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Abstract—Amplify-and-forward (AF) relay based cooperation
has been investigated in the literature given its simplicity and
practicality. Two models for AF, namely, fixed gain and fixed
power relaying, have been extensively studied. In fixed gain
relaying, the relay gain is fixed but its transmit power varies as
a function of the source-relay (SR) channel gain. In fixed power
relaying, the relay’s instantaneous transmit power is fixed, but
its gain varies. We propose a general AF cooperation model in
which an average transmit power constrained relay jointly adapts
its gain and transmit power as a function of the channel gains.
We derive the optimal AF gain policy that minimizes the fading-
averaged symbol error probability (SEP) of MPSK and present
insightful and tractable lower and upper bounds for it. We then
analyze the SEP of the optimal policy. Our results show that the
optimal scheme is up to 39.7% and 47.5% more energy-efficient
than fixed power relaying and fixed gain relaying, respectively.
Further, the weaker the direct source-destination link, the greater
are the energy-efficiency gains.

I. INTRODUCTION

Relay-based cooperative communications exploits spatial
diversity to combat wireless fading. In amplify-and-forward
(AF) relaying, the relay amplifies the noisy and faded signal
it receives from the source and transmits it to the destination;
it does not decode the source’s message [1]–[8]. AF is con-
sidered to be simple and, yet, achieves full diversity.

Two AF relaying models have been extensively investigated
in the literature, namely, fixed power and fixed gain relay-
ing. In fixed power relaying, the relay adjusts its gain as a
function of the source-relay (SR) channel gain such that its
instantaneous transmit power, when averaged over the noise
in the SR channel and the data symbols, is fixed [1]–[6].
On the other hand, in fixed gain relaying, the relay gain is
fixed. As a result, its instantaneous transmit power depends
on the SR channel gain. The fixed gain is set so that the
relay meets an average power constraint [7], [8]. While fixed
gain relaying is considered easier to implement, fixed power
relaying simplifies the design of a power amplifier at the relay.

In this paper, we generalize the AF relaying model and
consider an AF relay that adapts its gain as well as power as
a function of the channel gains, subject to an average power
constraint. We refer to this as adaptive relay gain and transmit
power (ARGTP) relaying. While the average power constraint
model has been used in several wireless systems [9], its role in
AF relaying has not been fully explored to the best of the our
knowledge. For example, in [10] and the references therein, the

total power of the source and the AF relay is constrained, but a
relay is still subject to a fixed instantaneous power constraint.

While the model considered in [11] also considers an
average power constraint and varies the relay gain as a function
of the SR and relay-destination (RD) channel gains, our design
objectives and the depth of our results are vastly different.
In [11], the relay adjusts its transmit power as a function of
the SR and RD channel gains so as to maximize the end-to-
end SNR. We instead focus on minimizing the fading-averaged
end-to-end SEP. In [11], the optimal gain was determined
numerically as a function of the channel gains using com-
putationally efficient quasi-convex optimization techniques.
Instead, we analytically characterize the SEP-optimal relay
gain and also develop insightful closed-form upper and lower
bounds for the relay gain. Another important contribution of
the paper is the SEP analysis of the optimal policy. Our results
show that ARGTP leads to significant energy savings over
fixed power relaying and fixed gain relaying. The savings
increase when the direct source-destination (SD) link is absent.

The paper is organized as follows. Section II describes
our system model. Section III derives the optimal ARGTP
relaying rule and its SEP. Our results and conclusions follow
in Sections IV and V. Mathematical details are relegated to
the Appendix.

II. SYSTEM MODEL

Consider a three node system consisting of a source S,
a destination D, and a half-duplex relay R. Each node is
equipped with a single transmit or receive antenna. The SR,
RD, and SD channels are assumed to be block fading channels
that undergo independent frequency-flat Rayleigh fading. They
need not be statistically identical. All transmissions occur over
the same bandwidth. The relay is assumed to know its local
SR and RD channel gains [11], [12]. In practice, these can
be acquired by a training protocol; see [13] and references
therein. However, the relay need not know the SD channel
gain.

We use the following notation henceforth. The probability
of an event A is denoted by Pr (A). For a random variable
(RV) X , its probability density function (PDF), expectation,
and variance are denoted by pX(x), E [X ], and var [X ],
respectively. CN (0, σ2) represents a zero-mean circular sym-
metric complex Gaussian RV with variance σ2, and x∗ denotes
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complex conjugate of x.

