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Abstract—For the binary hypothesis testing problem, we
propose a novel feedback-enhanced successively reordered trans-
missions scheme (FE-SRTS), in which the nodes change the
order in which they transmit based on the feedback from the
fusion node (FN) in each step. It can be implemented in a
distributed manner using the timer scheme without any node
knowing the measurement of any other node. We derive novel
decision rules for it that enable the FN to decide on a hypothesis
after receiving only a subset of measurements. For the Bayesian
detection framework, FE-SRTS achieves the same optimal error
probability as the unordered transmissions scheme (UTS), in
which all the nodes transmit their log-likelihood ratios to the
FN. However, it requires far fewer nodes to transmit, on average,
than UTS, which leads to a much higher energy-efficiency.
As the signal-to-noise ratio increases, the average number of
transmissions of FE-SRTS decreases to two. This is much lower
than the average number of transmissions of the conventional
ordered transmissions scheme, which does not employ feedback
and does not update the order in which the nodes transmit.

I. INTRODUCTION

Distributed detection in wireless sensor networks (WSNs)
has applications in diverse fields such as surveillance, health-
care, environmental monitoring, inventory management, prod-
uct quality monitoring, transportation, and logistics. In these
networks, geographically distributed sensor nodes make mea-
surements and communicate some or all of them to a fusion
node (FN), which makes a decision. While the FN is often
connected to the power grid, the sensor nodes are powered
by batteries whose energies drain out over time. Therefore,
improving the sensor nodes’ energy-efficiency, which leads
to a longer network lifetime, is a critical issue in these
applications. Techniques such as censoring, on-off keying,
duty cycling, and clustering improve the energy-efficiency by
curtailing the number of nodes that transmit [1]. However,
this invariably leads to a degradation in performance.

A notable exception is the ordered transmissions scheme
(OTS) in which fewer nodes transmit on average without any
degradation in the error probability, which is the probability
that an incorrect hypothesis is detected [2]–[8]. In OTS, the
nodes transmit in the decreasing order of the absolute value
of their log-likelihood ratio (LLR). This is implemented in a
decentralized manner using the timer scheme, which ensures
that no node, including the FN, has to know the LLR of any
other node [9], [10]. Every time the FN receives an LLR
from a node, it decides on a hypothesis or waits for the next
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transmission. Once the FN decides, it broadcasts a control
signal to stop the other nodes from transmitting.

In [3], OTS is combined with power control to improve
the energy efficiency. Nodes transmit over different coherence
intervals and OTS is used to determine which node transmits
in a coherence interval. In [4], an ordered transmissions-based
sequential detection scheme is used for spectrum sensing.
In [5], a decentralized nearest-neighbor regression is imple-
mented using OTS. In [6], a combination of OTS and slotted
Aloha is implemented for detecting a shift in the mean for the
binary hypothesis testing problem. In [7], OTS is adapted for
energy harvesting sensor networks, where some sensors can
fail to transmit to the FN due to lack of energy. In [8], OTS
is generalized to handle correlated sensor measurements.

A. Contributions

We propose a novel feedback-enhanced successively re-
ordered transmissions scheme (FE-SRTS) for the binary hy-
pothesis testing problem. In this scheme, the node with the
highest absolute value of LLR first transmits its LLR to the
FN. The FN either decides or broadcasts the LLR it received
to all the nodes. The feedback is used to reorder the sequence
of nodes that transmit. The node whose LLR is the farthest
from the fed back LLR transmits next. The FN either decides
or feeds back, as above, its last received LLR. This process
continues until the FN decides. As in OTS, in each step,
this ordering of transmissions is implemented in a distributed
manner using the timer scheme. When the FN decides, it
broadcasts a signal to the nodes to stop their timers.

We derive novel decision rules for the FN that require
fewer nodes that transmit on average, but with same error
probability as the optimal unordered transmissions scheme
(UTS) in which all the nodes transmit their LLRs to the
FN. We then derive an expression for the average number
of transmissions. Our numerical results show that FE-SRTS
requires markedly fewer transmissions than both UTS and
OTS for the same error probability. We also prove that the
average number of transmissions decreases to two as the
signal-to-noise ratio (SNR) increases for any number of sensor
nodes and prior probability. This is much lower than OTS, in
which the number of transmissions decreases only by a factor
of two at larger SNRs.

Feedback for the detection problem has received less at-
tention in the literature [11]–[13]. In [11], the FN feeds
back its decision to the nodes after receiving local decisions
from them. The nodes then update their local decisions and
send them back to the FN. In [12], all sensors in a first
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Fig. 1. System model showing measurements, LLRs, metrics that determine
which node transmits first, and feedback by the FN.

subset make a decision based on their local measurements
and send them to the FN. The nodes in a second subset then
make individual decisions using their measurements and an
intermediate decision fed back by the FN. In [13], the nodes
transmit their decisions to an intermediate detector, which
then feeds back its decision to all the nodes. The nodes
update their decisions and transmit them to the FN, which
makes the final decision. Unlike FE-SRTS, the above schemes
require each node to transmit at least once. Furthermore, our
application of feedback to successively reorder transmissions
is novel.

