
Trade-offs in Analog Sensing and Communication

in RF Energy Harvesting Wireless Sensor Networks

M. P. Praveen Neelesh B. Mehta, Senior Member, IEEE

Abstract—Radio-frequency (RF) energy harvesting (EH) is an
appealing solution for making wireless sensor networks (WSNs)
self-reliant in terms of energy. We investigate the problem of
sensing and estimation in a WSN for a practically motivated
transmit and receive model. In it, noisy readings are communi-
cated by multiple peak-power constrained RF EH sensor nodes
in an analog manner using phase modulation to a fusion node,
which uses the popular phase-locked loop (PLL) circuit for signal
reception. For the time-sharing model, in which an EH sensor
node alternately harvests energy and transmits data, and for a
general class of stationary and ergodic RF EH processes, we
present insightful expressions for the mean squared error (MSE)
of the estimate at the fusion node, and optimal fraction of time a
node harvests energy and optimal transmit power that minimize
the MSE. Benchmarking with several digital schemes brings out
the natural adaptability and efficacy of the considered scheme.

I. INTRODUCTION

Energy harvesting (EH) is a promising solution for im-

proving the lifetime of wireless sensor networks (WSNs) and

making them self-reliant. In it, each node harvests renewable

energy from its environment, and stores it in a battery or super-

capacitor. It uses this energy to transmit its measured data over

a wireless channel to a fusion node [1]–[3].

Given its promise, estimation with EH sensor nodes, in

which the sensor nodes measure a parameter and communicate

their measurements over wireless links to a fusion node,

which then estimates it, is attracting increasing attention in

the literature. In a WSN consisting of EH nodes, the transmit

power of the sensor nodes is optimized to minimize the mean

squared error (MSE) of the estimate at the fusion node for a

finite number of estimation periods with a best linear unbiased

estimator in [2]. The energy harvested in each slot and the

channel gains between the sensor nodes and fusion node in

each slot are assumed to be known a priori. Optimal power

allocation strategies that minimize the MSE of the estimate

at the fusion node, which uses a minimum mean squared

error (MMSE) estimator, are studied in [1] for an additive

white Gaussian noise channel. In [4], a maximum-likelihood

estimator is studied instead. Optimal energy allocation policies

for Markovian fading channels are studied in [3]. Estimation

of the max function in an EH WSN was studied in [5].
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A. RF Energy Harvesting WSNs and Their Trade-offs

Radio-frequency (RF) EH is a special case of EH in which

the nodes harvest energy from electromagnetic radiations [6].

The source of RF energy may be an RF power source that

is dedicated for feeding energy to the nodes [7] or ambient

electromagnetic radiations from cellular base stations or WiFi

access points [6]. The availability of higher-efficiency circuits

and the decrease in power requirements of the sensor nodes

have made RF EH practically appealing [8].

Two methods, namely, power splitting and time-sharing,

were proposed for decoding data and harvesting energy from

the received signal in [9]. A similar issue arises at the

transmitter as well. It is studied in [7] in the setting where

a multi-antenna access point broadcasts wireless power to

single antenna sensor nodes. These, in turn, transmit data to it

using the time-sharing model, in which an EH node alternates

between EH and transmission.

Simultaneous RF EH and data transfer can also be done

by having different antennas dedicated for transmission and

EH [10]. However, in small sensor nodes, such as wearables,

integrating more than one antenna into the node can be

challenging and expensive. For such devices, time-sharing is

of practical interest, and is the focus of our paper.

B. Contributions

Since both energy harvesting and communication processes

involve electromagnetic radiations and a practical RF EH

circuit cannot simultaneously decode the data present in the

signal [9], new trade-offs arise in the design of RF EH

WSNs [11]. For a WSN in which multiple RF EH sensor nodes

measure a parameter, and communicate their noisy measure-

ments to a fusion node over a wireless fading channel in an

analog manner using phase modulation, we highlight, analyze,

and optimize these trade-offs. The fusion node employs the

widely used phase-locked loop (PLL) circuit for decoding the

phase information sent from the sensor node, and thereafter

computes the MMSE estimate of the parameter.