A. Cooperative AF Protocol

The cooperative AF relaying protocol occurs over two
phases, and is similar to that for fixed gain or fixed power
AF relaying [1]–[6]. In the first phase, the source broadcasts
a data symbol α that is drawn with equal probability from the
M -ary PSK (MPSK) constellation of size M . The received
signals ysd and ysr at the destination and relay, respectively,
are given by

ysd =
√
Pshsdα+ nsd, (1)

ysr =
√
Pshsrα+ nsr, (2)

where Ps is the source transmit power, hsd is the SD channel
gain and is a CN (0, σ2

sd) RV, hsr is the SR channel gain and
is a CN (0, σ2

sr) RV, and |α|2 = 1. The additive noise terms
nsr and nsd are CN (0, 1) RVs, and are independent of each
other and the channel gains.

In the second phase, the relay amplifies the signal it receives,
ysr, by a factor

√
βP r, where P r is the average relay transmit

power. Therefore, the destination receives the signal yrd,
which is given by

yrd =

√
βP rhrdysr + nrd,

=

√
βP rPshsrhrdα+

√
βP rhrdnsr + nrd. (3)

Let γsd � |hsd|2 Ps, γsr � |hsr|2 Ps, and γrd � P r |hrd|2.
Further, let γsd � E [γsd], γsr � E [γsr], and γrd � E [γrd].

B. General AF Relaying Model

In fixed power AF relaying [1], [2], [5], the relay gain for
the above relay transmission model is given by β = 1

γsr+1 .
On the other hand, in fixed gain AF relaying, the relay gain
equals β = 1

γsr+1 .
In our model, however, the relay gain is a function of the

local SR and RD channel gains, γsr and γrd. As mentioned,
we do not assume that the relay knows the SD channel gain, as
this would require channel state feedback from the destination.
Henceforth, the relay gain will be denoted by β(γsr , γrd) in
order to explicitly show its dependence on γsr and γrd. The
relay is subject to an average relay transmit power constraint,
which is E [β(γsr , γrd) (γsr + 1)] = 1.

The destination coherently determines α using its two
observables ysd and yrd. We assume that it knows the SR, RD,
and SD channel gains [1]–[3]. The SNR γE at the destination
receiver when it employs maximal ratio combining is given
by

γE = γsd +
γsrγrd

γrd + β(γsr , γrd)−1
. (4)

III. OPTIMAL ARGTP RELAYING AND SEP ANALYSIS

We first derive the SEP-optimal relay gain policy. The
fading-averaged SEP for MPSK at the destination is given
by [14, (8.23)]

SEP =
1

π

∫ (M−1
M )π

0

E

[
exp

(
−γE

sin2
(

π
M

)
sin2 θ

)]
dθ. (5)

Averaging over γsd, which is an exponential RV that is
independent of γsr, γrd, and β(γsr , γrd), we get

SEP =
1

π

∫ (M−1
M )π

0

E

[
exp

(
− γsrγrd

γrd+β(γsr,γrd)−1

sin2( π
M )

sin2 θ

)]

1 + γsd

sin2( π
M )

sin2 θ

dθ.

(6)
The SEP expression in (6) cannot be simplified further

because the relay gain is itself a function of γsr and γrd,
and it is this function that we seek to optimize. To gain further
insights, we derive below an analytically tractable upper bound
for the SEP and shall minimize it instead. Using the inequality
sin2 θ ≤ 1 only for the term inside the expectation in the
integrand in (6), we get

SEP ≤ SEP0E

[
exp

(
− γsrγrd

γrd + β(γsr, γrd)−1
sin2

( π

M

))]
.

(7)

Here, it can be shown that [6, (9)]

SEP0 =
1

π

∫ (M−1
M )π

0

(
1 + γsd

sin2
(

π
M

)
sin2 θ

)−1

dθ =
M − 1

M

− 1√
1 +

csc2( π
M )

γsd

⎛
⎜⎜⎝1

2
+

1

π
arctan

⎛
⎜⎜⎝ cot

(
π
M

)
√
1 +

csc2( π
M )

γsd

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

(8)

A. AF Relaying Optimization

Since SEP0 does not depend on the relay gain, the SEP
minimization problem reduces to finding the optimal function
βopt : (R+)

2 → R, which is a function of two variables
γsr and γrd, that minimizes the expectation term in (7).
Mathematically, the optimization problem can be stated as

min
β

E

[
exp

(
− γsrγrd

γrd + β(γsr , γrd)−1
sin2

( π

M

))]
(9)

such that E [β(γsr , γrd) (γsr + 1)] = 1, and (10)

β(γsr , γrd) ≥ 0, for all γsr ≥ 0, γrd ≥ 0. (11)

The optimal solution is as follows.
Result 1: Let

φ(x)�exp

(
γsrγrd sin

2
(

π
M

)
γrd + x−1

)
(xγrd + 1)2−γsrγrd sin

2
(

π
M

)
λ(γsr+ 1)

.