B. Organization and Notations

Section II presents the system model. Section III specifies
FE-SRTS and its decision rules. We present simulation results
in Section IV, and our conclusions follow in Section V.

Notations: The probability of an event A is denoted by
Pr (A), and the conditional probability of A given event B by
Pr (A|B). The expectation with respect to a random variable
(RV) X is denoted by EX [·]. We denote vectors in bold font.
1[A] denotes the indicator function; it equals 1 if A is true
and is 0 otherwise. The notation yi ∼ N

(
µ, σ2

)
means that

yi is a Gaussian RV with mean µ and a variance σ2. For N
continuous RVs X1, X2, . . . , XN , r : N denotes the index of
the RV with the rth largest realization. Thus, X1:N > X2:N >
· · · > XN :N .

II. SYSTEM MODEL

We consider a WSN that consists of an FN and N sensor
nodes. Time is divided into measurement cycles. In each
cycle, based on measurements made by the nodes, the FN
needs to make a decision. The node measurement model and
detection framework are as follows.

A. Measurement Model and Detection Framework

The sensor measurements follow Gaussian statistics, which
is commonly assumed in the literature [2]–[7]. Measurements
by the nodes are mutually independent and identically dis-
tributed (i.i.d.) when conditioned on the hypotheses H0 and
H1. Here, H0 represents the null hypothesis and H1 the
true hypothesis. For example, in target detection, H0 models

the absence of a target, while H1 models its presence. The
measurement yi by node i is given by

yi ∼ N
(
0, σ2

0

)
, under hypothesis H0, (1)

yi ∼ N
(
0, σ2

0 + σ2
s

)
, under hypothesis H1, (2)

where σ2
0 and σ2

s denote the received noise and signal vari-
ance, respectively. The LLR Li of node i given by [2]

Li = log

(
f(yi|H1)

f(yi|H0)

)
, (3)

where f(yi|Hh) denotes the probability density function
(PDF) of yi conditioned on the hypothesis Hh, for h ∈ {0, 1}.
From (3), Li is given by [7]

Li = log

(
σ0√

σ2
0 + σ2

s

)
+

σ2
s

2σ2
0 (σ2

0 + σ2
s)
y2
i . (4)

The SNR is defined as σ2
s/σ

2
0 .

According to the Bayesian detection framework, the op-
timum decision rule that minimizes the error probability is
given by [14, Ch. III.A]

N∑
i=1

Li
H1

≷
H0

β, (5)

where β = log
(

(c10−c00)ζ0
(c01−c11)ζ1

)
and cuv is the cost incurred if

hypothesis Hu is chosen while Hv is true, and ζh > 0 is the
prior probability of Hh.

B. Recap: OTS and Timer Scheme
In OTS, the nodes transmit in the decreasing order of the

absolute value of their LLRs. Let (k) denote the index of the
node that transmits in the kth step. Therefore, its LLR is L(k).

To implement this, node i sets a timer and transmits its LLR
to the FN when its timer expires. The timer is a monotonically
non-increasing function of a locally computed non-negative
real number called metric. In OTS, the metric µi of node i
is |Li|. This ensures that node (1) with the highest absolute
value of the LLR transmits first to the FN. Then, node (2) with
the second highest metric transmits, and so on. As in [2], we
shall henceforth assume that collisions due to timers expiring
close to each other occur with negligible probability.

When the FN receives an LLR from node (k), it uses the
following decision rule:

If
k∑
i=1

L(i) > β + (N − k)
∣∣L(k)

∣∣ : Decide H1, (6)

If
k∑
i=1

L(i) < β − (N − k)
∣∣L(k)

∣∣ : Decide H0, (7)

Else, wait for next transmission.

The nodes transmit one by one until the FN makes a decision.
After the FN decides, it broadcasts a signal to the nodes to
stop their timers. The process repeats in the next measurement
cycle in which nodes obtain new measurements and the FN
makes a new decision. It was shown in [2] that the above
decision rules achieve the same error probability as UTS.
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III. FEEDBACK-ENHANCED SRTS

In FE-SRTS, each node sets a timer as a function of its
metric and transmits its LLR to the FN when its timer expires.
As before, the timer is a monotone non-increasing function
of the metric, which ensures that the node with the highest
metric transmits first. A key innovation in FE-SRTS is that
the metric changes in each step, as we specify below.

