc
∑

i=1

exp

(

−
γi(t)

βm

)

)

, (1)

where βm > 0 is an MCS-dependent parameter. The accuracy

of EESM has been established in several prior works [8], [9].

Thus, EESM reduces the problem of AMC over a frequency-

selective channel to that over a frequency-flat channel. The

relevance of EESM can be gauged from its usage in system-

level simulations of LTE and WiMAX [10], [11], and in

generating feedback to the transmitter for link adaptation and

scheduling [12].

While LQM-based link adaptation is studied in [13], [14],

feedback delay is ignored and only Monte Carlo simula-

tion results are presented. While [12] considers EESM-based
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feedback and frequency-domain scheduling, it uses a sub-

optimal AMC scheme and ignores feedback delay. Closed-

form expressions for the throughput of EESM-based AMC

are derived in [15], but feedback delay is not accounted for. A

simulation study of the impact of feedback delay when mutual-

information effective SNR mapping (MI-ESM) is used as the

LQM is presented in [7].

From the papers above, we see that the effect of feedback

delay in the practically important case in which the MCS

is adapted for a codeword that is transmitted over multiple

subcarriers that see different, albeit correlated gains, has not

been analyzed. With feedback delays, the joint or bivariate

distribution of the effective SNRs γ
(m1)
eff (t) and γ

(m2)
eff (t+ τ),

each of which is a non-linear mapping of subcarrier SNRs,

is needed. This is because the MCS m1 is decided at time t

on the basis of γ
(1)
eff (t), . . . , γ

(L)
eff (t), where L is the number

of MCSs available to choose from, while the success of the

transmission depends on γ
(m1)
eff (t+ τ).

However, the approximations that have been proposed

in [15], [16] for the marginal (one-dimensional) distribution of

EESM do not easily generalize to the bivariate case. Specifi-

cally, for the beta model proposed in [15], no tractable, natural

extension to the bivariate case exists in the literature. The gen-

eralized extreme value (GEV) and Pearson models proposed

in [16] also face the same problem. Thus, an altogether new

approach is needed to overcome these shortcomings.

Another issue with the model in [12] is that EESM is

an MCS-dependent mapping because the parameter βm is

different for different MCSs. For example, in LTE, it varies

from 1.0 for QPSK with rate 0.08 code to 28.9 for 64-QAM

with rate 0.93 code [17]. Thus, even with EESM, the MCS has

to be decided based on multiple EESM values, one for each

MCS. These are correlated because they are obtained from the

same vector of subcarrier SNRs.

B. Contributions

Our goal is to analyze the effect of feedback delay on the

throughput of EESM-based AMC in a point-to-point wideband

link with fading. To this end, we first model the random

variables (RVs) γ
(m)
eff (t) and γ

(m)
eff (t + τ) with a bivariate

gamma distribution [18]. To the best of our knowledge, this

is the first bivariate statistical characterization of EESM. The

choice of the distribution is motivated by the observation

that at very high correlations, γ
(m)
eff (t) ≈ γi(t), for any

1 ≤ i ≤ Nsc, which is a gamma distributed RV. The same

holds at time t + τ . We shall see that the bivariate gamma

distribution is accurate even for independent subcarriers.

The bivariate gamma distribution is specified by four param-

eters, which are determined using a new moment generating

function (MGF)-matching method, which is uniquely well-

suited for EESM. Specifically, given the functional form of

EESM in (1), we show that its MGF can be evaluated in a sim-

ple closed-form at certain specific points, unlike its moments

that often require cumbersome Monte Carlo simulations [12].

The proposed bivariate gamma model for EESM is then

used to obtain a novel expression for the AMC throughput with

feedback delays. The analysis is accurate and quite general in

that it covers multiple antenna modes and easily accounts for

any correlation among the subcarriers.

C. Organization and Notation

The system model is given in Section II. The bivariate

EESM model and the throughput analysis are developed in

Section III. Simulation results are presented in Section IV,

and are followed by our conclusions in Section V.

We denote the transpose of a matrix A by A
T . Let c∗

and |c| respectively denote the complex conjugate and the

absolute value of the complex number c. Let E [X ], FX(x),
and fX(x) denote the expectation, the cumulative distribution

function (CDF), and the probability density function (PDF) of

the RV X , respectively. The MGF ΨX(z) of X is defined as

E [exp(−zX)]. For two RVs X and Y , the conditional PDF

of Y given X = x is denoted by fY (y|x).

