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Abstract—Transmit antenna selection (AS) is a popular, low
hardware complexity technique that improves the performance
of an underlay cognitive radio system, in which a secondary
transmitter can transmit when the primary is on but under
tight constraints on the interference it causes to the primary.
The underlay interference constraint fundamentally changes the
criterion used to select the antenna because the channel gains
to the secondary and primary receivers must be both taken into
account. We develop a novel and optimal joint AS and transmit
power adaptation policy that minimizes a Chernoff upper bound
on the symbol error probability (SEP) at the secondary receiver
subject to an average transmit power constraint and an average
primary interference constraint. Explicit expressions for the
optimal antenna and power are provided in terms of the channel
gains to the primary and secondary receivers. The SEP of the
optimal policy is at least an order of magnitude lower than
that achieved by several ad hoc selection rules proposed in the
literature and even the optimal antenna selection rule for the
case where the transmit power is either zero or a fixed value.

I. INTRODUCTION

Cognitive radio is a promising technology to improve

the utilization of scarce radio spectrum. Several modes of

CR operation, such as interweave and underlay, have been

considered in the literature [1]. In the interweave mode, the

secondary users (SUs) only transmit when they sense that the

primary is off. In the underlay mode, which is the focus of

this paper, a secondary transmitter (STx) can transmit even

when the primary is on, but under tight constraints on the

interference it causes to the primary receiver (PRx). However,

these constraints significantly limit the rates at which the STx

can transmit.

Multiple input multiple output (MIMO) antenna techniques

can help improve CR performance significantly [2]–[4]. How-

ever, in MIMO, each antenna requires a dedicated radio

frequency (RF) chain. This increases the hardware complexity

and cost of the multiple antenna device. Antenna selection

(AS) is a well-studied and effective technique to reduce the

hardware complexity of a MIMO system [5]. For example,

in single transmit AS, one of the antennas is selected as a

function of the channel conditions to transmit data. Given its

practical simplicity and effectiveness, transmit AS has been

adopted in wireless standards such as IEEE 802.11n and Long

Term Evolution (LTE) [6].
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Given its promise, AS has also been considered for CR. AS

for SUs that operate in the underlay mode has been studied

in [7]–[9]. It has been shown to improve the capacity of an SU

in [10]. The interference constraint imposed on the STx that

operates in the underlay mode fundamentally alters the basis

on which an antenna is selected. Intuitively, even an antenna

with a high channel gain to the secondary receiver (SRx)

should not be selected if transmitting on it causes significant

interference to the PRx.1 Therefore, the AS rule must take

into consideration the channel gains to the SRx as well as the

PRx. This is unlike the interweave mode, in which the antenna

with the strongest channel gain to the SRx is clearly the one

that should be selected, since the STx transmits only when the

primary transmitter (PTx) is off.

Literature Survey: Several AS rules have been considered

in the literature for underlay CR. These include the minimum

interference (MI) rule [7], which selects the antenna with the

weakest channel gain to the PRx; the maximum signal power

to leak interference power ratio (MSLIR) rule [7], which

selects the antenna with the largest ratio of the channel gains

to the SRx and PRx; and the difference rule [8], which selects

the antenna with the largest weighted difference between the

channel gains to the SRx and PRx. However, the STx is

assumed to transmit with a fixed power in [7], [8]. For an

STx that transmits with a fixed power or with zero power,

which we shall refer to as on-off power control, the symbol

error probability (SEP)-optimal selection rule is derived in [9].

Joint AS and power control is considered in [11] with the

goal of maximizing the SU capacity under a peak interference

constraint. However, the STx transmit power is not con-

strained. Optimal power control to maximize the SU capacity

is considered in [12], transmit power or interference power

constraints with average or peak power interference constraints

are modeled. In [13], power control that minimizes the SEP

under an average interference constraint and a peak transmit

power constraint is considered assuming that the number

of fade states is finite. Optimal power control to maximize

ergodic capacity for underlay CR assuming average or peak

interference power constraints is also considered in [14], [15].

However, the STx is assumed to know the channel condition

between the PTx and PRx. Furthermore, [12]–[15] do not

consider AS.

Contributions: In this paper, we derive the optimal joint

1By channel gain, we mean the square of the amplitude of the baseband
channel response.
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antenna selection power adaptation (AS-PA) policy that min-

imizes a Chernoff upper bound on the SEP for a multiple

input single output (MISO) secondary system subject to an

average transmit power constraint and an average primary

interference power constraint. It exploits the fact that the

channel state information required to select an antenna can

also help adapt the transmit power of the selected antenna.

