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Abstract—Receive antenna selection (AS), in which a subset of
a receiver’s antennas, is selected based on the instantaneous chan-
nel condition, enables the receiver to benefit from having mul-
tiple antenna elements despite using significantly less hardware.
However, the limited hardware resources also impose unique
constraints on how channel state information, which is necessary
to select the antennas and decode data, can be acquired for AS.
We derive novel closed-form expressions for the symbol error
probability of MPSK and MQAM over time-varying Rayleigh
fading channels using AS. Our analysis explicitly considers a
practical and general training model that accounts for noisy
channel estimates and training delays that affect both selection
and data decoding. Our results show that training plays a crucial
role in determining the overall performance, and can even limit
the number of receive antennas that can gainfully be employed
in the system.

I. INTRODUCTION

Many next generation wireless communication systems

employ multiple receive antennas to exploit the benefits of

spatial diversity. However, issues such as increased power con-

sumption and multiple radio frequency (RF) chains required

to process signals from multiple antenna elements, make it

infeasible to support many receive antennas.

Receive antenna selection (AS) is a popular technique that

addresses this problem by only processing the signals from a

dynamically selected subset of available antennas. It greatly

reduces the cost of a transceiver since antenna elements are

typically cheap and easy to implement, while RF chains

are expensive. Despite its lower hardware complexity, AS

provably achieves the maximum diversity order. Considerable

work has also appeared in the literature on its capacity benefits

and on antenna selection criteria (see [1], [2] for a detailed set

of references). However, most of these papers assume perfect

channel state information (CSI) at the receiver.

In practice, the CSI needs to be acquired using a pilot-

based training scheme. The low hardware complexity, which

is a key motivator for AS, also imposes unique constraints

on how training gets done for AS. This is because, given the

limited number of RF chains, only a subset of antennas can

be activated at any instant. This implies that the transmitter

needs to transmit pilots multiple times to enable the receiver to

receive the signals with different antennas and estimate their

corresponding links to the transmitter. The receive antenna

is then selected based on these estimates. For example, in

the AS training scheme used in IEEE 802.11n wireless local
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area network standard, pilots (and packets) for reception by

different receive antennas are transmitted at different time

instants, which can be several tens of milliseconds apart [3].

Thus, the CSI at the receiver is imperfect because of noise

in the channel estimates and also because of training delays,

which are different for different antennas. Imperfect CSI leads

to inaccurate selection and imperfect data decoding, both of

which effect the symbol error probability (SEP).

In this paper, we analyze the performance of single receive

antenna selection in time-varying Rayleigh fading channels

with imperfect channel estimation. Even single antenna se-

lection is relevant because it achieves the full diversity order

under perfect CSI. Under this general and practical set up,

we develop closed-form expressions for the SEP of AS for

MPSK and MQAM constellations. Our results show that the

training delays lead to error floors, which do not occur for

perfect CSI or even noisy channel estimates. Interestingly, our

results show that the training delays make it futile to increase

the number of receive antennas beyond a point. While [4], [9],

and [10] considered channel estimation errors, they assumed

either a time-invariant channel model or did not account for

the different training delays of different antennas.

The paper is organized as follows. The system model

is developed in Sec. II, followed by analysis in Sec. III.

The results are verified using simulations in Sec. IV. Our

conclusions follow in Sec. V.

II. MODEL

Consider a system with one transmit antenna, Nr receive

antennas, and one RF chain at the receiver. Let hk(t) denote

the frequency-flat channel between the transmitter and the

kth receive antenna at time t. It is modeled as a circularly

symmetric complex Gaussian random variable (RV) with unit

variance. Furthermore, the channel gains for different receive

antennas are assumed to be independent and identically dis-

tributed (i. i. d.), which is the case when the receive antennas

are spaced sufficiently apart.

As shown in Figure 1, the transmitter transmits pilot symbol

pk (of duration Ts) to enable the receiver to estimate the

channel between the transmitter and kth receive antenna at time

Tk. Two consecutive pilot symbols are separated in time by a

duration Tp. Note that the order in which antennas are trained

does not matter since the channel gains of different antennas

are i. i. d. The signal received by antenna k is therefore

rk(Tk) = pkhk(Tk) + nk(Tk),
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where nk(t) is an ergodic stationary Gaussian process with

zero mean and power N0 that is independent of hk(t). There-

fore, the channel estimate for the kth receive antenna is

ĥk(Tk) =
p∗krk(Tk)

|pk|2
= hk(Tk) + ek, (1)

where, the estimation error ek =
nk(Tk)

|pk|2 has a variance

σ2
e = N0

Ep
. Here Ep denotes the pilot symbol energy.

