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Abstract—Ordered transmissions is an energy-efficient scheme
that improves the lifetime of a wireless sensor network (WSN)
and yet achieves the same performance as the conventional
unordered transmissions scheme (UTS) in which all nodes
transmit. We present a novel scheme for the binary hypothesis
testing problem that exploits ordered transmissions to reduce
the number of transmissions for the general and practically
important scenario in which the measurements of the sensor
nodes are correlated. It differs from the literature that assumes
that, conditioned on the hypotheses, the measurements of dif-
ferent nodes are statistically independent or that the covariance
matrix has a special structure. In our scheme, the nodes transmit
their measurements in the decreasing order of the magnitudes
of the measurements. We present two novel approaches to
design the decision rules. These address the presence of cross-
terms between the measurements of different nodes that now
arise in the decision statistic due to correlation and make a
distributed implementation challenging. Both our approaches
markedly reduce the average number of transmissions compared
to UTS and ensure that the error probability remains the same.

I. INTRODUCTION

Energy-efficiency is a critical issue in the design of wireless
sensor networks (WSNs). It ensures that these networks have
the longevity required by their many compelling and diverse
applications such as transportation and logistics, environ-
mental monitoring, military surveillance, and healthcare [1].
Several techniques have been proposed to improve the energy-
efficiency of the sensor nodes, such as censoring, on-off
keying, duty cycling, and clustering [2]. These improve the
energy-efficiency by curtailing the number of times a node
transmits. However, they also cause an unwelcome degrada-
tion in the performance of the WSN.

A notable exception is the ordered transmissions scheme
(OTS), which improves the energy-efficiency without any
degradation in performance [3]–[5]. OTS, which was first
proposed in [3], exploits the fact that the decision statistic at
the fusion node (FN) is separable and is the sum of the log-
likelihood ratios (LLRs) of the measurements at the individual
sensor nodes. In it, each node sets a timer that is a monotone
non-increasing function of the absolute value of its LLR [6].
When a node’s timer expires, it transmits its LLR to the FN.
Thus, the nodes transmit their LLRs one after another in the
decreasing order of the absolute value of the LLRs without
knowing the LLR of any other node. Intuitively, the larger
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the absolute value of the LLR, the more informative it is
to the FN. Every time the FN receives an LLR, it decides
on a hypothesis or allows the nodes to further decrement
their timers. OTS is appealing because it provably reduces the
average number of transmissions by at least 50% compared
to the conventional unordered transmissions scheme (UTS),
in which all the nodes transmit their LLRs to the FN, without
any increase in the error rate [3]. While the nodes transmit
their LLRs one by one in sequential detection [7, Ch. III.D],
they transmit in a random order, which is unlike OTS.

In this paper, we address the more general and practically
relevant case in which the measurements of the sensor nodes
are correlated. For example, this occurs when the node obser-
vations are distorted copies of the source signal due to sensing
inaccuracies and noise [8]. In this case, the decision statistic at
the FN is no longer the sum of the individual node statistics.
Instead, it also consists of cross-terms involving each node’s
measurement with every other node’s measurement. Thus,
the OTS schemes considered in the literature that order the
individual node LLRs no longer work.

For correlated measurements, OTS for detecting a shift in
the mean vector and a shift in the covariance matrix has been
recently proposed in [9] and [10], respectively. It assumes
a decomposable Gaussian graphical model and exploits its
elegant structure to partition the nodes into clusters. Each
cluster has a cluster head, which receives the measurements
from all of its constituent sensors. Ordering the transmissions
of the cluster heads is shown to reduce the average number
of transmissions required by the FN to decide.

A. Focus and Contributions

In this paper, we propose a novel correlation-aware OTS
(CA-OTS) for the binary hypothesis framework that applies
to an arbitrary correlation model in which the covariance
matrices of the measurements by the nodes are different under
the two hypotheses. It does not presume a decomposable
Gaussian graphical model that requires the observations at
non-adjacent nodes to be independent conditioned on all other
observations. We propose two novel approaches to arrive at
the decision rules. Both achieve significant reductions in the
average number of transmissions, while achieving the same
error probability as UTS, in which all the nodes transmit.

