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Abstract—For underlay spectrum sharing, transmit antenna
selection is a low hardware complexity technique that can help
the secondary system overcome the performance limitations
imposed by the constraints on the interference it causes to a
primary system. However, its efficacy depends on the channel
state information (CSI) available to the secondary transmitter.
We consider a practically appealing model in which the sec-
ondary transmitter has only statistical CSI about the channel
gains from itself to the primary receiver and is subject to a
general class of stochastic interference constraints. We derive an
optimal and novel joint antenna selection and continuous power
adaptation rule for it that minimizes the average symbol error
probability (SEP) of the secondary system. We show that it has
an intuitively appealing separable structure. We then analyze its
average SEP. Our numerical results evaluate the impact of the
interference constraint on both secondary and primary systems,
and show that a judicious choice of the interference constraint
and its parameters is needed as its impact on the secondary and
primary systems can be very different.

I. INTRODUCTION

The ever-increasing demand for high wireless data rates
and the shortage of spectrum has spawned the development
of different spectrum sharing techniques such as cognitive
radio, device-to-device communications, and cognitive radio-
inspired non-orthogonal multiple access [1]. Spectrum sharing
has been adopted in standards such as IEEE 802.11af, long
term evolution (LTE)-license assisted access, MulteFire, and
citizen’s broadband radio service [2], [3]. Next generation
wireless standards such as 5G new radio (NR) unlicensed and
IEEE 802.11be are also being designed to share the spectrum
allocated to primary users (PUs), such as satellite services,
with secondary users (SUs) [4].

In the underlay spectrum sharing mode, which is the focus
of this paper, a secondary transmitter (STx) transmits simulta-
neously with the primary transmitter (PTx) under constraints
on the interference it causes to the primary receiver (PRx) [5],
[6]. However, the interference constraint can severely limit
the secondary performance. Multi-antenna techniques exploit
spatial diversity to address this limitation. Transmit antenna
selection (TAS) is one such technique whose hardware com-
plexity is comparable to a single antenna system [7]–[10]. In
it, the STx dynamically selects one among multiple antennas
based on channel conditions, connects it to a single radio
frequency (RF) chain, and transmits data to the secondary
receiver (SRx).
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Channel state information (CSI) at the STx plays a crucial
role in determining the efficacy of TAS. In order to adhere to
the interference constraint, the STx ideally needs to know the
instantaneous channel gains from the STx to the SRx (STx-
SRx) and from the STx to the PRx (STx-PRx). Assuming that
such instantaneous CSI is available, [7] and [11] developed the
TAS rules for an STx that employs on-off power adaptation
and transmits with either fixed power or zero power. TAS
rules for an STx that employs continuous power adaptation
were developed in [8]–[10].

However, acquiring instantaneous CSI of the STx-PRx links
at the STx is practically challenging. It requires feedback
from the PRx, which entails coordination between the primary
and secondary systems, or requires the PRx to transmit
periodically and often so that the STx can exploit reciprocity
and estimate the instantaneous STx-PRx channel gains in a
timely manner. This makes TAS with only statistical CSI of
the STx-PRx links practically appealing. It requires a different
set of TAS rules compared to those in [7]–[10]. For an STx
that uses on-off power adaptation and has only statistical
CSI of the STx-PRx links, [6] developed a TAS rule for an
interference-outage constrained secondary system. TAS for an
STx that transmits with a fixed power and is subject to the
average interference constraint was studied in [9], [12].

A. Focus and Contributions

In this paper, we derive the optimal joint TAS and continu-
ous power adaptation (TAS-CPA) rule for an STx that has only
statistical CSI of the STx-PRx links and is subject to a general
stochastic interference constraint. This constraint, which im-
poses limits on a fading-averaged instantaneous interference
penalty, includes as special cases the average interference
constraint and its generalizations [13] and the interference-
outage constraint [11]. It differs from the peak interference
constraint, which limits the instantaneous interference at the
PRx, and can be imposed on secondary systems that have
either imperfect or statistical CSI. Another point to note is
that the peak interference constraint is conservative not just for
secondary systems but also primary systems [14]. Our study
with this general and practical approach is timely given that
co-existence mechanisms, which includes the specification of
the interference constraint, between secondary and primary
users in the upcoming standards such as 5G NR unlicensed
and IEEE 802.11be are a work in progress [4].