The optimal choice of the antenna and its transmit power are

given explicitly in terms of the STx-to-SRx and STx-to-PRx

channel gains. As is typical of optimal solutions to constrained

problems in wireless systems, e.g., [16], [17], these are in

terms of two constants λI and λP , which are a function of

the channel statistics, constraints, and constellation size, and

are determined numerically only once in the beginning.

We also derive an exact expression and a closed-form upper

bound for the SEP of the optimal AS-PA policy. Extensive

numerical results show that the SEP of the optimal policy is

at least one order of magnitude lower than the SEPs of the

rules considered thus far in the literature.

Given space constraints, we focus on the case where the

STx has two transmit antennas and the SRx has one receive

antenna. Doing so helps us highlight the key ideas that lead

to the optimal joint AS-PA policy and study how it improves

CR performance. Our results generalize to the case where the

STx and SRx have an arbitrary number of antennas and to

constellations such as MQAM.

The paper is organized as follows. Section II sets up the

system model and the optimization problem. The optimal

joint AS-PA policy and its SEP are derived in Sec. III.

Numerical results and conclusions are presented in Sec. IV

and Sec. V, respectively. Mathematical derivations are given

in the Appendix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

As shown in Figure 1, we consider an underlay CR system

in which an STx transmits data to an SRx, and in the process

interferes with a PRx. The STx has two transmit antennas and

one RF chain. The PRx and the SRx have one receive antenna

each. For i ∈ {1, 2}, hi denotes the instantaneous channel gain

between the ith antenna of the STx and the SRx antenna, and gi
denotes the instantaneous channel gain between the ith antenna

of the STx and the PRx antenna. We assume Rayleigh fading.

h1 and h2 are independent and identically distributed (i.i.d.)

exponential random variables (RVs) with mean µh. And, g1
and g2 are i.i.d. exponential RVs with mean µg . Let h =
[h1 h2] and g = [g1 g2].

A. Selection Options and Data Transmission

Using the selected antenna, the STx transmits with power P

a data symbol x, which is drawn with equal probability from

an MPSK constellation of size M . The case where P = 0
deserves special mention because in this case it does not matter

which antenna the STx selects. In this case, we shall say that

the STx transmits using a virtual antenna 0, and set h0 , 0 and

Fig. 1. System model with one PRx and a secondary system consisting of
an STx with two transmit antennas and one RF chain that communicates with
an SRx with one receive antenna.

g0 , 0. The SRx does not know when the STx uses the zero-

transmit power option. Therefore, the SEP in this case is equal

to m , 1− 1
M

, since the M symbols are equi-probable [13].

Let s ∈ {0, 1, 2} be the antenna selected. The interference

signal iPRx seen by the PRx and the signal rSRx received by

the SRx are given by

rSRx =
√
P
√

hse
jθhsx+ n+ wp, (1)

iPRx =
√
P
√
gse

jθgsx, (2)

where |x|2 = 1, θgs is the phase of the complex baseband

channel gain from antenna s of the STx to the PRx, θhs
is the

phase of the complex baseband channel gain from antenna s

to the SRx, and n is a circularly symmetric complex additive

white Gaussian noise at the SRx. The interference seen by

the SRx due to primary transmissions is wp, and is assumed

to be Gaussian. This corresponds to a worst case model for

the interference and makes the problem tractable. Therefore,

n+wp is a circular symmetric complex Gaussian RV, whose

variance is denoted by σ2.

We assume that the STx knows h and g, i.e., its channel

gains to the SRx and to the PRx. This has also been assumed

in the literature on AS in CR, e.g., [7], [8], [11]. Note that no

knowledge of the phases of any complex baseband channel

response is required at the STx.2 The SRx uses a coherent

receiver, and only needs to know the complex channel gain

from the selected antenna to the receive antenna. It does not

know g or the channel gains of any other antenna. In practice

this can be achieved by embedding one or two pilots along

with the data symbols in every coherence interval.

B. Problem Statement

An AS-PA policy φ is a mapping that, for every realization

of h and g, specifies which of the three antennas 0, 1, or

2In the time division duplex (TDD) mode of operation, the STx can exploit
reciprocity and estimate h and g from the signals it receives from the SRx
and PRx when they transmit. Since phase information is not required, simple
signal strength based techniques can be used for estimation. We note that
these results also serve as bounds on the performance of AS when the STx
has partial or imperfect knowledge of g.
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2 to transmit from and the corresponding transmit power.