The first approach is called the eigenvalue bound-based
approach (EVBA). It uses bounds on the eigenvalues of
the covariance matrix of the measurements to arrive at
the decision rules. The second approach, which refines this
approach further, is called the received measurement-based
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Fig. 1. A WSN consisting of N nodes that transmit their measurements to
an FN, which decides in favor of a hypothesis.

EVBA (RM-EVBA). It uses bounds on the eigenvalues of
the sub-matrix of the covariance matrix corresponding to the
measurements that are yet to be received.

Our benchmarking results show that EVBA and RM-EVBA
significantly reduce the average number of transmissions
compared to conventional UTS. For example, for the uniform
correlation model [11] in which the node measurements are
equally correlated with a correlation-coefficient ρ, they reduce
the average number of transmissions by 85% and 60% when
ρ is 0.2 and 0.8, respectively.

There are two key differences between our approach and
those in [9], [10]. First, our approach applies to an arbitrary
correlation model. Second, in our approach, the ordering
happens across all the sensor nodes. On the other hand, in [9],
[10], all the nodes within a cluster transmit and ordering is
exploited only across cluster heads.

B. Organization and Notations

Section II presents the system model. Section III specifies
CA-OTS. Simulation results are presented in Section IV, and
are followed by our conclusions in Section V.

Notations: The probability density function (PDF) and the
cumulative distribution function (CDF) of a random variable
(RV) X are denoted by fX(·) and FX(·), respectively. For a
matrix D, DT denotes its transpose, Dij denotes the entry in
the ith row and jth column, det(D) denotes its determinant,
and λmin(D) and λmax(D) denotes the smallest and largest
eigenvalues, respectively. We shall employ the order statistics
notation [12], which is as follows. For N continuous RVs,
X1, . . . , XN , X[r] denotes the rth largest value and [r] denotes
the index of this RV. Therefore, X[1] > X[2] > · · · > X[N ].

II. SYSTEM MODEL

Consider a WSN that consists of N sensor nodes and
an FN. Time is divided into measurement rounds. In each
round, a decision needs to be made by the WSN. The node
measurement model, detection framework, and the optimum
decision rule are as follows.

Measurement Model and Detection Framework: At the
beginning of a round, the sensor node i makes a measurement

yi, where 1 ≤ i ≤ N . Within each round, the FN collects
measurements from some or all of the sensor nodes and
decides in favor of a hypothesis. We consider the binary hy-
pothesis testing framework, which is a fundamental problem
in signal detection theory [9], [10], and has several practical
applications such as target detection [4], spectrum sensing [5],
and fingerprint detection [13]. For Gaussian statistics, the
signal models for the two hypotheses are [10]

H0 : y ∼ N
(
0, σ2

0IN
)
,

H1 : y ∼ N (0,R) ,
(1)

where y =[y1, y2, . . . , yN ]
T, IN denotes the identity matrix of

size N , and R is a symmetric positive definite matrix, which
denotes the covariance matrix under hypothesis H1. Thus,
the measurements are i.i.d. with zero mean and variance σ2

0

under hypothesis H0 and are correlated with zero mean and
a covariance matrix R under H1. Our approach also applies
to the case in which the covariance matrix for H0 is another
arbitrary positive definite matrix and not just IN . The results
for this are not shown to conserve space. The system model
is illustrated in Fig. 1.

Optimum Decision Rule: Let cuv be the cost incurred if
hypothesis Hu is chosen when hypothesis Hv is true, and let
ζ0 and ζ1 be the prior probabilities of H0 and H1, respectively.
The decision rule that minimizes the error probability is given
by [7, Ch. III.A]

log

(
fY(y|H1)

fY(y|H0)

)
H1

≷
H0

β, (2)

where fY(y|Hh) is the PDF of the measurements condi-
tioned on the hypothesis Hh, where h ∈ [0, 1], and β =

log
(

(c10−c00)ζ0
(c01−c11)ζ1

)
. For the signal model in (1), it can be easily

shown that the decision rule in (2) reduces to

d(y) , yTGy
H1

≷
H0

α, (3)

where

α = 2σ2
0

[
β +

1

2
log

(
det(R)

σ2N
0

)]
, (4)

G = IN − σ2
0R

−1. (5)

We shall refer to d(y) as the decision statistic.
Expanding (3), we get

d(y) =

N∑
i=1

Giiy
2
i +

N∑
i=1

N∑
j=1
j ̸=i

Gijyiyj . (6)

Thus, as mentioned, in the presence of correlation, d(y) also
depends on the cross-terms yiyj , for i ̸= j.