Let µi (k) denote the metric of node i at the beginning of
the kth step. Let [k] denote the node that transmits in the kth

step of FE-SRTS. Thus, its LLR is L[k]. The FN broadcasts
F (k) to all the nodes if it cannot decide after receiving L[k].1

Let Sk denote the set of all nodes that have not transmitted at
the beginning of the kth step. S1 is initialized to {1, 2, . . . , N}.

In the first step, node i sets its metric as µi (1) = |Li|. Thus,
[1] = arg maxi∈S1 {µi (1)}. Node [1] is the first to transmit
its LLR to the FN. The FN either decides on a hypothesis or
broadcasts F (1) = L[1] to the nodes. And, S2 = S1 \ {[1]}.

If i ∈ S2, then node i sets its metric as µi (2) =
|Li − F (1)|. Now, the nodes in S2 run the timer scheme.
Hence, [2] = arg maxi∈S2 {µi (2)}. Thus, node [2] transmits
in the second step. The FN either decides or broadcasts
F (2) = L[2] to all the nodes. Then, S3 = S2 \ {[2]}.

In general in the kth step (k ≥ 2), node i, for i ∈ Sk, sets
its metric as µi (k) = |Li − F (k − 1)| =

∣∣Li − L[k−1]

∣∣. The
nodes in Sk run the timer scheme. The FN either decides or
it broadcasts F (k) = L[k] to all the nodes. And, Sk+1 = Sk \
{[k]}. In any step, once the FN decides, it broadcasts a signal
to all the nodes to stop their timers to prevent any further
transmission. This is illustrated in Fig. 1. In effect, among
the LLRs that remain to be transmitted, FE-SRTS alternates
between the LLRs to the extreme right and extreme left of
the origin.

A. Decision Rule

To derive the decision rules, we first characterize the order
in which the nodes transmit in FE-SRTS.

Lemma 1: For 2 ≤ k ≤ N − 1 and k + 1 ≤ i ≤ N , the
following statements hold:

• If L[1] ≥ 0 and k is even, or L[1] < 0 and k is odd, then
L[k] ≤ L[i] ≤ L[k−1].

• If L[1] ≥ 0 and k is odd, or L[1] < 0 and k is even, then
L[k−1] ≤ L[i] ≤ L[k].
Proof: The proof is given in Appendix A.

We now derive the following decision rules for FE-SRTS
that ensure the same optimal error probability as UTS.

Result 1: For k = 1, the FN decides as follows:

If L[1] > β + (N − 1)
∣∣L[1]

∣∣ : Decide H1, (8)

If L[1] < β − (N − 1)
∣∣L[1]

∣∣ : Decide H0, (9)
Else, broadcast F (1) = L[1] and wait.

For 2 ≤ k ≤ N − 1, the FN decides as follows:

1When a node transmits its LLR or the FN transmits its feedback, we
assume that the effect of quantization is negligible [2].

• If L[1] ≥ 0 and k is even, or L[1] < 0 and k is odd, then

If
k∑
i=1

L[i] > β − (N − k)L[k]: Decide H1, (10)

If
k∑
i=1

L[i] < β − (N − k)L[k−1]: Decide H0, (11)

Else, broadcast F (k) = L[k] and wait.

• If L[1] ≥ 0 and k is odd, or L[1] < 0 and k is even, then

If
k∑
i=1

L[i] > β − (N − k)L[k−1]: Decide H1, (12)

If
k∑
i=1

L[i] < β − (N − k)L[k]: Decide H0, (13)

Else, broadcast F (k) = L[k] and wait.

For k = N , the FN uses the rule in (5) to decide.
Proof: The proof is given in Appendix B.

The choice of the metric and the decision rule for k = 1
are the same as OTS. However, the metric and the decision
rule are different for k ≥ 2.

B. Analysis: Average Number of Transmissions

We now derive an expression for the average number of
transmissions required by FE-SRTS. Let L = (L1, . . . , LN )
and l = (l1, . . . , lN ) be a realization of L.

Result 2: The average number of transmissions N̄tx is given
by

N̄tx =
∑

h∈{0,1}

N∑
t=1

tPr (L ∈ Γt|Hh) ζh, (14)

where Γt = Φc1∩ . . .∩Φct−1∩Φt and Φt is defined as follows:
1) For t = 1:

Φ1 =
{
l : l[1] − (N − 1)

∣∣l[1]

∣∣ > β
}
∪{

l : l[1] + (N − 1)
∣∣l[1]

∣∣ < β
}
. (15)

2) For 2 ≤ t ≤ N − 1:
• For l[1] ≥ 0 and t is even, or l[1] < 0 and t is odd:

Φt =

{
l :

t∑
i=1

l[i] + (N − t)l[t] > β

}
∪{

l :
t∑
i=1

l[i] + (N − t)l[t−1] < β

}
. (16)

• For l[1] ≥ 0 and t is odd, or l[1] < 0 and t is even:

Φt =

{
l :

t∑
i=1

l[i] + (N − t)l[t−1] > β

}
∪{

l :
t∑
i=1

l[i] + (N − t)l[t] < β

}
. (17)

3) For t = N , φN = RN .
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Proof: The proof is given in Appendix C.
Result 1 provides an independent way of verifying the

numerical results. It also leads to the following insightful
corollary, whose proof we skip due to space constraints.