Rearranging the estimated channel gains for the Nr an-

tennas in decreasing order of their absolute values, we get∣∣∣ĥ[1̂]

(
T[1̂]

)∣∣∣ >
∣∣∣ĥ[2̂]

(
T[2̂]

)∣∣∣ > · · · >
∣∣∣ĥ[N̂r]

(
T[N̂r]

)∣∣∣, where

[̂i] denotes the index of the antenna with the ith largest gain.

Antenna [1̂] is used for receiving all the data symbols.

The pilots are followed by D data symbols, each of duration

Ts and average energy Es. When the ith data symbol, si, is

transmitted, the signal received by antenna [1̂] at time ti, after

matched filtering, is given by

y[1̂](ti) = h[1̂](ti)si + n[1̂](ti). (2)

The data symbols belong to a finite-sized constellation.

(We shall assume that all the constellation symbols are

equi-probable.) For example, for MPSK, si belongs to the

set
{√

Es exp( j2πm
M ), m = 0, 1, . . . , M−1

}
. For MQAM, the

data symbol, si =
√

3Es

2(M−1) (aI + jaQ), where aI , aQ be-

longs to the set {2i− 1−
√

M, i = 1, 2, . . . ,
√

M}.

Due to the time-varying nature of the wireless links, the

Nr channels will have changed by the time data transmission

starts. Specifically, the channel for receive antenna i at time

t + δ can be written in terms of the channel at time t as [8]

hi(t + δ) = ρi(δ)hi(t) +
√

1− |ρi(δ)|2n′i(t + δ), (3)

where ρi(δ) is the channel correlation coefficient, which

depends only on the time difference δ. The variation n′i(t+δ),
i = 1, 2, . . . , Nr, is a circularly symmetric complex Gaussian

RV with unit variance that is independent of hi(t). From the

Jakes’ model [5], which we use for illustrative purposes in this

paper, we have

ρi(δ) = J0(2πfdδ), (4)

where J0(.) is the zeroth order Bessel function of the first

kind [6] and fd is the Doppler spread.

III. SEP OF MPSK AND MQAM

We now analyze the SEP for MPSK and MQAM for receive

antenna selection with imperfect and outdated CSI. Hence-

forth, we simplify our notation as follows: we denote ĥk (Tk)
by ĥk, n′k(t) by n′k, and nk(t) by nk. Let E [A] and var [A]
denote the expectation and variance of event A, respectively.

Similarly, E [A|B] and var [A|B] shall denote the conditional

expectation and variance of A given B, respectively.

The selected antenna [1̂] is used to receive the entire data

packet. Therefore, the decision variable, D, for decoding si is

D = ĥ∗
[1̂]

y[1̂](ti).

Time

decision

Selection

p1 p2 s2s1 sD

Tp

Ts Ts

pNr

t2t1TNr tDT1 T2

Fig. 1. Training for antenna selection

Note that the same imperfect channel estimate used for antenna

selection is also used for data decoding. Using (1) and (3), we

can write the channel at time ti in terms of its estimate. Hence,

D = ĥ∗
[1̂]

(
ρ
(i)

[1̂]

(
ĥ[1̂] − e[1̂]

)
si+

√
1−

∣∣∣ρ(i)

[1̂]

∣∣∣
2

n′
[1̂]

si+n[1̂]

)
, (5)

where ρ
(j)
i denotes ρi(tj − Ti). This expression also shows

that due to the time-varying nature of the channel, symbols

transmitted at different times experience different error rates.

We first state the following Lemma about the statistics of

D, which shall be useful in the rest of the paper.

Lemma 1: Conditioned on {ĥi}Nr

i=1 and si, D is a complex

Gaussian RV with conditional mean and variance given by

E
[
D
{ĥi}Nr

i=1, si

]
=
∣∣∣ĥ[1̂]

∣∣∣
2

ρ
(i)

[1̂]
siq

2, (6)

var
[
D
{ĥi}Nr

i=1, si

]
=
(

1−
∣∣∣ρ(i)

[1̂]

∣∣∣
2
)
|si|2

∣∣∣ĥ[1̂]

∣∣∣
2

+
∣∣∣ĥ[1̂]

∣∣∣
2 ∣∣∣ρ(i)

[1̂]

∣∣∣
2

|si|2 σ2
eq2 +

∣∣∣ĥ[1̂]

∣∣∣
2

N0, (7)

where q2 , 1/(1 + σ2
e).