III. CA-OTS

In CA-OTS, a node i sets a timer that is a monotone non-
increasing function of |yi|, which we shall refer to as the
metric of the node. Once the timer expires, it transmits its
measurement yi and its identity i to the FN. The timer scheme



ensures that the nodes transmit in the decreasing order of their
metrics, without any node knowing the metric of any other
node a priori.

Every time the FN receives a measurement, it decides be-
tween the two hypotheses, or waits for the next measurement.
Once the FN makes a decision, it broadcasts a control signal
to all the sensor nodes to halt their timers for the rest of the
round. Else, the nodes continue to decrement their timers. The
process starts afresh at the beginning of every round when a
new set of measurements arrives at the nodes. As in OTS, we
assume that the measurements are received at the FN with a
negligible probability of decoding error [3], [9], [10].

We now present two approaches to derive the decision rules
for the above general correlation model.

A. EVBA
The following result, which is derived in Appendix A,

compactly specifies the new decision rules for EVBA.
Result 1: Let the FN have received the measurements

y[1], . . . , y[k] from nodes [1], . . . , [k]. The decision rules de-
pend on the range of values of λmax(R) and λmin(R), and
are as follows:

1) If λmin(R) ≥ σ2
0 :

Decide H1 if:
(
1− σ2

0

λmin(R)

) k∑
i=1

y2[i] > α, (7)

Decide H0 if:
(
1− σ2

0

λmax(R)

) k∑
i=1

y2[i] <

α−
(
1− σ2

0

λmax(R)

)
(N − k)y2[k], (8)

Wait for the next transmission, otherwise.

2) If λmin(R) < σ2
0 ≤ λmax(R):

Decide H1 if:
(
1− σ2

0

λmin(R)

) k∑
i=1

y2[i] >

α−
(
1− σ2

0

λmin(R)

)
(N − k)y2[k], (9)

Decide H0 if:
(
1− σ2

0

λmax(R)

) k∑
i=1

y2[i] <

α−
(
1− σ2

0

λmax(R)

)
(N − k)y2[k], (10)

Wait for the next transmission, otherwise.

3) If λmax(R) ≤ σ2
0 :

Decide H1 if:
(
1− σ2

0

λmin(R)

) k∑
i=1

y2[i] >

α−
(
1− σ2

0

λmin(R)

)
(N − k)y2[k], (11)

Decide H0 if:
(
1− σ2

0

λmax(R)

) k∑
i=1

y2[i]<α, (12)

Wait for the next transmission, otherwise.

Remark: As shown in Appendix A, for each case, the
decision is the same as UTS, in which the FN knows all
the N measurements. The decision rules only require the
maximum and minimum eigenvalues of R, which are related
to those of G by λmax(G) = 1 −

(
σ2
0/λmax(R)

)
and

λmin(G) = 1−
(
σ2
0/λmin(R)

)
.

B. RM-EVBA

We now present a more refined version of EVBA that
considers the sub-matrices of R corresponding to the received
and the yet-to-be-received measurements. In terms of the
ordered-statistics notation, (6) can be expressed as

d(y) =

N∑
i=1

G[i][i]y
2
[i] +

N∑
i=1

N∑
j=1
j ̸=i

G[i][j]y[i]y[j]. (13)

When the FN has received the measurements from nodes
[1], . . . , [k], we write (13) in a compact matrix notation as
follows. Let rk = [y[1], y[2], . . . , y[k]]

T. Let Pk be a k × k
matrix that is given by

Pk =
[
G[i][j]

]
, for 1 ≤ i, j ≤ k. (14)

Let QN−k be an (N − k)×(N − k) matrix that is given by

QN−k =
[
G[k+i][k+j]

]
, for 1 ≤ i, j ≤ N − k. (15)

Lastly,

vN−k=

[
k∑

i=1

G[i][k+1]y[i],

k∑
i=1

G[i][k+2]y[i], . . . ,

k∑
i=1

G[i][N ]y[i]

]T

.