For a policy φ, the selected antenna and the transmit power,

which depend on h and g, are denoted by sφ(h,g) and

Pφ(h,g), respectively. For notational simplicity, we shall drop

the arguments h and g, and denote the selected antenna

and transmit power as sφ and Pφ, respectively. Using (2),

the average interference at the PRx is Eh,g

[

Pφgsφ
]

and the

average transmit power is Eh,g [Pφ], where Eh,g [·] denotes

the expectation with respect to h and g.

For a policy φ, the SEP for MPSK conditioned on h and

g, which we denote by Pr (Err|h,g), is then given by [18]

Pr (Err|h,g) = 1

π

∫ mπ

0

exp

(

− Pφhsφ

ηm sin2 θ

)

dθ, (3)

≤ m exp

(

−Pφhsφ

ηm

)

, (4)

where η = σ2

m sin2( π
M )

. The exact SEP expression in (3) is

in the form of single integral. To gain analytical insights, we

minimize its integral-free Chernoff upper bound given in (4).

This form is similar to the integral-free SEP approximations

proposed in [17]. The Chernoff upper bound tracks the SEP

well, using it to select the antenna is, with high probability,

as good as using the exact SEP expression. Thus, for ease

of exposition, we shall refer to the policy we derive below

as the SEP-optimal policy and not the SEP Chernoff upper

bound-based-optimal policy.

Our problem can be mathematically stated as the following

minimization over all policies φ:

min
φ

Eh,g

[

m exp

(

−Pφhsφ

ηm

)]

, (5)

such that Eh,g

[

Pφgsφ
]

≤ Iave, (6)

Eh,g [Pφ] ≤ Pave, (7)

sφ ∈ {0, 1, 2} , and Pφ ≥ 0, ∀ h,g. (8)

III. OPTIMAL AS-PA POLICY AND ITS SEP ANALYSIS

We now present the optimal AS-PA policy, which we denote

by φ∗. We then analyze its SEP.

It is easy to see that for the optimal policy at least one of the

two constraints in (6) and (7) must be active. We first consider

the two cases where only one constraint is active. These shall

help us specify the optimal policy in all its generality.

Lemma 1: The optimal AS-PA policy φI that minimizes

the SEP subject only to the average interference constraint

in (6) is as follows. The optimal antenna is

sφI
=

{

0, h1

g1
≤ ηλI ,

h2

g2
≤ ηλI ,

argmaxi=1,2

{

hi

gi

}

, otherwise.
(9)

The optimal power transmitted from the optimal antenna is

PφI
=







0, sφI
= 0,

mη
hsφI

loge

(

hsφI

λIηgsφI

)

, otherwise.
(10)

Here, λI > 0 is chosen such that the average interference

constraint is satisfied with equality.

Lemma 2: The optimal AS-PA policy φP that minimizes

the SEP when the STx is subject only to the average power

constraint in (7) is as follows. The optimal antenna is

sφP
=

{

0, h1 ≤ ηλP , h2 ≤ ηλP ,

argmaxi=1,2 {hi} , otherwise.
(11)

The optimal power transmitted from the optimal antenna is

PφP
=

{

0, sφP
= 0,

mη
hsφP

loge

(

hsφP

λP η

)

, otherwise.
(12)

Here, λP > 0 is chosen such that the average power constraint

is satisfied with equality.

The proofs of Lemmas 1 and 2 are simpler versions of

the proof for Theorem 1 below. To conserve space, we do

not show them first. With these results, we now present the

optimal AS-PA policy φ∗ for any given Pave and Iave. For

this, we define a feasible policy to be one that satisfies all the

constraints (6), (7), and (8).

Theorem 1: If φP is feasible, then φ∗ = φP . Else, if φI is

feasible, then φ∗ = φI . Else, the optimal antenna is

sφ∗ =

{

0, X1 ≤ η, X2 ≤ η,

argmaxi=1,2 {Xi} , otherwise,
(13)

where Xj ,
hj

λP+λIgj
, for j = 1, 2. The optimal power

transmitted from the selected antenna is

Pφ∗ =

{

0, sφ∗ = 0,
mη
hsφ∗

loge

(

Xsφ∗

η

)

, otherwise,
(14)

where λI > 0 and λP > 0 are chosen so as to meet the

average power and interference constraints with equality.

Proof: The proof is given in Appendix A.