Proof: The proof is given in the Appendix.

We are now ready to derive the SEP for MPSK and MQAM

in the following two theorems.

Theorem 1: With training delays and imperfect channel

estimation, the SEP for an MPSK symbol si received at time

ti is given by

P MPSK
i (γ) =

M − 1
M

+
1

Nrπ

Nr−1∑

l=0

(−1)l+1

(
Nr

l + 1

)

×




Nr∑

k=1

1√
α

(i)
k,l(γ)

tan−1

(√
α

(i)
k,l(γ) tan

(
M − 1

M
π

))
 , (8)

where γ , Es

N0
is the average SNR per branch, ε , Ep

Es
, and

α
(i)
k,l(γ) , 1+

(l + 1)/ε∣∣∣ρ(i)
k

∣∣∣
2

sin2
(

π
M

)
(
ε

(
1−
∣∣∣ρ(i)

k

∣∣∣
2
)
+

1+ε

γ
+

1
γ2

)
. (9)

Proof: Using Lemma 1 and [7, eq.(40)], the SEP for
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MPSK, conditioned on {ĥi}Nr

i=1 is given by

Pi

(
Err

{ĥi}Nr

i=1

)
=

1
π

∫ M−1
M π

0

exp



−
∣∣∣ĥ[1̂]

∣∣∣
2

b
(i)

[1̂]

sin2 θ


dθ, (10)

where b
(i)
k ,

Es

∣∣∣ρ(i)
k

∣∣∣
2
q4 sin2( π

M )
∣∣∣ρ(i)

k

∣∣∣
2
Esσ2

eq2+N0+

(
1−
∣∣∣ρ(i)

k

∣∣∣
2
)

Es

.

From (1), the probability density function, f(x), and cu-

mulative distribution function, F (x), of

∣∣∣ĥk

∣∣∣
2

are given by

f(x) = 1
1+σ2

e
exp

(
−x

1+σ2
e

)
and F (x) = 1− exp

(
−x

1+σ2
e

)
.

Therefore, the SEP averaged over {ĥi}Nr

i=1 equals

Pi (Err) =
Nr∑

k=1

1
π

∫ ∞

0

∫ M−1
M π

0

exp

(
−xb

(i)
k

sin2 θ

)

× f(x) (F (x))Nr−1 dθdx . (11)

Now, (F (x))Nr−1 =
Nr−1∑

l=0

(−1)l

(
Nr−1

l

)
exp
( −lx

1 + σ2
e

)
.

Substituting the above expansion in (11) and simplifying

further we get,

Pi (Err) =
1

π(1 + σ2
e)

Nr∑

k=1

Nr−1∑

l=0

(−1)l

(
Nr − 1

l

)

×
∫ M−1

M π

0

(
b
(i)
k

sin2 θ
+

l + 1
1 + σ2

e

)−1

dθ.

This result can be further simplified by using the following

identity, which follows from [6, eq. (2.562)]:

∫ M−1
M π

0

(
b
(i)
k

sin2 θ
+

l + 1
1 + σ2

e

)−1

dθ ≡ 1
cl

(
M − 1

M
π

)

− 1
cl

√√√√ bk
(i)

b
(i)
k + cl

tan−1



√

b
(i)
k + cl

bk
(i)

tan
(

M − 1
M

π

)
 ,

where cl , l+1
1+σ2

e
. This leads to

Pi (Err) =
1

Nrπ

Nr∑

k=1

Nr−1∑

l=0

(−1)l

(
Nr

l + 1

)[
M − 1

M
π−

√√√√ bk
(i)

b
(i)
k + cl

tan−1



√

b
(i)
k + cl

bk
(i)

tan
(

M − 1
M

π

)

]
.

Finally, using two additional identities
b
(i)
k +cl

b
(i)
k

≡ α
(i)
k,l and

1
Nr

∑Nr

k=1

∑Nr−1
l=0 (−1)l

(
Nr

l+1

)
≡ 1, proves the theorem.