(16)
Thus, rk denotes the received measurements, Pk consists of
the elements of G that correspond to the received measure-
ments, QN−k consists of the elements of G that correspond to
the yet-to-be-received measurements, and vN−k accounts for
the cross-terms between the received and yet-to-be-received
measurements. Let uN−k =

[
y[k+1], . . . , y[N ]

]T
be the vector

of measurements that are yet to be received. Hence, (13) can
be recast as

d(y) = rT
kPkrk + uT

N−kQN−kuN−k + 2vT
N−kuN−k. (17)

The decision rules for RM-EVBA, which are derived in
Appendix B, are as follows.

Result 2: When the measurements from the nodes
[1], . . . , [k] have been received, the decision rules, which
depend on the eigenvalues of QN−k, are as follows:

1) If λmin(QN−k) ≥ 0:

Decide H1 if: rT
kPkrk > α+ 2|y[k]|

×
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (18)

Decide H0 if: rT
kPkrk<α−λmax(QN−k)(N− k)y2[k]

− 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (19)

Wait for the next transmission, otherwise.



2) If λmin(QN−k) < 0 ≤ λmax(QN−k):

Decide H1 if: rT
kPkrk>α−λmin(QN−k)(N−k)y2[k]

+ 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (20)

Decide H0 if: rT
kPkrk<α−λmax(QN−k)(N−k)y2[k]

− 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (21)

Wait for the next transmission, otherwise.

3) If λmax(QN−k) ≤ 0:

Decide H1 if: rT
kPkrk>α−λmin(QN−k)(N−k)y2[k]

+ 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (22)

Decide H0 if: rT
kPkrk<α− 2|y[k]|

×
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (23)

Wait for the next transmission, otherwise.

Remark: RM-EVBA yields the same error probability as UTS.

IV. NUMERICAL RESULTS

We now benchmark the performance of EVBA and RM-
EVBA. Since they ensure that the error probability is the same
as UTS, we compare their average number of transmissions.
The smaller this number compared to UTS, the more energy-
efficient the scheme is. We simulate the WSN for a duration of
106 rounds. We consider the uniform cost model with cuv =
1, if u ̸= v, and cuv = 0, if u = v [3], [10], and ζ1 = 0.5.

To illustrate the generality of our approach, we first show
results for the correlation model in [14], where Rij = σ2

1θiθj .
We set θi = θmax − (i− 1)((θmax − θmin) /(N − 1)), for
1 ≤ i ≤ N . Thus, the correlation-coefficient of the measure-
ments between two sensors i and j is θiθj , and θ1, . . . , θN
are obtained by uniformly sampling the interval [θmin, θmax].

Fig. 2 compares the average number of transmissions as a
function of the signal-to-noise ratio (SNR) σ2

1/σ
2
0 of EVBA

and RM-EVBA with UTS for a WSN with N = 20 sensor
nodes. The number of transmissions for UTS is always N . As
the SNR increases, both EVBA and RM-EVBA require far
fewer transmissions to make a decision as compared to UTS.
RM-EVBA, which uses a more refined approach, requires
fewer transmissions than EVBA, especially for smaller SNRs.
However, as seen from (6), the coefficients of the cross terms
are negligible at higher SNRs. Hence, in this regime, the two
schemes exhibit the same behavior.

To gain further insights about the effect of correlation,
we now consider the widely studied uniform correlation
model [11], which is defined by a single parameter ρ ∈ [−1, 1]
as follows: Rij = σ2

1ρ, if i ̸= j, and is σ2
1 , if i = j. Thus,

ρ is the correlation-coefficient between the measurements of
any two nodes. For this model, the corresponding probabilistic

Fig. 2. Average number of transmissions as a function of the SNR σ2
1/σ

2
0

for arbitrary correlation (N = 20, θmax = 0.75, and θmin = 0.25).

Fig. 3. Average number of transmissions as a function of ρ for different
values of SNR for uniform correlation (N = 20).

graphical model has a single maximal clique. Consequently,
the OTS approach in [10], which requires all the nodes in
a maximal clique to transmit to the cluster head, does not
achieve any reduction in the average number of transmissions.