For the general case in which the STx has Nt transmit

antennas, determining the optimal antenna simply requires

choosing the maximum from the set {X1, . . . , XNt
}. The

optimal power expression remains the same as (14).

A. SEP Analysis

Theorem 2: The exact SEP of the optimal AS-PA policy

is

SEP =
2

π

∫ ∞

η

∫ mπ

0





λP e
−

λP
µh

x1

x1µgλI + µh

+
µhµgλIe

−
λP
µh

x1

(x1µgλI + µh)
2





×
(

η

x1

)csc2(θ)


1− µhe
−

x1λP
µh

µh + x1µgλI



 dθ dx1

+m



1− µhe
−

ηλP
µh

µh + ηµgλI





2

. (15)

Proof: The proof is given in Appendix B.
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Fig. 2. SEP as a function of Pave for different values of Iave (8-PSK).

The above SEP expression is in the form of a double

integral. Its Chernoff upper bound SEPu, obtained by using the

inequality sin2 (θ) ≤ 1, has a simple closed-form, as shown

below. The derivation is not presented due to space constraints.

Corollary 1: When the interference constraint is inac-

tive, we have SEPu = 2mηλP

µh

[

E1

(

ηλP

µh

)

− E1

(

2ηλP

µh

)]

+

m

(

1− e
−

ηλP
µh

)2

, where E1(z) =
∫∞

z
e−t

t
dt is the exponen-

tial integral. When the power constraint is inactive, we have

SEPu =
mηµgλI

ηµgλI+µh
. When both constraints are active, we have

SEPu =
2mη

µh

[

(λP + µgλI)

(

E1

(

ηλP

µh

)

− E1

(

2ηλP

µh

))

+ (µgλI − λP ) e
2λP
µgλI E1

(

2ηλP

µh

+
2λP

µgλI

)

−µgλIe
λP

µgλI E1

(

ηλP

µh

+
λP

µgλI

)]

+m

− 2me
−

ηλP
µh +me

−
2ηλP
µh

(

1 +
ηµgλI

µh + ηµgλI

)

. (16)

IV. NUMERICAL RESULTS

We now present Monte Carlo simulations using 106 samples

to verify the analytical results and to benchmark the perfor-

mance of the optimal policy with several other rules considered

in the literature. For illustration, we set µh = µg = σ2 = 1.

Figure 2 plots the SEP of the optimal joint AS-PA policy as

a function of the average power constraint Pave. This is done

for different values of the average interference constraint Iave.

We see that the simulation and analysis results are in excellent

agreement, which verifies the analysis. The SEP decreases as

Pave increases. However, it reaches an error floor that depends

on the average interference constraint Iave. The larger the value

of Iave, the lower the error floor.

Figure 3 plots the SEP and its upper bound as a function

of Pave for Iave =10 dB. This is done for QPSK and 8-PSK

constellations. We see that the upper bound is within 2 dB of

the exact SEP and tracks the exact SEP well. The figure also
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Fig. 3. SEP and its upper bound as a function of Pave for different
constellation sizes (Iave = 10 dB).

shows the dependence of the SEP on the constellation size M .

As expected, as M increases, the SEP increases.

A. Benchmark Selection Rules

We now compare the performance of the optimal policy

with the following selection rules considered in the literature,

all of which use fixed power transmission.

1) Optimal AS with On-off Power Control [9]: This policy

minimizes the SEP at the SRx – subject to an average

interference constraint – when the STx transmits with a fixed

power P or with zero power. The selected antenna s is

s = arg min
i=0,1,2

{

ϕgi +m exp

(

−Phi

ηm

)}

, (17)

where ϕ is either zero or is chosen such that the average

interference constraint is satisfied with equality.

2) Enhanced MI (EMI) Rule: The selected antenna s is

s =

{

0, g1 ≥ τ, g2 ≥ τ,

argmini=1,2 {gi} , otherwise.
(18)

As above, the STx transmits with a fixed power P or with zero

power. The EMI rule generalizes the MI rule of [7], which

corresponds to setting τ = ∞ in (18), and ensures that it is

feasible for any given Pave and Iave.

3) Enhanced MSLIR (EMSLIR) Rule: The selected antenna

s is

s =

{

0, if h1

g1
≤ β, h2

g2
≤ β,

argmaxi=1,2

{

hi

gi

}

, otherwise.
(19)

The STx transmits with a fixed power P or with zero power.

This rule generalizes the MSLIR rule of [7], which corre-

sponds to setting β = 0 in (19).