Theorem 2: With training delays and imperfect channel

estimation, the SEP for an MQAM symbol si received at time

ti is given by

P MQAM
i (γ) =

M − 1
M

− 4
Nrπ

(
1− 1√

M

)2

×
Nr∑

k=1

Nr−1∑

l=0

(−1)l+1

√
β

(i)
k,l(γ)

(
Nr

l + 1

)
tan−1

(√
β

(i)
k,l(γ)

)

+
2

Nr

(
1− 1√

M

) Nr∑

k=1

Nr−1∑

l=0

(−1)l+1

√
β

(i)
k,l(γ)

(
Nr

l + 1

)
, (12)

where γ , Es

N0
is the average SNR per branch, ε , Ep

Es
, and

β
(i)
k,l(γ) , 1+

(l + 1)

ε
∣∣∣ρ(i)

k

∣∣∣
2(

3
2(M−1)

)
(
ε

(
1−
∣∣∣ρ(i)

k

∣∣∣
2
)
+

1+ε

γ
+

1
γ2

)
.

(13)

Proof: Using Lemma 1 and [7, eq. (48)], the SEP for

MQAM, conditioned on {ĥi}Nr

i=1, is given by

Pi

(
Err|{ĥi}Nr

i=1

)
=

4
π

(
1− 1√

M

)∫ π
2

0

exp



−
∣∣∣ĥ[1̂]

∣∣∣
2

c
(i)

[1̂]

sin2 θ


dθ

− 4
π

(
1− 1√

M

)2 ∫ π
4

0

exp



−
∣∣∣ĥ[1̂]

∣∣∣
2

c
(i)

[1̂]

sin2 θ


 dθ,

where c
(i)
k ,

Es

∣∣∣ρ(i)
k

∣∣∣
2
q4( 3

2(M−1) )∣∣∣ρ(i)
k

∣∣∣
2
Esσ2

eq2+N0+

(
1−
∣∣∣ρ(i)

k

∣∣∣
2
)

Es

. Using steps

similar to Theorem 1, we can derive P MQAM
i (γ).

A. Asymptotic Behavior of SEP

Let us now consider the asymptotic behavior of our

SEP expressions in (8) and (12) as the average SNR per

branch, γ, increases. Let P MPSK
i,asym , limγ→∞ P MPSK

i (γ) and

P MQAM
i,asym , limγ→∞ P MQAM

i (γ).
We first consider the case where training delays are absent,

i.e., ρ
(i)
k = 1, for all k, i. From (9) and (13), we can see that

limγ→∞ α
(i)
k,l(γ)=1 and limγ→∞ β

(i)
k,l(γ)=1, for all k, l, and

i. For MPSK, using a binomial series identity in (8), we get

P MPSK
i,asym =

M − 1
M

(
1 +

1
Nr

Nr∑

k=1

Nr−1∑

l=0

(−1)l+1

(
Nr

l + 1

))
≡ 0.

Similarly for MQAM, we can also show from (12) that

P MQAM
i,asym ≡ 0. The above results are consistent with those in [4].

Now consider the case of non-zero training delays, where

0 < ρ
(i)
k < 1, for all k and i. From (9) and (13), we see that

lim
γ→∞

α
(i)
k,l(γ) , α

(i)
k,l = 1 +

(l + 1)
(

1−
∣∣∣ρ(i)

k

∣∣∣
2
)

∣∣∣ρ(i)
k

∣∣∣
2

sin2
(

π
M

) ,

lim
γ→∞

β
(i)
k,l(γ) , β

(i)
k,l = 1 +

(l + 1)
(

1−
∣∣∣ρ(i)

k

∣∣∣
2
)

∣∣∣ρ(i)
k

∣∣∣
2 (

3
2(M−1)

) .
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Fig. 2. Effect of normalized doppler spread (8PSK and Nr = 4).

Replacing α
(i)
k,l(γ) and β

(i)
k,l(γ) with α

(i)
k,l and β

(i)
k,l respec-

tively, it can be seen that P MPSK
i,asym and P MQAM

i,asym are not identically

0. Hence, an irreducible error floor exists at high SNR, with

its value depending on the correlations {ρ(i)
k }Nr

k=1.

Thus far, we have analyzed the fading-averaged SEP. Note

that the uncoded fading-averaged packet error rate (PER)

cannot be directly determined from the fading-averaged SEPs

of the D different symbols. This is because the same antenna

is used for decoding all the D data symbols of a packet.

However, when conditioned on {ĥi}Nr

i=1, the symbol errors are

independent and are each given by (10), albeit with different

correlations (ρ
(i)
k ), which depend on the time instants when the

data symbols are transmitted. The resulting expression for the

PER can be unconditioned on the channel gains and simplified

along the lines presented in this paper. However, due to space

constraints, we do not analyze PER in this paper.