For the time-sharing model and a Gaussian distributed

parameter and noise model, we optimize the fading-averaged

MSE of the estimate at the fusion node as a function of

the fraction τ of time energy is harvested by a sensor node

in a slot. Firstly, we characterize the trade-off involved in

choosing the transmit duration, which affects the accuracy

of the readings transmitted by the EH node and the rate at

which it harvests energy for these transmissions. Secondly,

we study the trade-off involved in setting the transmit power,
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Fig. 1. System model consisting of RF EH sensor nodes and a fusion node.
Also shown are the transmission and EH models.

which also affects the accuracy of the readings transmitted and

the subsequent evolution of the node’s battery energy.

Our model differs from [12] in its use of non-quantized

analog transmission and from [1]–[4] in its use of phase-based

modulation and PLL-based estimation at the receiver. Our ap-

proach is novel and relevant for the following reasons. Firstly,

we focus on analog transmission because it can outperform

coding schemes designed according to the source-channel

separation principle in sensing applications [13]. Secondly,

embedding the measurement in phase ensures a fixed transmit

power, which enables the use of efficient transmit power

amplifiers at the sensor nodes. Practical limitations on power

amplifiers also motivate our modeling of a peak transmit power

constraint. Thirdly, we model, analyze, and simulate the use

of a PLL circuit at the receiver, which is widely used in

practical designs. Fourthly, we present benchmarking results

that demonstrate the efficacy and robustness of the analog

scheme compared to digital schemes that employ quantization

followed by digital transmission of the measurement. We show

that the analog sensing and communication scheme possesses a

natural adaptability to parameters such as signal-to-noise ratio

(SNR) and τ , unlike its digital counterparts.

C. Outline

Section II describes the system model. In Section III, we

analyze and optimize the MSE of the estimate. Numerical

results are presented in Section IV, and are followed by

our conclusions in Section V. Proofs are relegated to the

Appendix.

II. SYSTEM MODEL

Consider a WSN that consists of N RF EH sensor nodes and

a fusion node, as shown in Figure 1. The time is assumed to

be slotted. The slot duration is T seconds. We now explain the

EH, measurement, transmission, channel, and receiver models.

RF EH Model: Let Xi[j] denote the rate at which energy

is harvested by sensor node i in slot j. It is assumed to be a

stationary and ergodic random process with mean E [Xi[j]] =
Peh J/s, where E [·] denotes expectation. This general model

encompasses several models studied in the literature such as

the Bernoulli and Markovian models [14].

In each slot, for the first τT duration, each RF EH sensor

node harvests energy from its environment at an average rate of

Peh J/s. Thereafter, each sensor node checks whether its battery

energy is sufficient to transmit the sensed measurement for the

remaining (1 − τ)T time in the slot. If the battery energy is

sufficient, then the sensor node commences data transmission

as described below. Else, it continues to harvest energy from

the environment in this duration as well.

Measurement Model: In the j th slot, the sensor node i
measures the parameter θ[j], which is perturbed by a node-

specific measurement noise ni[j]. Such a model has also been

used in [2], [15]. The noise is modeled as a Gaussian random

variable (RV). Thus, the measurement output φi[j] of sensor

node i in slot j is

φi[j] = θ[j] + ni[j], (1)

where ni[j] ∼ N (0, σ2
m) and θ[j] ∼ N (0, σ2

θ) [1], [15]. Here,

the notation X ∼ N (µ, σ2) implies that X is a Gaussian RV

with mean µ and variance σ2. We shall also assume that ni[j]
is i.i.d. across i and j, and is statistically independent of θ[j].