II. WIDEBAND ADAPTATION MODEL

We consider a point-to-point OFDM link with Nt transmit

antennas, Nr receive antennas, and frequency-selective fading.

The transmitted codeword is encoded across Nsc subcarriers.

Based on the estimated channel gains on these subcarriers, the

receiver selects an MCS. The selected MCS is then fed back

to the transmitter. For example, in LTE one among 16 different

MCSs is fed back [2].

A. Channel Model

Let h
(i)
kl (t) denote the complex channel gain between the kth

receive antenna and the lth transmit antenna of the ith subcar-

rier at time t. It is a circularly symmetric complex Gaussian

RV with unit variance. Let τ denote the delay between the

times of channel estimation and data transmission. As per the

Jakes’ fading model [1], h
(i)
kl (t) and h

(i)
kl (t + τ) are jointly

Gaussian with correlation coefficient ρ(τ) = J0(2πfdτ),
where fd is the Doppler spread and J0(·) is the zeroth-order

Bessel function of the first kind [19]. Notice that fd and τ

always appear in the form of a product fdτ , which we shall

refer to as the normalized delay. The channel estimates at the

receiver are assumed to be perfect, as assumed in [7], [13].

The complex channel gains on different transmit-recieve

(Tx-Rx) antenna pairs are assumed to be identical and indepen-

dently distributed. This is justified in a rich scattering environ-

ment when the antennas are spaced sufficiently far apart. Thus,

the channel gain vector of the (k, l)th antenna pair at time

t, hkl(t) = [h
(1)
kl (t), h

(2)
kl (t), . . . , h

(Nsc)
kl (t)]T, is a circularly

symmetric complex Gaussian random vector with covariance

matrix C, whose (i, j)th element is Cij = E

[

h
(i)
kl (t)h

(j)
kl

∗

(t)
]

.

Let σ2 denote the average SNR of a Tx-Rx link. The

SNR γi(t) of the ith subcarrier at time t depends on

the multiple antenna mode. Specifically, for single-input-

single-output (SISO), i.e., Nt = Nr = 1, it is γi(t) =

σ2|h
(i)
11 (t)|

2. For single-input-multiple-output (SIMO) with

Nt = 1, Nr > 1 and maximal ratio combining (MRC), it

is γi(t) = σ2
∑Nr

k=1 |h
(i)
k1 (t)|

2. Similarly, for multiple-input-

single-output (MISO) with Nt > 1, Nr = 1 and maximal
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ratio transmission (MRT), it is γi(t) = σ2
∑Nt

l=1 |h
(i)
1l (t)|

2. In

each of these cases, the subcarrier SNR can be written as

γi(t) = aX
(i)
D (t), where a is a scaling constant and X

(i)
D (t)

is a Chi-squared RV with D degrees-of-freedom. Specifically,

a = σ2

2 and D = 2 for SISO, a = σ2

2 and D = 2Nr for SIMO,

and a = σ2

2 and D = 2Nt for MISO. For multiple-input-

multiple-output (MIMO) that uses spatial multiplexing and a

zero-forcing receiver, a = σ2

2 and D = 2(Nr −Nt + 1) [1].1

B. EESM-based AMC

We focus on the practical case of discrete rate adapta-

tion [1], [2]. Let rm denote the rate of MCS m. The L

MCSs are indexed in the increasing order of their rates, i.e.,

0 < r1 ≤ r2 ≤ · · · ≤ rL. The AMC scheme selects an MCS to

maximize the throughput while ensuring that the instantaneous

block error rate (BLER) is less than or equal to a target value

BLERt [2], [7], [15].

Using EESM, for any MCS, the instantaneous BLER

constraint can be transformed into an equivalent constraint

on the BLER in an AWGN channel. Let BLERAWGN (·,m)
denote the BLER in an AWGN channel for MCS m. Then,

MCS m satisfies the instantaneous BLER constraint if its

effective SNR at the time of transmission exceeds Tm, where

BLERAWGN (Tm,m) = BLERt. Here, we have implicitly

assumed that EESM-based BLER estimates are perfect. This

is justified because, as shown in [8], [9], EESM is accurate.