(12)
For γrd≥B(γsr), φ(x) has a unique positive root x0(γsr , γrd),
and

βopt(γsr, γrd) =

{
x0(γsr, γrd), γrd ≥ B(γsr)
0, otherwise

, (13)

where

B(γsr) � λ

sin2
(

π
M

) (
1 +

1

γsr

)
. (14)

The Lagrange multiplier λ is chosen to satisfy the average
power constraint in (10).
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Fig. 1. Comparison of optimum relay gain βopt, its upper bound βu, and
its lower bound βl, as a function of the instantaneous RD link SNR γrd
(γsr = 0.5 dB, λ = 0.1, and QPSK).

Proof: The proof is relegated to Appendix A.
Note that the Lagrange multiplier depends on the channel

fading statistics of the SR and RD links and not their in-
stantaneous channel gains. It, therefore, needs to be numer-
ically computed only once. However, x0(γsr , γrd) needs to
be computed by numerically solving (12) for each realization
of γsr and γrd. We now present upper and lower bounds
for βopt(γsr, γrd) that have an explicit closed-form character-
ization. These provide new insights into the structure of the
optimal AF relaying scheme.

Result 2: The optimal AF relay gain βopt is upper and
lower bounded as follows:

βopt(γsr , γrd) ≤ βu(γsr , γrd)

=

⎧⎪⎪⎨
⎪⎪⎩

−1+

√√√√1+

[
γsrγrd sin2( π

M )
λ(γsr+1)

−1

]
(1+γ2

sr sin4( π
M ))

γrd(1+γ2
sr sin4( π

M ))
, γrd≥B(γsr)

0, otherwise

,

(15)

βopt(γsr , γrd) ≥ βl(γsr , γrd)

=

⎧⎪⎨
⎪⎩

√
γsrγrd sin2( π

M )
λ(γsr+1)

exp

(
−

γsr sin2( π
M )

2

)
−1

γrd
, γrd≥B1(γsr)

0, otherwise

,

(16)

where B1(γsr) = B(γsr) exp
(
γsr sin

2
(

π
M

))
.

Proof: The proof is given in Appendix B.
The above two bounds and βopt are shown in Figure 1.

We see that the bounds track βopt well. They together show

that βopt(γsr, γrd) decays as γ
− 1

2

rd for large γrd. Their closed-
form characterization also makes them amenable to a practical
implementation.

B. SEP Analysis of Optimal ARGTP Relaying

Expanding the expectation term in the integrand in (6)
results in a triple-integral expression for the SEP. Using the

inequality sin2 θ ≤ 1, we get the following SEP upper bound
SEPu:

SEPu =
SEP0

γsrγrd

∫ ∞

0

∫ ∞

0

exp

(
− γsrγrd sin

2
(

π
M

)
γrd + βopt(γsr, γrd)

−1

)

× exp

(
−γsr

γsr

)
exp

(
−γrd

γrd

)
dγsr dγrd. (17)

It is in the form of a double-integral, which can be simplified
as shown below.

Result 3: The SEP of optimal ARGTP relaying is upper
bounded as follows:

SEP≤SEPu≤SEPuu � I1 +
SEP0

γrdγsr

∫ ∞

0

[
b21Ei

(B(γsr)
γrd

)

+b2γrd exp

(
−B(γsr)

γrd

)

+2b1
√
b2πγrd erfc

(√
B(γsr)
γrd

)]
exp

(
−γsr

γsr

)
dγsr,

(18)

where SEP0 is given by (8), b1 =
γ2
sr sin4( π

M )
1+γ2

sr sin4( π
M )

, b2 =

γsr sin2( π
M )

λ(γsr+1)(1+γ2
sr sin4( π

M ))
, and

I1=SEP0

[
1− 2

γsr

exp

(
− λ

γrd sin
2
(

π
M

)
)√

λγsr

γrd sin
2
(

π
M

)
×K1

(√
4λ

γsrγrd sin
2
(

π
M

)
)]

. (19)

Here, erfc(·) is the complementary error function, Ei(·) is the
exponential integral [15, (8.211.1)], and K1 (·) denotes the
modified Bessel function of second kind and first order [16,
(9.6)].