Transmission Model: As mentioned, a sensor node transmits

its measurement using phase modulation, if the energy stored

in its battery is sufficient. In such a case, we say that the sensor

node is active. Else, it is said to be inactive. Let A[j] denote

the set of all active nodes in slot j. In slot j, the transmitted

signal xi(t) by node i, for t ∈ [(j − 1)T + τT, jT ], is

xi(t) =

{√
2P cos(2πfcit+ φi[j]), if Bi[j] ≥ PT (1− τ),

0, if Bi[j] < PT (1− τ),
(2)

where P is transmit power, Bi[j] denotes the energy stored in

the battery of node i at time (j − 1)T + τT , and fci is the

carrier frequency for transmissions by node i. Thus, i ∈ A[j]
if Bi[j] ≥ PT (1 − τ). Let Pmax denote the peak transmit

power. The nodes transmit on orthogonal channels.

Note: φi[j] should lie in [−π, π) to avoid phase ambiguity. If

this is not the case, one can scale φi[j] by a factor γ ∈ (0, 1]
so that γφi[j] lies in [−π, π) with high probability. It can

be shown that introducing the factor γ < 1 is equivalent to

enhancing the noise power at the receiver by a factor 1
γ2 . For

ease of exposition, we set γ = 1 henceforth.

Channel Model: Let hi[j] denote the passband channel

amplitude from sensor node i to the fusion node in the j th

slot. It is a Rayleigh RV with unit mean power. The channels

between the sensor nodes and the fusion node are assumed to

undergo independent block fading. The received signal yi(t),
for t ∈ [(j − 1)T + τT, jT ], at the fusion node from sensor

node i is given by

yi(t) = hi[j]xi(t− ξi[j]) + ei(t),

=

{√
2Phi[j]cos(2πfcit+∆i[j])+ei(t), i ∈ A[j],

ei(t), else,

(3)
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Fig. 2. Receiver structure based on PLL to estimate phase ∆̂i[j] in a slot j.

where ξi is the time delay introduced by the channel, ei(t)
is white Gaussian noise process with power spectral density

N0/2, and ∆i[j] = φi[j] − 2πfciξi[j]. We assume that hi[j]
and ξi[j] are known at the receiver if the node is active. They

can be estimated by the node using pilots.

Receiver Model: The receiver consists of PLL-based phase

demodulators to decode the received signals from each of the

N sensors, as shown in Fig. 2. If node i is active in slot j, the

PLL corresponding to it is turned on and it extracts the phase

∆i[j] from the received signal yi(t).
The PLL consists of a phase detector, a loop filter, and a

voltage controlled oscillator (VCO). The phase detector mul-

tiplies its two input signals and filters out the high frequency

components in the resulting product to give the signal ∆d(t)
at its output. The VCO generates a sinusoid synchronized in

frequency to the received waveform. Its phase ∆̃i(t) is equal

to the cumulative error w(t) shifted by π
2 radians.

The phase estimate ∆̃i(t) =
∫ t

(j−1)T+τT
w(v)dv at time

t, which is obtained by integrating the signal w(t) input to

the VCO, is noisy due to the presence of noise in the signal

input to the phase detector. It is, therefore, averaged over the

transmission duration T (1 − τ) to get the phase estimate of

the received signal as ∆̂i[j]. The receiver then compensates

for the phase shift introduced by the channel by adding the

phase 2πfciξi[j] to ∆̂i[j] to get the observation φ̂i[j]. The

loop filter G(s) is selected such that the closed-loop transfer

function of the PLL H(s) = G(s)
s+G(s) is of second-order [16].

If a sensor node is inactive, then the corresponding PLL is

not activated [4]. The state of the sensor node can be detected,

for example, by an energy detector. Based on the observations

φ̂i[j], for i ∈ A[j], the fusion node generates an MMSE

estimate θ̂[j] of θ[j].

III. MMSE ANALYSIS AND OPTIMIZATION

We now analyze the MSE of the estimate obtained by the

fusion node. For this, we first characterize the steady state

probability ζ that an EH sensor node is active in a slot. It has

the following insightful closed-form.

Proposition 1: The steady state probability ζ that a sensor

node is active in any slot is given by

ζ = min

{
Peh

(P + Peh)(1− τ)
, 1

}
. (4)

Proof: The proof is relegated to Appendix A.

When ζ = 1, we shall say that the node is energy uncon-

strained. Else, for ζ < 1, we say that it is energy constrained.