We make the following specific contributions:
1) We derive an optimal TAS-CPA rule that minimizes the

average symbol error probability (SEP) of a secondary



system in which the STx only has the statistical CSI
of the STx-PRx links and is subject to a stochastic
interference constraint. We focus on the SEP as it is
a widely used performance measure in communication
systems. We show that the optimal rule has an appealing
and intuitive separable structure. Specifically, we show
that with statistical CSI, the optimal transmit antenna
is independent of the interference constraint for any
stochastic interference constraint, which is unlike the
known results on the optimal TAS rules when the STx
has instantaneous STx-PRx CSI. It is the optimal transmit
power that depends on the interference constraint.

2) We derive a general expression for the average SEP that
applies to any stochastic interference constraint and any
number of antennas at the STx and SRx. We illustrate it
for the average interference constraint and gain several
insights.

3) Our numerical results show that the proposed rule
achieves a several orders of lower SEP than on-off power
adaptation and fixed power transmission considered in
the literature. They also study how the interference con-
straint and multiple antennas at the STx and SRx impact
the secondary and primary performances differently.

B. Outline and Notation

Section II presents the system model and formally states the
optimization problem. The optimal TAS-CPA rule is derived
and analyzed in Section III. Numerical results are presented
in Section IV. Our conclusions follow in Section V.

Notation: Scalar variables are written in normal font and
vector variables in bold font. The probability of an event A
and the conditional probability of A given B are denoted by
Pr (A) and Pr (A|B), respectively. EX [·] denotes expectation
with respect to a random variable (RV) X . The indicator
function is denoted by I{a}, which is 1 if a is true and is
0 otherwise.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The system model is shown in Figure 1. It consists of an
STx and an SRx equipped with Nt and Nr antennas, respec-
tively, and a PTx with a single antenna that communicates
with a PRx equipped with Np antennas. The STx is equipped
with one RF chain, which is dynamically switched to one
of the Nt antennas. The SRx employs selection combining
(SC) [6]. For n ∈ {1, 2, . . . , Nr} and k ∈ {1, 2, . . . , Nt},
hnk denotes the instantaneous channel power gain from the
kth antenna of the STx to the nth antenna of the SRx and
for i ∈ {1, 2, . . . , Np}, gik denotes the instantaneous channel
power gain from the kth antenna of the STx to the ith antenna
of the PRx. We consider Rayleigh fading. We assume that
the STx-PRx channel gains are independent and identically
distributed (i.i.d.) RVs [6], [8], [9]. Let µg = E [gik].

A. Data Transmission and CSI Model

The STx selects an antenna s ∈ {1, 2, . . . , Nt} and trans-
mits a data symbol d with power Ps. The SRx receives a signal
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Fig. 1. System model that consists of an STx with Nt transmit antennas and
one RF chain. It transmits data to an SRx with Nr antennas, which causes
interference to a PRx with Np antennas.

Rn at the nth receive antenna. Let Ii denote the interference
at the ith antenna of the PRx due to secondary transmissions.
Then, Rn and Ii are given by

Rn =
√
Ps
√
hnse

jθnsd+Nn +Wn, (1)

Ii =
√
Ps
√
gise

jϕisd, (2)

where E
[
|d|2
]

= 1, θns and ϕis are the phases of the complex
baseband channel gains of the STx-SRx and STx-PRx links,
respectively, Nn is the additive white Gaussian noise, and
Wn denotes the interference at the SRx due to primary
transmissions. We assume Nn + Wn is a circular symmetric
complex Gaussian RV1 with variance σ2, which is the sum
of thermal noise power and interference power [11], [13]. Let
hk , max1≤n≤Nr{hnk}, gk ,

∑Np
i=1 gik, h , [h1, . . . , hNt ],

and g , [g1, . . . , gNt ].
CSI Model and Signaling Requirements: The STx knows

only the statistics of the STx-PRx channel power gains, such
as their average µg or their probability distribution [9], [12],
[15]. It can acquire the statistics by listening to the signals
transmitted by the PRx [6]. Note that unlike the acquisition
of instantaneous CSI, this can take place over a time scale
that is several orders of magnitude larger since the statistical
CSI changes at a much slower rate [9].