Proof: The derivation is given in Appendix C.

IV. NUMERICAL RESULTS AND DISCUSSION

We now verify our analytical results using Monte Carlo
simulations that use up to 106 fading and noise realizations,
and benchmark the performance of ARGTP relaying with both
fixed power and fixed gain relaying. In the simulations, we set
E

[
|hsr|2

]
= 1 and E

[
|hrd|2

]
= 1. Recall that the additive

noise power is normalized to unity. We consider below the
following two scenarios: (i) where the SD link is comparable
in strength to the SR and RD links (E

[
|hsd|2

]
= 1), and

(ii) where the SD link is absent (E
[
|hsd|2

]
= 0).

A. With SD link

Figure 2 plots the SEP of ARGTP relaying as a function of
the average relay transmit power for QPSK. The results from
Monte Carlo simulations and the SEP upper bounds SEPu

in (7) and SEPuu are also plotted. We see that SEPu and
SEPuu are within 0.3 dB and 0.7 dB, respectively, at an SEP
of 10−2.
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Figure 3 plots the SEP as a function of the average relay
transmit power for QPSK. It compares the SEPs of ARGTP
relaying, fixed gain relaying, and fixed power relaying when
Ps = P r. We see that ARGTP relaying requires 2.0 dB
(36.9%) less power than fixed power relaying and 2.4 dB
(42.5%) less power than fixed gain relaying at an SEP of 10−2.
For 8PSK (figure not shown), the power savings increase to
2.2 dB (39.7%) over fixed power relaying and 2.8 dB (47.5%)
over fixed gain relaying.

B. Without SD link

Figure 4 plots the SEP of ARGTP relaying as a function of
the average relay transmit power for QPSK. The corresponding
SEP curves for fixed gain and fixed power relaying are also
shown. Now ARGTP relaying outperforms both fixed gain
and fixed power AF relaying by an even larger margin. For
example, the savings are 4.3 dB (62.8%) over fixed power
relaying and 7.7 dB (83.0%) over fixed gain relaying at an SEP
of 2× 10−2. This is because in the absence of the direct SD
link, the relay influences the signal quality at the destination
much more.
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Fig. 4. Without SD link: Comparison of SEPs of AF relaying schemes as a
function of average relay transmit power, P r (γsr = γrd = Ps, γsd = 0,
and QPSK).

V. CONCLUSIONS

We proposed ARGTP relaying, which generalized the popu-
lar fixed power (but variable gain) and fixed gain (but variable
power) AF relaying rules. In ARGTP relaying, the relay adapts
both its instantaneous transmit power and gain as a function
of the channel gains of the links incident on the relay. We
derived the SEP-optimal AF relay gain policy and practically
amenable closed-form bounds for it. We also analyzed its SEP.

We saw that ARGTP relaying is considerably more energy-
efficient than both fixed power and fixed gain relaying. Fur-
thermore, the weaker the direct source-destination link, the
more marked is the energy-efficiency. The substantial gains
achieved by ARGTP relaying motivate its use in AF cooper-
ative networks. An interesting problem for future work is an
analysis of the impact of imperfect channel state information
on the performance of ARGTP relaying, and its extension to
a system with multiple AF relays.

APPENDIX

A. Proof of Result 1

The function exp

(
−γsrγrd sin2( π

M )
γrd+x−1

)
and the power con-

straint are convex in x. Therefore, using Lagrange multipliers,
the problem at hand is equivalent to minimizing Lλ(x) for
each value of γsr and γrd, where

Lλ(x)�exp

(
−γsrγrd sin

2
(

π
M

)
γrd + x−1

)
+λ (x (γsr+ 1)− 1) . (20)

Note that the expectation operator has been dropped since in
the unconstrained formulation x can now be optimized for
each γsr and γrd. Since Lλ(x) is convex in x, the optimal
value of x is unique. It is the non-negative solution of

∂Lλ(x)

∂x
= − exp

(
−γsrγrd sin

2
(

π
M

)
γrd + x−1

)
γsrγrd sin

2
(

π
M

)
(γrdx+ 1)2

+ λ(γsr + 1) = 0, (21)

if it exists, and is 0, otherwise. Let the non-negative solution
be denoted by x0(γsr, γrd). Simplifying (21) results in (12).
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The boundary of the region in which βopt(γsr , γrd) is 0 is
obtained by substituting x = 0 in (12). Further, it can be
verified that βopt(γsr , γrd) = 0, for all γrd < B(γsr).
B. Proof of Result 2