4) Difference AS (DAS) Rule [8]: The selected antenna s

is

s = arg max
i=1,2

{δhi − (1− δ)gi}, (20)

where δ ∈ [0, 1].
Figure 4 compares the SEP as a function of the aver-

age transmit power for the optimal AS-PA policy and the
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Fig. 4. Comparison of the SEPs of the optimal AS-PA policy and other
benchmark rules (Iave = 10 dB, and QPSK).

benchmark rules for Iave = 10 dB. For the EMI rule, P

and τ are jointly chosen to meet the average transmit power

constraint with equality. Further, the choice is such that the

interference constraint is inactive, which happens for smaller

Pave, or is otherwise met with equality. The values of P and

β for the EMSLIR rule and P and δ for the DAS rule are

chosen in a similar manner so as to meet the average power

constraint. First, consider the optimal AS-PA policy. When

Pave ≤ Iave = 10 dB, only the average power constraint

is active. Thus, its SEP decreases as Pave increases. When

10 dB < Pave ≤ 13.8 dB, both the constraints are active. In this

regime, the SEP curve begins to flatten. When Pave > 13.8 dB,

only the average interference power constraint is active. Thus,

the SEP becomes independent of Pave, and an error floor

occurs.

The minimum SEP of the optimal policy is lower by a

factor of 70.2, 32.5, 28.9, and 20 than the minimum SEPs

of the EMI, EMSLIR, DAS, and optimal on-off power control

rules, respectively, which demonstrates the effectiveness of the

optimal AS-PA policy.

V. CONCLUSIONS

We derived the SEP-optimal joint antenna selection and

transmit power adaptation policy for a secondary transmitter

that operates in the underlay mode and is subject to constraints

on its average transmit power and average interference it

causes to the primary. The optimal policy turned out to be

functionally different from the rules considered thus far in the

literature. The optimal and combined use of antenna selection

and power adaptation led to a substantial reduction in the SEP

by at least one order of magnitude compared to the benchmark

schemes. An interesting avenue for future work is determining

the optimal policy when the secondary transmitter is subject

to a constraint on the probability that the interference exceeds

a threshold, instead of an average interference constraint.

Extensions to multiple secondary nodes is another interesting

problem.

APPENDIX

A. Brief Proof of Theorem 1

Since φP is the optimal solution of a problem with fewer

constraints, it must be optimal if it is feasible. Similarly, φI

must be optimal if it is feasible. Otherwise, consider the case

where both φP and φI are not feasible.3

For i = 0, 1, 2, let

Ωh,g(i, P ) = SEP (hi, P ) + λPP + λIPgi, (21)

where SEP (hi, P ) = m exp
(

−Phi

mη

)

and λI ≥ 0 and λP ≥ 0

are constants. Given λI and λP , let φ∗ be the following policy

for each realization of h and g:

(sφ∗ , Pφ∗) = arg min
{(i,P ):i=0,1,2,P≥0}

Ωh,g(i, P ). (22)

Furthermore, for any feasible policy φ, let

Lφ = Eh,g [Ωh,g(sφ, Pφ)] . (23)

Clearly, from the definition of φ∗, for any feasible policy

φ, we have Lφ∗ ≤ Lφ. Rearranging terms, we get

Eh,g

[

SEP(hsφ∗
, Pφ∗)

]

≤ Eh,g

[

SEP(hsφ , Pφ)
]

+ λP (Eh,g [Pφ]−Eh,g [Pφ∗ ])

+ λI(Eh,g

[

Pφgsφ
]

−Eh,g

[

Pφ∗gsφ∗

]

). (24)

Choose λP and λI such that Eh,g [Pφ∗ ] = Pave and

Eh,g

[

Pφ∗gsφ∗

]

= Iave.4 Thus, φ∗ is feasible. Upon so

choosing, (24) becomes

Eh,g

[

SEP(hsφ∗
, Pφ∗)

]

≤ Eh,g

[

SEP(hsφ , Pφ)
]

. (25)

Hence, φ∗ is the SEP-optimal policy.

1) Minimizing Ωh,g(i, P ): Given h and g, we first de-

termine the optimal power P ∗ when the selected antenna is

i ∈ {1, 2}. Equating the derivative of Ωh,g(i, P ) with respect

to P to zero, we get exp
(

−P∗hi

mη

)

= η
(λP+λIgi)

hs
. We then

get P ∗ = mη
hi

loge

(

Xi

η

)

, if Xi ≥ η, and is 0, otherwise. Here,

Xi =
hi

λP+giλI
. Substituting this in (21), we get

Ωh,g(i, P
∗) = ζ(Xi), for P ∗ > 0, (26)

where

ζ(x) =
mη

x

(

1 + loge

(

x

η

))

. (27)

Notice that ζ(x) has a unique maximum, which equals m and

occurs at x = η.