IV. SIMULATIONS

We now present graphically the results derived in Sec. III

and study the effect of Nr and fdTp on the SEP. We also com-

pare our analytical results with Monte Carlo simulations (with

104 samples being generated for each SNR), which use the

simulator of [11] to generate the time-varying Rayleigh chan-

nels. From (4), the correlation values for k = 1, 2, . . . , Nr,

equal ρ
(i)
k = J0 (2πfd((Nr − k)Tp + iTs)). The figures are

plotted for Tp = 10 Ts and Ep = Es. Unless mentioned

otherwise, the SEP of the first data symbol is plotted.

Figures 2 and 3 plot the SEP as a function of the SNR for

MPSK and MQAM, respectively, for Nr = 4 and different

values of the normalized Doppler spread fdTp. In both figures,

one can see that the SEP decreases to 0 as the SNR increases

when fdTp = 0, as discussed in Sec. III-A. On the other

hand, for both MSPK and MQAM, an error floor exists when

fdTp > 0; it increases as fdTp increases. Notice the excellent

match between analytical and simulation results. Therefore,

we only plot the analytical results henceforth.

We now consider the effect of training delays on the SEP as

the number of receive antennas increases. Figure 4 compares

performance of Nr = 2, 4, 8, and 16 receive antennas as

a function of SNR at fdTp = 0.016. We can see that more
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Fig. 3. Effect of normalized doppler spread (16QAM and Nr = 4).

receive antennas is no longer always better. In fact, for larger

fdTp, Nr = 2 turns out to be the best choice. This is because,

at a fixed Tp, the greater the number of receive antennas, the

longer is the training delay. Hence, the correlation between

the channels seen at the time of channel estimation and data

transmission is lower. This figure can be better understood

by considering an idealistic scenario, plotted in Figure 5,

in which the total training period (NrTp) is kept constant

regardless of Nr. (This can be achieved in theory by adjusting

Tp according to Nr.) Not surprisingly, the SEP does decrease

as Nr increases.

An alternate view is presented in Figure 6, which compares

the performance of Nr = 2, 4, 8, and 16 antennas at an

SNR of 10 dB as a function of the normalized Doppler

spread. (As in Figure 4, Tp is fixed.) It can be seen that

for 0 ≤ fdTp ≤ 0.007, Nr = 16 outperforms others. How-

ever, for 0.007 ≤ fdTp ≤ 0.017, 0.017 ≤ fdTp ≤ 0.044, and

fdTp ≥ 0.044, Nr = 8, Nr = 4, and Nr = 2, respectively,

are the best choices. (Similar behavior was observed at other

values of SNR too.)

The effect of different training delays for different antennas

is studied in Figure 7. ρk = ρmin corresponds to all antennas

experiencing a maximum training delay of (Nr − 1)Tp + Ts

and ρk = ρmax corresponds to all antennas experiencing a

minimum training delay of Ts. The effect of different training

delays is more significant at higher values of SNR.

V. CONCLUSIONS

For practical training scenarios encountered for single re-

ceive AS, we developed closed-form expressions for the SEP

of MPSK and MQAM that accounted for both noisy channel

estimates and AS training delays. Our analysis showed that

noisy channel estimates impact the performance differently

from imperfections due to training delays. When both these

imperfections are considered together, the SEP exhibits an

error floor, which increases as the normalized Doppler spread

increases. As the number of receive antennas increases, the

training delays also increase, which negatively impacts per-

formance. Consequently, for higher Doppler spreads, fewer

antennas to train over and select from may actually be better.
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APPENDIX

A. Proof of Lemma 1

From (1) we can see that e[1̂] conditioned on ĥ[1̂], is

independent of other variables. Hence,

E
[
e[1̂]|{ĥi}Nr

i=1, si

]
= E

[
e[1̂]|ĥ[1̂]

]
= ĥ[1̂](1− q2). (14)

The second equality follows from standard results on condi-

tional Gaussians. From (5), we can see that decision variable

D depends only on ĥ[1̂] and si. Hence,

E
[
D|{ĥi}Nr

i=1, si

]
= E

[
D|ĥ[1̂], si

]

=
∣∣∣ĥ[1̂]

∣∣∣
2

ρ
(i)

[1̂]
si − ĥ∗

[1̂]
ρ
(i)

[1̂]
siE

[
e[1̂]|ĥ[1̂]

]
=
∣∣∣ĥ[1̂]

∣∣∣
2

ρ
(i)

[1̂]
siq

2.

The first equality follows from the fact that both n′k and nk

are independent of ĥk. The second equality follows from (14).

The conditional variance expressions also follow similarly.
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