The STx knows the instantaneous STx-SRx channel power
gains h, as is typical in conventional TAS [16]. It can estimate
this from the pilots transmitted by the SRx, which is part of
the same secondary system, and by exploiting reciprocity. The
SRx performs coherent demodulation. For this, it only needs
to know the complex channel gains from the selected transmit
antenna s of the STx to itself. This can be acquired from a
pilot transmitted by the STx along with the data [11].

B. Stochastic Interference Constraint and Problem Statement

From (2), the total instantaneous interference power at all
the antennas of the PRx is given by Ps

∑Np
i=1 gis = Psgs. A

stochastic interference constraint is of the following form:

Eh,g [c (Ps, gs)] ≤ Gt, (3)

1This assumption is widely used due to its tractability. We refer the reader
to [11] for a detailed discussion of the conditions under which it is applicable.



where c (Ps, gs) is the instantaneous interference penalty
function that depends on the transmit power Ps and the
STx-PRx channel power gain gs, and Gt is a threshold. For
example, for the average interference constraint [13], which
limits Eh,g [Psgs] to be below an interference power threshold
τ , we have

c (Ps, gs) = Psgs and Gt = τ. (4)

A more general version of this is c (Ps, gs) = (Psgs)
m and

Gt = τm, where m ≥ 1. We shall refer to m as the penalty
exponent. For the interference-outage constraint [11], which
requires the probability that Psgs exceeds a threshold τ to be
below Omax, i.e., Pr (Psgs > τ) ≤ Omax, we have c (Ps, gs) =
I{Psgs>τ} and Gt = Omax.

A TAS-CPA rule φ maps h to an antenna s in the
set {1, 2, . . . , Nt} and a transmit power Ps in the interval
[0, Pmax], where the peak power is motivated by practical
power amplifier limitations. Thus, (s, Ps) = φ(h). Notice that
due to the statistical CSI model, (s, Ps) does not depend on
g; it depends only on its statistics.

Our goal is to find the optimal TAS-CPA rule φ∗ that
minimizes the average SEP of the secondary system subject
to a general stochastic interference constraint and the peak
transmit power constraint. For this, the instantaneous SEP
S(Pk, hk) when the STx transmits with power Pk using
antenna k is given by [17, (9.7)], [11]

S(Pk, hk) = c1 exp

(
−c2

Pkhk
σ2

)
, for 1 ≤ k ≤ Nt, (5)

where the constants c1 and c2 depend on the constellation [8],
[9], [11].

Our problem can be mathematically written as:

P : min Eh,g [S(Ps, hs)] (6)
s.t. Eh,g [c (Ps, gs)] ≤ Gt, (7)

0 ≤ Ps ≤ Pmax, (8)
(s, Ps) = φ(h). (9)

Since s is a function of only h, (7) can be recast as

Eh

[
C̄ (Ps)

]
≤ Gt, (10)

where C̄ (Ps) = Eg [c (Ps, gs)]. For example, for the
average interference constraint, C̄ (Ps) = Eg [Psgs] =
PsEg [g1] = PsNpµg . And, for the interference-outage con-
straint, C̄ (Ps) = Eg

[
I{Psgs>τ}

]
= F cg (τ/Ps), where F cg (·)

is the complementary cumulative distribution function (CDF)
of the i.i.d. RVs g1, . . . , gNt .