All that remains now is determining the optimal antenna.

Notice that setting the transmit power to 0 is equivalent to

selecting antenna 0. Hence, if X1 ≤ η and X2 ≤ η, then sφ∗ =

3If both φP and φI are feasible, then it can be shown that they must be
same.

4That such a choice of λI and λP exists can be proved using the
intermediate value theorem, the fact that the rule that always selects s = 0 is
feasible, and that both φP and φI are infeasible.
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0. Furthermore, in this case, Ωh,g(0, Pφ∗) = m. Otherwise,

three cases arise: (i) If X1 > η and X2 ≤ η: In this case, the

properties of ζ(·) above imply that sφ∗ = 1. (ii) If X2 > η

and X1 ≤ η: In this case, sφ∗ = 2. (iii) X1 > η and X2 > η:

In this case, sφ∗ = argmini=1,2 ζ(Xi). Since ζ(x) can be

shown to be monotonically decreasing for x ≥ η, it follows

that sφ∗ = argmaxi=1,2 Xi. The above results together can

be written in the compact form given in (13).

Comment: One can see that determining φI is a special case

of the derivation above with λP = 0. The expressions given

in Lemma 1 follow by substituting λP = 0 in (13) and (14).

Similarly, the expressions given in Lemma 2 for φP follow by

substituting λI = 0 in (13) and (14).

B. Proof of Theorem 2

When antenna 0 is selected, the SEP is m. From the law

of total probability and since the channel gains of the two

transmit antennas are i.i.d., the SEP can be written as a sum

of two terms T1 and T2, where T1 = mEh,g [Pr (s = 0|h,g)]
and T2 = 2Eh,g [Pr (s = 1|h,g)SEP (h1, P1)].

1) Evaluating T1: Using the fundamental theorem of ex-

pectation, it can be shown that

T1 = mEh,g [Pr (s = 0|h,g)] = mPr (s = 0) . (28)

From (13), we get

Pr (s = 0) = Pr (X1 ≤ η,X2 ≤ η) = (Pr (X1 ≤ η))
2
. (29)

From the definition of X1, Pr (X1 ≤ η) = Pr
(

h1

λP+λIg1
≤ η

)

.

Since h1 and g1 are exponential RVs, it can be shown that

Pr (X1 ≤ η) = 1− µhe
−

ηλP
µh

µh+ηµgλI
. Substituting this and (29) in (28)

yields the formula for T1.

2) Evaluating T2: Let X = [X1, X2]. Substituting the SEP

expression in (3) and writing in terms of X, we get

T2 =
2

π

∫ mπ

0

EX

[

Pr (s = 1|X)

(

η

X1

)csc2(θ)
]

dθ. (30)

From the fundamental theorem of expectation, it follows

that

EX

[

Pr (s = 1|X)

(

η

X1

)csc2(θ)
]

= EX1

[

Pr (s = 1|X1 = x1)

(

η

x1

)csc2(θ)
]

. (31)

Writing the above expectation over X1 in terms of its

probability density function (PDF) fX1
(·), we get

T2 =
2

π

∫ mπ

0

∫ ∞

0

Pr (s = 1|X1 = x1)

×
(

η

x1

)csc2(θ)

fX1
(x1) dx1 dθ. (32)

From the definition of X1, it can be shown that

fX1
(x1) =

λP e
−

λP
µh

x1

x1µgλI + µh

+
µhµgλIe

−
λP
µh

x1

(x1µgλI + µh)
2 , x1 ≥ 0. (33)

From the AS rule in (13), we get

Pr (s = 1|X1 = x1) = Pr (X1 > η,X2 < X1|X1 = x1) ,

= I{x1>η}Pr (X2 < x1|X1 = x1) , (34)

where I{a} denotes the indicator function; it equals 1

if a is true, and is 0 otherwise. It can be shown that

Pr (s = 1|X1 = x1) = I{x1>η}

(

1− µhe
−

x1λP
µh

µh+x1µgλI

)

. Substitut-

ing this and (33) in (32) yields the expression for T2. Com-

bining the expressions for T1 and T2 yields (15).
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