A. Parameter Estimation at Fusion Node

The PLL-based receiver, which is shown in Fig. 2, comes

up with an estimate ∆̂i[j] for the phase information ∆i[j] in

the signal received yi(t) from sensor node i ∈ A[j]. As men-

tioned, φ̂i[j] = ∆̂i[j] + 2πfciξi[j]. Assuming the linearized

model of a PLL [17, Chap. 5], as shown in Appendix B, φ̂i[j]
equals

φ̂i[j] = θi[j] + wi[j], (5)

where wi[j] ∼ N
(
0, σ2

m +
N0Ωeq

2Ph2
i [j]T (1−τ)

)
and is indepen-

dent of θi[j], and Ωeq =
∫∞

0 |H(ω)|2dω is the effective noise

bandwidth of the PLL.

The MMSE estimate θ̂[j] given hi[j], for i ∈ A[j], can be

written in terms of φ̂i[j] as [18, Chap. IV]

θ̂[j] =

∑
i∈A[j] φ̂i[j]

(
σ2
m +

N0Ωeq

2Ph2
i
[j]T (1−τ)

)−1

∑
i∈A[j]

(
σ2
m +

N0Ωeq

2Ph2
i
[j]T (1−τ)

)−1

+ 1
σ2
θ

. (6)

Let k = |A[j]|, where |.| denotes the cardinality of a set.

By symmetry, the MSE ǫ(k) of θ̂[j] averaged over hi[j], for

i ∈ A[j], is a function of k. It is given by [18, Chap. IV]

ǫ(k) = E





 ∑

i∈A[j]

(
σ2
m +

N0Ωeq

2Ph2
i [j]T (1− τ)

)−1

+
1

σ2
θ




−1

 .

(7)

From (7), 2PT (1− τ)/(N0Ωeq) can be interpreted as SNR.

Lastly, the MSE χ of the estimate, averaged across the

channel fades and the number of active sensor nodes, is

χ =

N∑

k=0

(
N

k

)
ζk(1− ζ)N−kǫ(k). (8)

The following result gives a closed-form formula for χ.

Result 1: The MSE χ of the estimate is given by

χ ≈
N∑

k=0

(
N

k

)
ζk(1− ζ)N−k

∑

l1≥0,...,lM≥0
∑M

i=1 li=k

αl1
1 α

l2
2 · · ·αlM

M

×
(

1

σ2
θ

+

M∑

i=1

βi

σ2
mβi +

N0Ωeq

2PT (1−τ)

)−1

, (9)

where αi and βi, for i = 1, . . . ,M , are the weights and abscis-

sas, respectively, of Gauss-Laguerre quadrature [19, Chap. 25],

and ζ is given by (4).

Proof: The derivation is given in Appendix C.

We have found M = 4 terms to be sufficient to accurately

compute χ for the parameters of interest.

B. Optimal τ and P

We now optimize τ and P to minimize the MSE. The

following result shows that the optimal transmit power is Pmax

regardless of Peh and τ .

Result 2: The optimal transmit power is Pmax.

Proof: The proof is relegated to Appendix D.
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Thus, an RF EH sensor node should spend as less time on

data transmission as possible by transmitting at peak power

and maximize the time it spends on harvesting energy. It also

leads to the following insightful lower bound on χ.

Result 3: The MSE χ is lower bounded as

χ ≥ χlb =

(
Nζ

σ2
m +

ΩeqN0(Pmax+Peh)ζ
2PmaxT

+
1

σ2
θ

)−1

. (10)

Proof: The proof is relegated to Appendix E.

It is difficult to analytically characterize the optimal τ that

minimizes χ. However, significant insight can be gained by

optimizing χlb. It can be shown that the optimal value of τ ,

denoted by τopt, that minimizes χlb in (10) is

τopt =
Pmax

Pmax + Peh

. (11)

Comments: It can be shown that for N = 1, the optimal

τ that minimizes χ is indeed τopt. It can also be shown that

the difference between χ and χlb decreases as N increases.

We, therefore, see that minimizing χlb yields the optimal τ
for both small N and larger N .