The AMC scheme proceeds as follows [7], [14], [15]. It

chooses the highest rate MCS at time t if γ
(L)
eff (t) ≥ TL. Else,

the scheme moves to the next highest MCS, and so on. If

γ
(i)
eff (t) < Ti, for all i = 1, . . . , L, then no data transmission

takes place because the BLER constraint cannot be satisfied.

C. Throughput Analysis: Preliminaries

Let mopt(t) ∈ {1, . . . , L} denote the MCS selected at time t.

The transmission with this MCS, which occurs at time t+ τ ,

will be successful if γ
(mopt(t))
eff (t + τ) ≥ Tmopt(t). Thus, the

average throughput R(τ) is given by2

R(τ) =

L
∑

m=1

rm Pr
{

mopt(t) = m, γ
(m)
eff (t+ τ) ≥ Tm

}

. (2)

MCS m is selected if its EESM is greater than or equal to

Tm and the EESM values of the higher rate MCSs are less

than their SNR thresholds. Thus,

Pr
{

mopt(t)=m, γ
(m)
eff (t+ τ)≥Tm

}

=P
(

γ
(m)
eff (t)≥Tm,

γ
(m+1)
eff (t)<Tm+1, . . . , γ

(L)
eff (t)<TL, γ

(m)
eff (t+ τ)≥Tm

)

. (3)

1In order to focus on the impact of feedback delays on wideband rate
adaptation, we do not include in our model the outdated nature of the transmit
beamforming weights [20], which are used in MISO and MIMO. Note,
however, that this limitation does not apply to SIMO and open-loop MISO.

2For tractability, we assume an outage-based model, i.e., the BLER in an
AWGN channel is approximated as a step function. This assumption is rea-
sonable because with advanced coding schemes the BLER falls exponentially
with the SNR.

The (L−m+ 2)-dimensional joint distribution of the cor-

related RVs γ
(m)
eff (t), γ

(m+1)
eff (t), . . . , γ

(L)
eff (t), and γ

(m)
eff (t+ τ)

is required to evaluate (3), but no closed-form for it is

available. We circumvent this problem by using the following

approximation, which is derived in Appendix A and is verified

to be accurate in Section IV-B.

Pr
{

mopt(t) = m, γ
(m)
eff (t+ τ) ≥ Tm

}

≈ P
(

γ
(m)
eff (t) ≥ Tm, γ

(m)
eff (t+ τ) ≥ Tm

)

− P
(

γ
(m+1)
eff (t) ≥ Tm+1, γ

(m)
eff (t+ τ) ≥ Tm

)

. (4)

III. EESM EVOLUTION MODEL AND THROUGHPUT

ANALYSIS

We see from (4) that the bivariate distributions of γ
(m)
eff (t)

and γ
(m)
eff (t+ τ), and γ

(m+1)
eff (t) and γ

(m)
eff (t+ τ) are needed.

For this, we propose a new bivariate gamma distribution [18]

for modeling in a tractable manner the joint distribution of the

RVs γ
(m1)
eff (t) and γ

(m2)
eff (t+ τ), whose motivation was given

in Section I-B.

A. Bivariate Gamma Distribution: Preliminaries

We summarize the key properties of this distribution below.

Let the RVs U and V be bivariate gamma RVs. Their bivariate

PDF is given in terms of four parameters q, s, p, and r as

fU,V (u, v) =
1

rΓ(q)
exp

(

−
pu+ sv

r

)(

uv

sp− r

)

q−1
2

× Iq−1

(

2
√

uv(sp− r)

r

)

, u > 0, v > 0, (5)

where q ≥ 0, s > 0, p > 0, 0 < r ≤ sp, Γ(·) is the gamma

function, and Iq−1(·) is the (q − 1)th-order modified Bessel

function of first kind [19]. The bivariate CDF is given by

FU,V (u, v) =
rq

Γ(q)

∞
∑

k=0

(sp− r)
k
Γ(k + q)

k!(sp)k+q

× Γinc

(

k + q, u
p

r

)

Γinc

(

k + q, v
s

r

)

, u > 0, v > 0, (6)

where Γinc(q, a) =
1

Γ(q)

∫ a

0
xq−1 exp(−x)dx is the incomplete

gamma function and B(·, ·) is the beta function [19].