Fig. 3 compares the average number of transmissions
as a function of ρ of EVBA, RM-EVBA, and UTS for
N = 20 and two values of SNR. Both EVBA and RM-EVBA
require significantly fewer transmissions compared to UTS,
for which the average number of transmissions is always N .
Consider, for example, the SNR of 5 dB. As ρ increases, the
average number of transmissions of EVBA and RM-EVBA
initially increase. This can be understood using the notion
of generalized variance, which is a measure of dispersion
for a multivariate distribution and is the determinant of the
covariance matrix R [15, Ch. 7.5]. From [11], det(R) =
σ2N
1 (1− ρ)

N−1
(1 +(N − 1) ρ). As ρ increases, det(R) de-

creases and H1 becomes less dispersed compared to H0, the
corresponding determinant for which is det

(
σ2
0IN

)
= σ2N

0 .
Hence, more transmissions are needed to make a decision.

When ρ increases further, the average number of trans-
missions of both schemes decrease. This is because det(R)



Fig. 4. Average number of transmissions as a function of N for uniform
correlation for different values of ρ (SNR = 10 dB).

becomes significantly less than σ2N
0 and, thus, H0 is more

dispersed than H1. Since the relative dispersion between the
two hypotheses increases, fewer transmissions are needed to
make a decision. Similar behavior is seen for the SNR of 10
dB, except that fewer transmissions occur for ρ ≤ 0.85.

Fig. 4 plots the average number of transmissions as a
function of N for ρ = 0.2 and 0.8. We see that as N
increases, the average number of transmissions for all the
schemes increases. However, the rate at which it increases
is much smaller for EVBA and RM-EVBA than UTS.

V. CONCLUSIONS

We proposed a novel ordered transmissions scheme for
detecting a shift in the covariance matrix. It applied to any
general positive definite covariance matrix and addressed the
presence of cross-terms involving measurements of different
nodes that arose in the decision statistic. In it, the nodes
transmitted their measurements to the FN in the decreasing
order of the magnitudes of their measurements. To develop
the decision rules, EVBA considered the smallest and largest
eigenvalues of the entire covariance matrix, while RM-EVBA
considered the smallest and largest eigenvalues of the sub-
matrix of the covariance matrix corresponding to the measure-
ments that are yet to be received by the FN. Both approaches
markedly reduced the average number of transmissions re-
quired by the FN to decide without any increase in the error
rate compared to UTS, in which all nodes transmitted. Due to
its more refined approach, RM-EVBA outperformed EVBA.

Future work includes extending the approach to address
the shift in mean hypothesis testing problem, analytically
characterizing the average number of transmissions for the
proposed decision rules, and incorporating the impact of
channel fading.

APPENDIX

A. Decision Rules for EVBA

As G is a symmetric matrix, from [16, Ch. A.5.2], we get

λmin(G)yTy ≤ d(y) ≤ λmax(G)yTy. (24)

From (5), the maximum and minimum eigenvalues of G and
R are related as

λmax(G) = 1− σ2
0

λmax(R)
, (25)

λmin(G) = 1− σ2
0

λmin(R)
. (26)

Writing yTy in terms of the measurements received thus far
from the nodes [1], . . . , [k], and the ones not yet received from
the nodes [k + 1], . . . , [N ], we get

yTy =

N∑
i=1

y2[i] =

k∑
i=1

y2[i] +

N∑
j=k+1

y2[j]. (27)

Since the nodes transmit in the decreasing order of the
absolute values of their measurements, we have

0 ≤ y2[j] < y2[k], for 1 ≤ k < j ≤ N. (28)

To apply this inequality in (24), we need to consider the signs
of λmin(G) and λmax(G), which are determined by the values
of λmin(R) and λmax(R). This gives rise to the following
three cases:

1. If λmin(R) ≥ σ2
0 : From (26), this implies λmin(G) ≥ 0.

Hence, (24), (27), and (28) imply the following:

λmin(G)

(
k∑

i=1

y2[i]

)
< d(y) , (29)

d(y) < λmax(G)

(
N∑
i=1

y2[i] + (N − k)y2[k]

)
. (30)

Therefore, if

λmin(G)

(
k∑

i=1

y2[i]

)
> α, (31)

then from (29), we get d(y) > α. Hence, the FN should
decide H1, just as UTS would after receiving all N measure-
ments. Substituting (26) in (31) yields (7). Similarly, if