Equation (11) implies that each sensor node should select

the lowest value of τ that ensures that it is always active.

Reducing τ below τopt makes it inactive with a non-zero prob-

ability, while increasing τ beyond τopt reduces the transmission

time, both of which degrade the estimate at the fusion node.

IV. NUMERICAL RESULTS

We now present Monte Carlo simulations to study the trade-

offs for different system parameter settings and assess the

accuracy of our analysis. We set σθ = π/6 and σm = π/600.

We use the following discrete-time implementation of the

PLL-based receiver in our simulations [16]. The VCO gener-

ates a discrete-time sinusoid with phase equal to the cumu-

lative sum of its input signal thus far. Thus, for the phase

components, its transfer function is 1
1−z−1 . The loop filter is

an infinite impulse response (IIR) filter with transfer function

κp + κi

1−z−1 . We choose κp = 0.2 and κi = 0.1. It can be

shown that this choice ensures that the second-order PLL loop

is stable [20].
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Fig. 3 plots the MSE as a function of τ for different

Peh/P , with P = Pmax. It brings out the trade-off associated

with τ . As τ increases from 0, the MSE decreases because

the probability that a sensor node transmits. This improves

the quality of the estimate at the fusion node. However, for

τ > τopt, the MSE increases because the smaller transmis-

sion time reduces the SNR. The optimal τ values for both

Peh = P/10 and Peh = P/2 are in agreement with (11). The

marginal mismatch between the analysis and simulation results

is because of the linearized assumption in the PLL analysis.

As Peh decreases, the optimal τ increases to enable the sensor

node to accumulate sufficient energy to transmit. When the

optimal τ is close to 1, the MSE is very sensitive to τ .

Fig. 4 plots the MSE as a function of τ for different N .

It again brings out the trade-off associated with τ , but as a

function of number of nodes N . We see that as N increases,

the MSE decreases considerably. This is because the net

energy input to the system increases, since more nodes harvest

energy. Furthermore, the number of observations increases and

the spatial diversity in the system increases.

Benchmarking: Fig. 5 compares the MSEs of the analog

scheme and digital schemes as a function of 2PmaxT (1 −
τ)/N0, which is the SNR scaled by Ωeq. We set N = 1 and

the transmission duration T (1 − τ) as 100 ms. In the digital

scheme, the sensor node quantizes its measurement using the

MSE-optimal Lloyd-Max quantizer, which is designed for

M quantization levels, and then transmits it to the fusion

node using M-ary QAM. The receiver decodes the transmitted

information and estimates the measurement. Both analog and

digital schemes use the same bandwidth. The sensors are

energy unconstrained in the regime under consideration. At

low SNRs, the larger constellations fare worse due to their

greater susceptibility to fading and noise, while the smaller

constellations fare worse due to their larger quantization errors.

Only when 2PmaxT (1 − τ)/N0 > 10 dB, do 64-QAM and

256-QAM marginally outperform the analog scheme.

The figure brings out two advantages of the analog scheme.

Firstly, in order to ensure a small MSE, the constellation size

needs to be adjusted as a function of the SNR in the digital

schemes. On the other hand, this is not required for the analog
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scheme. Secondly, constellation sizes as large as 64 or 256 are

seldom used in WSNs due to their high peak-to-average-power

ratios (PAPR), implementation complexity, and sensitivity to

RF impairments. On the other hand, the analog scheme has a

low PAPR and is easy to implement.

V. CONCLUSIONS

We highlighted the trade-offs involved in the design of an

analog communication and estimation scheme in an RH EH

WSN. For the time-sharing model, we analyzed and optimized

the fading-averaged MSE of the estimate for a general class

of stationary and ergodic RF EH processes. We saw that

the analog scheme did not require a careful tuning of the

quantizer and constellation size to the transmit power, which

the digital schemes did. It also avoided the implementation

difficulties associated with the digital schemes that used larger

constellations. Future work involves evaluating the impact of

imperfect channel estimates and incorrect detection by the

fusion node of transmissions by the sensor nodes. Also, it

is interesting to study the more general model in which the

measurements of different nodes are correlated spatially.