III. GENERAL SOLUTION: OPTIMAL TAS-CPA RULE

To develop an SEP-optimal TAS-CPA rule, let us first
consider an interference unconstrained system in which (10) is
inactive. Since the SEP is a monotonically decreasing function
of Ps and hs, it is easy to see that the optimal rule is

s = arg max
k∈{1,2,...,Nt}

{hk} , (11)

Ps = Pmax. (12)

Let Eh

[
C̄ (Pmax)

]
= C̄ (Pmax) denote the average interfer-

ence penalty of this unconstrained rule. When C̄ (Pmax) ≤ Gt,
which we shall refer to as the unconstrained regime, this rule
satisfies the interference constraint in (10) and is optimal.

However, when C̄ (Pmax) > Gt, which we shall refer to as
the constrained regime, the unconstrained rule does not satisfy
the interference constraint in (10). For this regime, define

SMk(p) , S(p, hk) + λC̄ (p) , for p ∈ [0, Pmax], (13)

where λ is an interference penalty factor. We shall call
SMk(p) as the selection metric of antenna k. It is a function
of the transmit power p. The solution of P is as follows.

Theorem 1: The optimal antenna s∗ and its transmit power
Ps∗ in the constrained regime are given by:

s∗ = arg max
k∈{1,2,...,Nt}

{hk}, (14)

Ps∗ = arg min
p∈[0,Pmax]

{
S(p, hs∗) + λC̄ (p)

}
, (15)

where λ is set such that the interference constraint in (10) is
met with equality, i.e., Eh

[
C̄ (Ps∗)

]
= Gt.

Proof: The proof is given in Appendix A.
The above result shows that for any stochastic interference

constraint and with statistical CSI of the STx-PRx links, the
optimal rule selects the antenna with the highest STx-PRx
channel power gain and adjusts its transmit power to meet
the constraint. While this result is intuitive since the STx
does not know g, it has not been proved in the literature
for such a general setting to the best of our knowledge. Since
it is conditioned on instantaneous values of STx-SRx channel
gains, it holds even when these are correlated. It is unlike the
TAS rules with instantaneous STx-PRx CSI [8], [10], [11],
[13], in which the optimal antenna and its transmit power
both depend on the interference constraint.

A. Optimal Transmit Power

We now derive the optimal transmit power Ps∗ in closed-
form. Due to space constraints, we focus on penalty functions
of the form c (Ps, gs) = (Psgs)

m, where m ≥ 1. Consider
first the average interference constraint (m = 1).

Average Interference Constraint (m = 1): Substitut-
ing (5) and C̄ (p) = pNpµg in (13) yields SMs∗ (p) =
c1 exp

(
−c2phs∗/σ2

)
+ λpNpµg . Its minimum occurs at

p =
σ2

c2hs∗
ln

(
hs∗

η

)
, (16)

where η = λNpµgσ
2/ (c1c2). As hs∗ increases, p initially

increases and then decreases. It attains a maximum value of
c1/(eλNpµg) at hs∗ = eη. After taking into account the peak
transmit power constraint in (8), the optimal transmit power
Ps∗ can be shown to take the following insightful form. When
Pmax ≥ c1/(eλNpµg),

Ps∗ =

{
0, if hs∗ ≤ η,
σ2

c2hs∗
ln
(
hs∗
η

)
, else. (17)



Otherwise, for Pmax < c1/(eλNpµg),

Ps∗ =


0, if hs∗ ≤ η,
σ2

c2hs∗
ln
(
hs∗
η

)
, if η <hs∗<hmin or hs∗>hmax,

Pmax, if hmin ≤ hs∗≤hmax,
(18)

where hmin , −σ2/ (c2Pmax)W0

(
−c2Pmaxη/σ

2
)
, hmax ,

−σ2/ (c2Pmax)W−1

(
−c2Pmaxη/σ

2
)
, and Wl(·) denotes the

lth branch of the Lambert-W function [18].
Generalized Average Interference Constraint (m > 1):

Here, C̄ (p) = pmψm, where ψm = Eg [(g1)
m

] denotes the
mth moment of the STx-PRx channel power gain. Substituting
this in (13) yields SMs∗ (p) = c1 exp

(
−c2phs∗/σ2

)
+

λpmψm. Its minimum occurs at

p =
(m− 1)σ2

c2hs∗
W0

([
c1c2hs∗

λmψmσ2

] 1
m−1 c2hs∗

(m− 1)σ2

)
. (19)

The optimal transmit power takes the above value if it is less
than Pmax. Otherwise Ps∗ = Pmax. Since the optimal power
is computed explicitly, the optimal rule involves a comparison
of only Nt quantities.