The RVs U and V are gamma distributed with parameters q

and s, and q and p, respectively. Their PDFs are given in [18].

Further, the conditional CDF FV (v|u) of V given U = u is

FV (v|u) = exp

(

−u
sp− r

sr

) ∞
∑

k=0

uk

k!

(

sp− r

sr

)k

× Γinc

(

k + q,
sv

r

)

, u > 0, v > 0. (7)

Finally, the joint MGF of U and V is given as follows:

ΨU,V (z1, z2) = (1 + sz1 + pz2 + rz1z2)
−q

. (8)
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1) Computing the Bivariate Gamma Parameters: Since we

are interested in the joint PDF of γ
(m1)
eff (t) and γ

(m2)
eff (t+ τ),

we introduce subscripts m1 and m2 into the four distribution

parameters and denote them as qm1,m2 , sm1,m2 , pm1,m2 , and

rm1,m2 . These must be expressed in terms of the system

parameters a,D, Nsc, and C in order to specify the bivariate

gamma PDF. We do this by matching the joint MGF of the RVs

γ
(m1)
eff (t) and γ

(m2)
eff (t + τ) with that of the bivariate gamma

distribution at four carefully chosen points as follows.

Let Ym(t) = 1
Nsc

∑Nsc

i=1 e
−

γi(t)

βm . Therefore, Ψ
γ
(m)
eff

(t)
(z) =

E

[

(Ym(t))
zβm

]

. From this and (8), we get

E [Ym1(t)] = Ψ
γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(

β−1
m1

, 0
)

=
(

1 + sm1,m2β
−1
m1

)

−qm1,m2 , (9)

E
[

Y 2
m1

(t)
]

= Ψ
γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(

2β−1
m1

, 0
)

=
(

1 + 2sm1,m2β
−1
m1

)

−qm1,m2 , (10)

E [Ym2(t)] = Ψ
γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(

0, β−1
m2

)

=
(

1 + pm1,m2β
−1
m2

)

−qm1,m2 , (11)

E [Ym1(t)Ym2(t+ τ)] = Ψ
γ
(m1)

eff
(t),γ

(m2)

eff
(t+τ)

(

β−1
m1

, β−1
m2

)

=
(

1+sm1,m2β
−1
m1

+pm1,m2β
−1
m2

+rm1,m2β
−1
m1

β−1
m2

)

−qm1,m2.

(12)

From (9) and (10), we obtain the following non-linear equa-

tion: 1 + 2β−1
m1

sm1,m2 =
(

1 + β−1
m1

sm1,m2

)δ
, where δ =

log(E[Y 2
m1

(t)])
log(E[Ym1 (t)])

> 1. It can be shown that the above equation

has a unique non-zero solution, which is the desired value

of sm1,m2 . It is computed numerically. Given sm1,m2 , the

remaining parameters can be written in closed-form from (10),

(11), and (12) as follows:3

qm1,m2 = −
log (E [Ym1(t)])

log
(

1 + β−1
m1sm1,m2

) , (13)

pm1,m2 = βm2 (E [Ym2(t)])
−

1
qm1,m2 − βm2 , (14)

rm1,m2 = βm1βm2 (E [Ym1(t)Ym2 (t+ τ)])
−

1
qm1,m2

− βm1pm1,m2 − βm2sm1,m2 − βm1βm2 . (15)

2) Moments of Ym1(t) and Ym2(t + τ): Thus, all that

remains to be done is to compute the moments E [Ym1(t)],
E [Ym2(t)], E

[

Y 2
m1

(t)
]

, and E [Ym1(t)Ym2(t+ τ)]. These are

given in closed-form below, which applies to any subcarrier

correlation matrix C.