APPENDIX

A. Proof of Prop. 1

In steady state, the average energy Eout used by a sensor

node for transmissions is given by

Eout = ζPT (1− τ). (12)

The average energy input Ein into the sensor node consists of

two terms: (i) the energy harvested in the harvesting duration,

which equals PehTτ , and (ii) the energy harvested in the data

transmission duration if the battery lacks sufficient energy to

transmit, which is given by (1− ζ)PehT (1− τ). Thus,

Ein = PehTτ + (1− ζ)PehT (1− τ). (13)

Consider first the case where ζ < 1. This occurs only

if Ein = Eout. Equating (12) and (13) and rearranging, we

get ζ = Peh

(P+Peh)(1−τ) . The other alternative is ζ = 1, which

means that the EH sensor node always has enough energy to

transmit. This happens when Ein ≥ Eout, which implies that
Peh

(P+Peh)(1−τ) ≥ 1. Combining these yields (4).

G(s)

Loop filter

VCO

δi(s)
δd(s)

δ̃i(s) W (s)

1
s

+

−

Ei(s)

hi[j]
√

2P

Fig. 6. Linearized PLL model in transform domain.

B. Derivation of (5)

Using the linearized PLL model, we first characterize the

statistics of the noise in ∆̃i(t), along lines similar to [17,

Chap. 5]. Fig. 6 shows the Laplace transform-domain represen-

tation of the phase components of the signals in the model. Let

Ei(s), W (s), δ̃i(s), δi(s) and δd(s) denote the transforms of

ei(t), w(t), ∆̃i(t), ∆i[j] and ∆d(t), respectively, defined over

the support (j − 1)T + τT ≤ t < jT . The noise component

Ei(s) in the received signal is replaced by an equivalent noise

Ei(s)/(hi[j]
√
2P ) generated within the PLL loop.

Since the VCO generates a signal whose phase is the inte-

gral of its input signal, its transfer function is 1/s. Since ei(t)
is a Gaussian random process, the noise z̃i(t) in ∆̃i(t) is also

Gaussian random process. Thus, for (j−1)T + τT ≤ t < jT ,

∆̃i(t) = ∆i[j] + z̃i(t), (14)

where E
[
z̃2i (t)

]
=

E[e2i (t)]Ωeq

hi[j]2P
=

N0Ωeq

2h2
i
[j]P

. Since H(s) is a

second-order transfer function, the steady state phase error in

a slot between ∆̃i(t) and ∆i[j] is 0 for a step-wise change in

input phase ∆i[j]. Thus, E [z̃i(t)] = 0.

Averaging ∆̃i(t) in (14) over the transmission duration

T (1− τ), the noise-averaged phase estimate ∆̂i[j] is

∆̂i[j] = ∆i[j] + zi[j], (15)

where zi[j] =
jT∫

(j−1)T+τT

z̃i(v)dv/(T (1 − τ)) ∼ N (0, σ2
zi[j]

)

and σ2
zi[j]

= N0Ωeq/(2h
2
i [j]PT (1 − τ)). Subtracting

2πfciξi[j] from both sides of (5) and substituting (1) in (5),

we get φ̂i[j] = θ[j] + wi[j], where wi[j] = ni[j] + zi[j].
Since ni[j] and zi[j] are mutually independent, it follows that

wi[j] ∼ N
(
0, σ2

m +
N0Ωeq

2h2
i
[j]PT (1−τ)

)
. It can also be shown that

θ[j] and wi[j] are mutually independent.