B. Performance Analysis

We now analyze the average SEP, denoted by (SEP), for
any m. We then specialize and simplify it for m = 1. For
tractability, we shall assume that h1, . . . , hNt are i.i.d. Let
Fh (·) and fh (·) denote their CDF and probability density
function. Let µh = E [hnk]. Let Ωs = Pmaxµh/σ

2 denote the
peak fading-averaged signal-to-interference-plus-noise ratio
(SINR).

Result 1: The average SEP of the secondary system when
the STx selects antenna s in (14) is given by

SEP = Nt

∫ ∞
0

[Fh (h1)]
Nt−1 S (P1, h1) fh (h1) dh1, (20)

where P1 is the optimal transmit power when the STx selects
antenna one, Fh (x) = (1− exp (−x/µh))

Nr , and fh (x) =
Nr (1− exp (−x/µh))

Nr−1
exp (−x/µh) /µh, for x ≥ 0.

Proof: The proof is given in Appendix B.
The above expression applies to any number of transmit and

receive antennas Nt and Nr. To understand it better, consider
m = 1. As in Section III-A, two cases arise.

a) Pmax ≥ c1/(eλNpµg): As per (17), for h1 < η, P1 =
0 and S (0, h1) = c1. Else, P1 = σ2 ln (h1/η) / (c2h1) and
S (P1, h1) = η/h1. Substituting these in (20) and simplifying
further, it can be shown that SEP = T1 + T2, where

T1 = c1 (1− exp (−η/µh))
NtNr , (21)

T2 =
NtNrc1η

µh

NtNr−1∑
k=0

(
NtNr − 1

k

)
(−1)kE1

(
(k + 1)η

µh

)
,

(22)

and E1 (·) denotes the exponential integral [19, pp. xxxv].
Here, T1 and T2 correspond to the average SEP when the STx
transmits with zero power and non-zero power, respectively.

T1 decreases as Nt or Nr increases. T1 and T2 increase as η
increases. Also, they do not depend on Pmax.

b) Pmax < c1/(eλNpµg): Substituting (18) in (20), it can
be shown that SEP = T1 + T̂2, where T1 is given in (21) and

T̂2 =NtNrc1

NtNr−1∑
k=0

(
NtNr − 1

k

)
(−1)k

×

e−(k+1+c2Ωs)
hmin
µh − e−(k+1+c2Ωs)

hmax
µh

k + 1 + c2Ωs

+
η

µh
E1

(
(k + 1)η

µh

)
− η

µh
E1

(
(k + 1)hmin

µh

)
+

η

µh
E1

(
(k + 1)hmax

µh

)]
. (23)

Here, T̂2 decreases as Pmax increases.

IV. NUMERICAL RESULTS AND BENCHMARKING

We first benchmark the performance of the optimal TAS-
CPA rule with the other rules that select the antenna as
per (14) and adapt the transmit power as follows:

i) Fixed Power [9], [12]: The STx transmits with a fixed
power Pt ≤ Pmax, which is chosen such that the interference
constraint is met with equality in the constrained regime.

ii) On-Off Power Adaptation [6], [11]: The STx transmits
with power

Ps =

{
0, if hs ≤ β,
Pmax, else, (24)

where β > 0 is set such that the interference constraint is met
with equality in the constrained regime.

For example, for the average interference
constraint, Pt = min{Pmax, τ/ (Npµg)} and
β = −µh ln

(
1− [1− τ/ (PmaxNpµg)]

1
NtNr

)
.