Result 1: The first two moments of Ym(t) are given by

E [Ym(t)] =
(

1 + 2aβ−1
m

)

−
D
2 , (16)

E
[

Y 2
m(t)

]

=
1

N2
sc

Nsc
∑

i=1

Nsc
∑

j=1

[

(

1 + 2aβ−1
m

)2

− 4a2|Cij |
2β−2

m1

]

−
D
2 , m = m1, m2, (17)

3In (9), (10), (11), and (12), the ordering of the RVs matters in determining
the parameters. In case rm1,m2 turns out to be negative, we compute the

parameters of
(

γ
(m2)
eff

(t+ τ), γ
(m1)
eff

(t)
)

instead.
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Fig. 1. Comparison of the conditional CDFs of EESM with the proposed
bivariate gamma distribution for independent subcarriers (σ2 = 10 dB, Nsc =
12, βm1 = βm2 = 5, D = 2 (SISO), and fdτ = 0.1).

and the cross-correlation of Ym1(t) and Ym2(t+ τ) is

E [Ym1(t)Ym2(t+ τ)] =
1

N2
sc

Nsc
∑

i=1

Nsc
∑

j=1

[(

1 + 2aβ−1
m1

)

×
(

1 + 2aβ−1
m2

)

− 4ρ(τ)a2|Cij |
2β−1

m1
β−1
m2

]

−
D
2 . (18)

Proof: The proof is relegated to Appendix B.

B. Average Throughput Analysis

We are now in a position to evaluate R(τ) in (4) and derive

the following novel expression for the average throughput.

Result 2: The average throughput as a function of feedback

delay is given by (22) at the top of next page.

IV. NUMERICAL RESULTS

A. Empirical Verification of the Proposed Distribution

We first evaluate the accuracy of the proposed model

by comparing its CDF with that obtained empirically. This

approach is widely used in the wireless modeling litera-

ture [12], [21]. In our problem, the joint CDF plots are three-

dimensional in nature. We, therefore, plot the conditional

CDF of γ
(m2)
eff (t + τ) given γ

(m1)
eff (t) for different values of

γ
(m1)
eff (t), and compare it with that obtained from Monte Carlo

simulations. We use the typical urban (TU) and the rural area

(RA) channel profiles [22]. The number of terms required to

accurately compute the infinite summation in (7) is 85 and 35
for independent subcarriers and TU channel, respectively.

Figure 1 compares the conditional CDFs for independent

subcarriers for D = 2 (SISO) and fdτ = 0.1. Notice that

the bivariate gamma model tracks the empirical curves well

over a range of values that span three orders of magnitude.

Its accuracy is comparable to the bivariate lognormal model.

While it is more accurate than the bivariate lognormal model

for smaller values of γ
(m1)
eff (t), the reverse is true for larger

values of γ
(m1)
eff (t).

Figure 2 plots the conditional CDFs for TU channel for D =
4 (1×2 SIMO). Now, with correlated subcarriers, the proposed

model is more accurate than the bivariate lognormal model.

As mentioned before, corresponding results for the beta [15],
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R(τ) ≈

L
∑

m=1

rm

{

Γinc

(

qm+1,m,
Tm+1

sm+1,m

)

− Γinc

(

qm,m,
Tm

sm,m

)

+

∞
∑

k=0

[

(ξm,m)
qm,m (1− ξm,m)

k

kB (k, qm,m)

× Γinc

(

k + qm,m,
Tmpm,m

rm,m

)

Γinc

(

k + qm,m,
Tmsm,m

rm,m

)

−
(ξm+1,m)

qm+1,m (1− ξm+1,m)
k

kB (k, qm+1,m)

× Γinc

(

k + qm+1,m, Tm+1
pm+1,m

rm+1,m

)

Γinc

(

k + qm+1,m, Tm

sm+1,m

rm+1,m

)

]}

, (22)

where ξm1,m2 =
rm1,m2

sm1,m2pm1m2
, for m1,m2 ∈ {m,m+ 1} and TL+1 = ∞.
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Fig. 2. Comparison of the conditional CDFs of EESM with the proposed
bivariate gamma distribution for TU channel profile (σ2 = 10 dB, Nsc = 12,
βm1 = βm2 = 5, D = 4 (1× 2SIMO), and fdτ = 0.1).

GEV, and Pearson [16] models cannot be shown because no

tractable bivariate extension is known for them.

B. Throughput

We now present Monte Carlo simulations to evaluate the

accuracy of the throughput analysis. The MCSs specified in

the LTE standard are used [17, Tbl. I]. We set BLERt = 0.1,

Nsc = 24, and D = 2 (SISO). The number of terms used

to evaluate the infinite series in (22) depends on fdτ and

the correlation between the subcarriers. For example, for

fdτ = 0.1, 20 and 100 terms are sufficient for correlated and

independent subcarriers, respectively.