C. Brief Derivation of Result 1

Let Xi[j] =
h2
i [j]

h2
i
[j]σ2

m+
N0Ωeq

2PT (1−τ)

. Since h2
i [j] is an exponential

RV with unit mean, it can be shown that the probability density

function fXi[j](x) of Xi[j] is given by

fXi[j](x) =





N0Ωeqe
−

N0Ωeqx

2PT (1−τ)(1−σ2
mx)

2PT (1−τ)(1−σ2
mx)2 , if x ∈ [0, σ−2

m ),

0, else.
(16)

Thus, its moment generating function (MGF) ΨXi[j](s) is

ΨXi[j]
(s) =

∫ 1
σ2
m

0

N0Ωeqe
−sxe

−
N0Ωeqx

2PT(1−τ)(1−σ2
mx)

2PT (1− τ)(1 − σ2
mx)2

dx. (17)



Substituting q =
N0Ωeq

2PT (1−τ)
x

(1−σ2
mx) in (17) yields

ΨXi[j](s) =

∫ ∞

0

e
−

sq

σ2
mq+

N0Ωeq
2PT (1−τ) e−q dq. (18)

Let Y =
∑

i∈A[j] Xi[j] +
1
σ2
θ

> 0. From (18), its MGF is

given by ΨY (s) =

(
∫∞

0
e
−

sq

σ2
mq+

N0Ωeq
2PT (1−τ) e−qdq

)k

e
−s

σ2
θ . The

MSE ǫ(k) is given by ǫ(k) = E
[
Y −1

]
=
∫∞

0 ΨY (s) ds. Thus,

ǫ(k) =

∫ ∞

0

(∫ ∞

0

e
−

sq

σ2
mq+

N0Ωeq
2PT(1−τ) e−q dq

)k

e
−s

σ2
θ ds. (19)

Expanding the integral using Gauss-Laguerre quadrature, us-

ing the multinomial theorem, and simplifying further, we get

ǫ(k) ≈
∑

l1≥0,...,lM≥0
∑M

i=1 li=k

(
k

l1,...,lM

)
αl1
1 · · ·αlM

M(
1
σ2
θ

+
M∑
i=1

βi

σ2
mβi+

N0Ωeq

2PT(1−τ)

) . (20)

Substituting (20) in (8) yields Result 1.

D. Proof of Result 2

Let the pair (τ, P ) be called an operating point of the

system. Clearly, the set of operating points lies within the

region 0 ≤ τ ≤ 1 and 0 ≤ P ≤ Pmax. Let U denote the

locus of all operating points that satisfy Peh

(Peh+P )(1−τ) = 1.

The following claims imply that the optimal power is Pmax.

Claim 1: Operating points that lie above U are suboptimal.

Proof: For an operating point that lies above U , it follows

from Prop. 1 that ζ = 1. Hence, from (8), the MSE equals

χ = E






∑

i∈A[j]

(
σ2
m +

N0Ωeq

2Ph2
i [j]T (1− τ)

)−1

+
1

σ2
θ




−1

 .

(21)

From (21), it is clear that keeping P fixed and increasing τ
reduces the MSE χ.

Claim 2: Any operating point on U with P < Pmax is

suboptimal.

Proof: For an operating point that lies on U , we have

ζ = 1. Therefore, the MSE is again given by (21). As we

traverse U , as τ increases, P (1−τ) also increases so as to keep
Peh

(Peh+P )(1−τ) constant. Since P (1 − τ) increases, it follows

from (21) that the MSE decreases.

Claim 3: All operating points with P < Pmax that lie below

U are suboptimal.

Proof: For such an operating point, from Prop. 1, we

know that ζ < 1. Let us increase P such that ζ remains

constant. From (7), ǫ(k) decreases. Therefore, from (8), it

follows that the MSE χ decreases.

E. Brief Proof of Result 3

Substituting P = Pmax and the expression for ζ from (4)

in (8), it can be shown that the function inside E [·] in (7) is a

convex function of hi[j], for i ∈ A[j]. Applying the Jensen’s

inequality, we get

χ >

N∑

k=0

(
N
k

)
ζk(1− ζ)N−k

k

σ2
m+

N0Ωeq(Peh+Pmax)ζ

2PmaxPehTE[h2
i
[j]]

+ 1
σ2
θ

, (22)

= E



(

K

σ2
m +

N0Ωeq(Peh+Pmax)ζ
2PmaxPehT

+
1

σ2
θ

)−1

 , (23)

where the last expectation is over K , which is a binomial RV

with mean E [K] = Nζ. Applying the Jensen’s inequality to

the discrete RV K yields (10).
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