λmax(G)

(
k∑

i=1

y2[i]

)
< α− λmax(G) (N − k)y2[k], (32)

then from (30), d(y) < α and the FN should decide H0.
2. If λmin(R) < σ2

0 ≤ λmax(R): From (25) and (26), we
get λmin(G)< 0≤ λmax(G). Thus, (24), (27), and (28) imply

λmin(G)

(
k∑

i=1

y2[i] + (N − k)y2[k]

)
< d(y) . (33)

Therefore, if λmin(G)
(∑k

i=1 y
2
[i] + (N − k)y2[k]

)
> α, then

from (33), d(y) > α and the FN should decide H1. Substitut-
ing (26) and rearranging terms yields (9). The decision rule
for H0 is obtained using a similar logic.

3. If λmax(R) ≤ σ2
0 : From (25), we have λmax(G) ≤ 0.

From (24), (27), and (28), we get

d(y) < λmax(G)

(
k∑

i=1

y2[i]

)
. (34)



Thus, the FN will decide H0 if λmax(G)
(∑k

i=1 y
2
[i]

)
< α.

Substituting (25) yields the decision rule in (12). The decision
rule for H1 can be derived in a similar manner.

We note that while the bounds in (24) are classical in
nature, their application to the design of the decision rules
for OTS is novel to the best of our knowledge.

B. Decision Rules for RM-EVBA

In (17), the decision statistic is a sum of three terms.
The first term rT

kPkrk is in terms of measurements that are
known to the FN. The second term uT

N−kQN−kuN−k can be
bounded, along lines similar to (24), as follows:

λmin(QN−k)

 N∑
j=k+1

y2[j]

 ≤ uT
N−kQN−kuN−k

≤ λmax(QN−k)

 N∑
j=k+1

y2[j]

 . (35)

To bound the third term vT
N−kuN−k, we note that −|y[k]| <

y[j] < |y[k]| and 0 <
∑N

j=k+1 y
2
[j] < (N −k)y2[k], for k+1 ≤

j ≤ N . Using these inequalities, we can show that

− |y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]| < vT
N−kuN−k

< |y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|. (36)

As in Appendix A, the following three cases arise:
1. If λmin(QN−k) ≥ 0: Using (35) and (36) in (17) yields

d(y) < rT
kPkrk + λmax(QN−k) (N − k)y2[k]

+ 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (37)

d(y) > rT
kPkrk − 2|y[k]|

k∑
i=1

N∑
j=k+1

|G[i][j]y[i]|. (38)

Therefore, if rT
kPkrk < α − λmax(QN−k) (N −

k)y2[k]−2|y[k]|
∑k

i=1

∑N
j=k+1 |G[i][j]y[i]|, then it follows from

from (37) that d(y) < α. Thus, the FN should decide H0.
Similarly, if rT

kPkrk > α+2|y[k]|
∑k

i=1

∑N
j=k+1 |G[i][j]y[i]|,

then from (38), d(y) > α and the FN should decide H1.
2. If λmin(QN−k) < 0 ≤ λmax(QN−k): From (35)

and (36), we have

d(y) > rT
kPkrk + λmin(QN−k) (N − k)y2[k]

− 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|. (39)

In this case, the upper bound on d(y) is the same as (37).
Hence, it can be shown that the condition for deciding H0 will
be exactly the same as that of the first case. This yields (21).

Similarly, if

rT
kPkrk > α− λmin(QN−k) (N − k)y2[k]

+ 2|y[k]|
k∑

i=1

N∑
j=k+1

|G[i][j]y[i]|, (40)

then from (39), d(y) > α. Thus, the FN should decide H1.
3. If λmax(QN−k) ≤ 0: We have

d(y) < rT
kPkrk + 2|y[k]|

k∑
i=1

N∑
j=k+1

|G[i][j]y[i]|. (41)

Therefore, if rT
kPkrk < α−2|y[k]|

∑k
i=1

∑N
j=k+1 |G[i][j]y[i]|,

then from (41), d(y) < α and the FN should decide H0.
The lower bound on d(y) is the same as (39). Hence, it can

be shown that the condition for deciding H1 will be exactly
the same as that of the second case.
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