Using the inequality exp(x) ≥ 1 + x2, for x ≥ 0, in (12),
we get, for γrd ≥ B(γsr),

φ(x) ≥ (xγrd + 1)2
(
1 +

a2x2

(xγrd + 1)2

)
− a

λ (γsr + 1)
,

where a � γsrγrd sin
2
(

π
M

)
. Simplifying further, we get

φ(x) ≥ (xγrd + 1)
2
+ a2x2 − a

λ (γsr + 1)
. (22)

Expanding the right side of the above inequality and rearrang-
ing terms yields the following quadratic form in x:

φ(x) ≥ (
γ2
rd + a2

)
x2 + 2γrdx+ 1− a

λ (γsr + 1)
� Ω(x).

(23)
When γrd ≥ B(γsr), it can be easily verified that Ω(x) has
exactly one positive root βu(γsr , γrd), which is given in (15).
Since φ(x) ≥ Ω(x) and since both are convex for x ≥ 0, it
can be shown that βopt(γsr , γrd) ≤ βu(γsr , γrd).

C. Derivation of Result 3

From (12), exp

(
γsrγrd sin2( π

M )
γrd+βopt(γsr,γrd)−1

)
=

γsrγrd sin2( π
M )

λ(γsr+1)

× (βopt(γsr, γrd)γrd + 1)
−2, for γrd ≥ B(γsr), and is equal

to 1, otherwise. Therefore, the expression for SEPu above
becomes

SEPu=
SEP0

γsrγrd

∫ ∞

0

∫ B(γsr)

0

exp

(
−γsr

γsr

)
exp

(
−γrd

γrd

)
dγsrdγrd

+
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B(γsr)

λ(γsr + 1)

γsrγrd sin
2
(

π
M

) (βopt(γsr , γrd)γrd+1)2

× exp

(
−γsr

γsr

)
exp

(
−γrd

γrd

)
dγsr dγrd. (24)

Let the first term in the expression for SEPu above be denoted
by I1. Using [15, (3.324.1)], it can be shown that I1 simplifies
in closed-form to (19).

Since βopt ≤ βu, it can be shown from (15) that, for γrd ≥
B(γsr),
βopt(γsr , γrd)γrd + 1 ≤ βu(γsr, γrd)γrd + 1

≤
γ2
sr sin

4
(

π
M

)
+

√
γsrγrd sin2( π

M )
λ(γsr+1)

(
1 + γ2

sr sin
4
(

π
M

))
1 + γ2

sr sin
4
(

π
M

) .

(25)

Using the above inequality and substituting (19) in (24), we
get

SEPu ≤ SEPuu = I1

+
SEP0

γsrγrd

∫ ∞

0

∫ ∞

B(γsr)

λ (γsr + 1)
(
b1 +

√
b2γrd

)2
γsrγrd sin

2
(

π
M

)
× exp

(
−γsr

γsr

)
exp

(
−γrd

γrd

)
dγsr dγrd, (26)

where b1 and b2 are defined in the result statement. The double
integral term in (26), which is denoted by I2, can be recast as

I2 =
SEP0

γsrγrd

∫ ∞

0

B(γsr) exp
(
−γsr

γsr

)
I in
2 (γsr) dγsr, (27)

where I in
2 �

∫∞
B(γsr)

b21+b2γrd+2b1
√
b2γrd

γrd
exp

(
− γrd

γrd

)
dγrd.

Further, I in
2 can be split as

I in
2 = b21ϕ1 + b2ϕ2 + 2b1

√
b2ϕ3, (28)

where ϕ1 �
∫∞
B(γsr)

1
γrd

exp
(
− γrd

γrd

)
dγrd = Ei

(
B(γsr)
γrd

)
,

ϕ2 �
∫∞
B(γsr)

exp
(
− γrd

γrd

)
dγrd = γrd exp

(
−B(γsr)

γrd

)
, and

ϕ3 �
∫∞
B(γsr)

1√
γrd

exp
(
− γrd

γrd

)
dγrd =

√
πγrd erfc

(
B(γsr)
γrd

)
.

Substituting all the above expressions in (26) yields the desired
expression in (18).

The derivation of the lower bound expression is skipped due
to space constraints, and is available in [17].
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