The average throughput as a function of fdτ for different

average SNRs σ2 is shown in Figure 3 for the RA channel. The

corresponding plot for the TU channel is shown in Figure 4.

Notice the good match between the analysis and simulations

in both the figures. As fdτ increases, the average throughput

decreases. We quantify it in terms of the percentage drop in

throughput from fdτ = 0 to 0.3. For σ2 = 5 dB, 10 dB, and

20 dB, the percentage drops respectively are 59%, 57%, and

54% in the RA channel, and 55%, 53%, and 46% in the TU

channel. Thus, the drop in throughput due to feedback delay

increases as the correlation between the subcarriers increases.

We now study the effect of the number of subcarriers on the

throughput in Figure 5. We consider independent subcarriers

with Nsc = 1, 12, and 24 since this was the worst case in terms

of accuracy for the proposed bivariate EESM model. Note

that for Nsc = 1, EESM-based AMC reduces to the classical
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narrowband AMC [1]. As the feedback delay increases, the

throughput decreases more rapidly for Nsc = 1 than for

Nsc = 24. This is a consequence of the frequency diversity

achieved by transmitting over multiple subcarriers. Notice

again the good match between analysis and simulations.

V. CONCLUSIONS

We presented a general analytical framework to characterize

the impact of feedback delay on EESM-based link adaptation

in frequency-selective channels. We first proposed a novel

bivariate gamma distribution for the joint distribution of EESM

at the times of MCS determination and data transmission. An

MGF-matching method, which exploits the functional form

of EESM, was used to compute the distribution’s parameters.

We saw that the proposed model is quite accurate for both

independent and correlated subcarriers. It then led to a novel

and accurate expression for the throughput as a function

of feedback delay. Our analysis covered different multiple

antenna modes and arbitrary subcarrier correlations. While

feedback delays can significantly degrade the throughput, the

diversity achieved by transmitting over multiple subcarriers or

using multiple antennas partially mitigates it.

An avenue for future work is to incorporate co-channel

interference and scheduling into the system model.

APPENDIX

A. Probability of Successful Transmission with MCS m

We replace the probability of successful transmission with

MCS m in (3) with its upper bound:

P
(

γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t) < Tm+1, . . . , γ

(L)
eff (t) < TL,

γ
(m)
eff (t+ τ) ≥ Tm

)

≈ P
(

γ
(m)
eff (t) ≥ Tm,

γ
(m+1)
eff (t) < Tm+1, γ

(m)
eff (t+ τ) ≥ Tm

)

. (23)

We simplify (23) further using the following lower bound:

P
(

γ
(m)
eff (t) ≥ Tm, γ

(m+1)
eff (t) < Tm+1, γ

(m)
eff (t+ τ) ≥ Tm

)

≥ P
(

γ
(m)
eff (t) ≥ Tm, γ

(m)
eff (t+ τ) ≥ Tm

)

− P
(

γ
(m+1)
eff (t) ≥ Tm+1, γ

(m)
eff (t+ τ) ≥ Tm

)

. (24)

Substituting (24) in (23) yields the desired result in (4).

B. Moments of Ym1(t) and Ym2(t+ τ)

The means of Ym1(t) and Ym2(t + τ) are derived in [15].

Here, we derive the cross-correlation of Ym1(t) and Ym2(t+τ)
and the second moment. The cross-correlation is given by

E [Ym1(t)Ym2(t+ τ)] =
1

N2
sc

Nsc
∑

i=1

Nsc
∑

j=1

E

[

e

(

−
γi(t)

βm1
−

γj (t+τ)

βm2

)
]

=
1

N2
sc

Nsc
∑

i=1

Nsc
∑

j=1

Ψγi(t),γj(t+τ)

(

β−1
m1

, β−1
m2

)

. (25)

The joint MGF of γi(t) and γj(t + τ)is given by (8) with

q = D
2 , s = 2a, p = 2a, and r = 4a2

(

1− ρ(τ) |Cij |
2
)

,

which when substituted in (25) yields (18). Substituting τ = 0
in (18) yields the expression for the second moment in (17).
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