In our simulation setup, the PTx transmits with fixed power
and the PRx employs maximal ratio combining. For this, we
set µh = −114 dB, µg = −125 dB, σ2 = −109 dBm, and the
average channel power gain from the PTx to PRx as −103 dB.
These values lead to a secondary peak fading-averaged SINR
Ωs = Pmaxµh/σ

2 of 10 dB when Pmax is 15 dBm and a
primary average signal-to-noise ratio (SNR) of 21 dB when
the PTx transmits with a fixed power of 15 dBm.2

Figure 2 plots the average SEP of the secondary system that
is subject to the average interference constraint (m = 1) as
a function of the interference power threshold τ . It compares
the above power adaptation schemes for different values of Nt
and Nr. i) For τ/σ2 ≤ PmaxNpµg/σ

2 = 0.9 dB, the system
is in the constrained regime regardless of the values of Nt
and Nr. For both CPA and fixed power transmission, SEP

2This corresponds to a carrier frequency of 2.4 GHz, bandwidth of 1
MHz, 300 K temperature, and a noise figure of 5 dB. We consider the
simplified path-loss model [17, Chap. 2.6] with the path-loss exponent of
3.7, a reference distance of 1 m, a distance of 100 m between the STx and
SRx, a distance of 50 m between the PTx and PRx, and a distance of 200 m
between the STx and PRx.
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Fig. 2. Impact of power adaptation: Average SEP of the secondary system
as a function of τ for different values of Nt and Nr (m = 1, Ωs = 12 dB,
Np = 1, and QPSK with c1 = 0.5 and c2 = 0.6).

decreases as τ increases. It also decreases significantly as Nt
and Nr increases. However, the trends are different for on-off
power adaptation. Here, SEP is insensitive to τ , Nt, and Nr.
We observe a significant reduction in the average SEP due
to CPA. For example, when Nt = 3, Nr = 3, and τ/σ2 =
−1 dB, SEP of CPA is lower by a factor of 10 compared
to fixed power transmission and 2 to 3 orders of magnitude
lower compared to on-off power adaptation. On-off power
adaptation does much worse because the STx transmits with
zero power often in order to compensate for the interference
it causes when it transmits with Pmax. ii) For τ/σ2 > 0.9 dB,
the average SEPs of the different power adaptation techniques
become the same and do not depend on τ as the system is
in the unconstrained regime. In all of them the STx transmits
with the peak power. Note that the SEP of the on-off power
adaptation rule decreases rapidly as it enters the unconstrained
regime. SEP decreases markedly as Nt or Nr increases.

Impact of Interference Constraint and Multiple Antennas:
Figure 3 plots the average SEP of the secondary system, from
simulations and analysis, as a function of its peak fading-
averaged SINR Ωs. Figure 4 plots the average SEP of the
primary system, from simulations, as a function of its SNR.
This is done for two values of the penalty exponent m. For
small Ωs, we see that the SEP of the secondary system does
not depend on m because it is in the unconstrained regime. It
decreases as Ωs increases. The secondary system transitions to
the constrained regime when Ωs = τµh/

(
Npµgσ

2
)

for m = 1

and Ωs = τµh/
(√

Np(Np + 1)µgσ
2
)

for m = 2. Now, for
both constraints, the average SEP of the secondary system
decreases and reaches an error floor. The error floor for m = 1
is significantly lower than that for m = 2, while the additional
degradation in the SEP of the primary system is small. Thus,
an interference constraint can have a very different impact on
the primary and secondary systems, and its parameters need
to be chosen judiciously. When Nt or Nr is increased, the
average SEP of the primary system remains unchanged but
that of the secondary decreases significantly. Lastly, we see
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Fig. 3. Average SEP of the secondary system as a function of Ωs for different
values of Nt and Nr (Np = 2, τ/σ2 = 1, and QPSK with c1 = 0.5 and
c2 = 0.6).
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Fig. 4. Average SEP of the primary system as a function of its SNR for
different values of Nt and Nr (Ωs = 18 dB, Np = 2, τ/σ2 = 1, and
QPSK with c1 = 0.5 and c2 = 0.6).

that analysis and simulations match well in Figure 3.

V. CONCLUSIONS

We derived an optimal TAS-CPA rule for a peak-power
constrained secondary system that had only statistical CSI of
the STx-PRx links and was subject to a general, practically
implementable stochastic interference constraint. We showed
that it was the optimal transmit power that depended on the
penalty function employed by the interference constraint. We
derived the optimal transmit power in closed-form for the
generalized average interference constraint. We also analyzed
the average SEP of the optimal rule. We saw that continuous
power adaptation markedly improved the secondary perfor-
mance compared to both on-off power adaptation and fixed
power transmission. While increasing the number of antennas
improved the secondary performance without degrading the
primary performance, increasing the penalty exponent m had
a very different impact on the two systems.



APPENDIX

A. Proof of Theorem 1

Consider the TAS-CPA rule (s∗, Ps∗) = φ∗(h) defined by

(s∗, Ps∗) , arg min
k∈{1,2,...,Nt}, p∈[0,Pmax]

{SMk (p)} , (25)

where SMk (p) = S(p, hk) + λC̄ (p) and λ > 0 is set
such that the interference constraint is met with equality,
i.e., Eh

[
C̄ (Ps∗)

]
= Gt.3 Consider any other TAS-CPA rule

(s, Ps) = φ(h) that satisfies the constraints (8) and (10).
Clearly, by the construction of φ∗, it satisfies the con-
straints (8) and (10). Also, from (25), it follows that

E
[
S(Ps∗ , hs∗)+λC̄ (Ps∗)

]
≤E

[
S(Ps, hs)+λC̄ (Ps)

]
, (26)

where the expectation is over h. Rearranging terms yields

E [S(Ps∗ , hs∗)]≤E [S(Ps, hs)] + λ
(
E
[
C̄ (Ps)

]
−E

[
C̄ (Ps∗)

])
.

Since λ > 0 is chosen such that E
[
C̄ (Ps∗)

]
= Gt and

E
[
C̄ (Ps)

]
−Gt ≤ 0, we get E [S(Ps∗ , hs∗)] ≤ E [S(Ps, hs)].

Thus, φ∗ is SEP-optimal.
Consider two antennas l and q with channel power gains

hl and hq , respectively, such that hl > hq . Let Pl and Pq
minimize SMl (p) and SMq (p), respectively. As Pl minimizes
the selection metric of antenna l, it follows that

S(Pl, hl) + λC̄ (Pl) ≤ S(Pq, hl) + λC̄ (Pq) , (27)

Since the SEP decreases as the STx-SRx channel power gain
increases, it follows that S(Pq, hl) < S(Pq, hq). Combining
this with (27), we get

S(Pl, hl) + λC̄ (Pl) < S(Pq, hq) + λC̄ (Pq) , (28)

which implies the SMl (Pl) < SMq (Pq) if hl > hq . Thus,
the antenna with the largest STx-SRx channel power gain is
optimal. From (25), its transmit power is given by (15).

B. Proof of Result 1

Let Pr (Err|h) denote the probability of error conditioned on
h. Then, the average SEP is equal to SEP = Eh [Pr (Err|h)].
Using the law of total probability and symmetry, we get

SEP = NtEh [Pr (s = 1,Err|h)] . (29)

And, Pr (s = 1,Err|h) = Pr (s = 1|h) Pr (Err|s = 1,h).
Given s = 1 and h, the probability of error equals S(P1, h1).
Therefore, SEP = NtEh [Pr (s = 1|h)S(P1, h1)]. By the law
of total expectation, we get

SEP = NtEh1
[Pr (s = 1|h1)S(P1, h1)] . (30)

From (14), we know that antenna 1 is selected when
h2 < h1, . . . , hNt < h1. Hence, Pr (s = 1|h1) =
Pr (h2 < h1, . . . , hNt < h1|h1). Conditioned on h1, the

3The existence of λ can be shown for any C̄ (p) that is a convex function
of p and has a continuous first derivative. It can also be shown for C̄ (p) =
F c
g (τ/p), which arises for the interference outage constraint.

events h2 < h1, . . . , hNt < h1 are mutually independent.
Hence, we get

Pr (s = 1|h1) = [Pr (h2 < h1|h1)]
Nt−1

= [Fh (h1)]
Nt−1

.
(31)

Substituting this in (30) and averaging over h1 yields (20).
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