Corollary 1: As σs →∞, N̄tx → 2 for all ζ1 and N ≥ 2.
As σs → ∞, the probability of deciding Hh after the

second transmission can be shown to be equal to ζh, for
h ∈ {0, 1}. Hence, the probability of making a decision after
the second transmission becomes 1 at larger SNR. Thus, as
the SNR increases, N̄tx for FE-SRTS always decreases to two
regardless of the number of sensor nodes. This is much lower
than OTS, in which N̄tx is close to

⌈
N
2

⌉
, where d·e denotes

the ceiling function [2].
Evaluating Pr (L ∈ Γt|Hh): The probability in (14) can be

numerically computed using Monte Carlo techniques. For a
given t and Hh, we generate M i.i.d. realizations of L, which
we denote by l1, . . . , lM . For a realization lm, we first order
it using Lemma 1. If the realization satisfies the condition
lm ∈ Γt, then 1[lm∈Γt] = 1, and is 0 otherwise. Its empirical
mean converges almost surely to Pr (L ∈ Γt|Hh). The error
in this computation decreases as O

(
1/
√
M
)

[15, Ch. 2].

IV. NUMERICAL RESULTS

We compare the average number of transmissions of FE-
SRTS, OTS, and UTS since they all achieve the same error
probability.2 A smaller average number of transmissions im-
plies a more energy-efficient scheme. To understand this, we
first define energy-efficiency γ. It is the ratio of the average
energy consumed by UTS to the average energy consumed by
the scheme [7]. When the nodes transmit with a fixed power,
the average energies consumed by FE-SRTS and UTS are
N̄txEtx and NEtx, respectively. Hence,

γ =
NEtx

N̄txEtx
=

N

N̄tx
. (18)

The larger the value of γ, the more energy-efficient is the
scheme. Note that the energy spent by the FN for feedback
is not considered since the FN is often plugged into the
power grid, while the nodes are not. We average over 104

measurement cycles. We set cuv = 1 if u 6= v, and cuv = 0
if u = v.

Fig. 2 plots N̄tx of OTS and FE-SRTS as a function of
the SNR for N = 10 and 20 nodes and ζ1 = 0.3. For
UTS, the average number of transmissions is N . We do not
show it to avoid clutter. We observe that FE-SRTS requires
markedly fewer transmissions than both UTS and OTS. For
example, for N = 20 and SNR = 10 dB, the average number
of transmissions of FE-SRTS is 21.8% of that of UTS and
46.9% of that of OTS. As the SNR increases, N̄tx of FE-
SRTS decreases to 2 while that of OTS is close to

⌈
N
2

⌉
. The

analysis and simulation results match well.
Fig. 3 plots N̄tx of OTS and FE-SRTS as a function of

ζ1 for three SNRs. In OTS, as ζ1 increases, N̄tx increases,
reaches a peak, and then decreases. This can be understood

2A comparison with techniques such as censoring, on-off keying, duty
cycling, and clustering is not shown as their error probabilities are larger.

Fig. 2. Average number of transmissions of as a function of SNR (ζ1 = 0.3).

Fig. 3. Average number of transmissions as a function of ζ1 (N = 20).

as follows. As ζ1 increases, β = log ((1− ζ1) /ζ1) decreases.
Thus, the odds that

∑k
i=1 L(i) in (6) exceeds β+(N−k)L(k)

increase and fewer steps are needed when H1 occurs. On the
other hand, when H0 occurs, we can infer from (7) that as β
decreases, more transmissions are needed. At lower values of
ζ1, the effect due to H0 dominates, while the effect due to H1

dominates at larger values of ζ1. We observe the same trend
in FE-OTS, but the variation in N̄tx is smaller. Its average
number of transmissions for all the prior probabilities and
SNRs is substantially lower than that of OTS.

Fig. 4 plots the energy-efficiency γ of FE-SRTS, OTS,
and UTS as a function of N . The energy-efficiency of FE-
SRTS and OTS increases as N increases, while that of
UTS is always one. While the energy-efficiency of FE-SRTS
increases linearly, that of OTS saturates close to 2.

V. CONCLUSIONS

We proposed FE-SRTS, in which the metrics of the nodes,
which determined the order in which the nodes transmitted,
were updated based on the feedback from the FN. We derived
novel decision rules for the scheme that guaranteed the same
optimal error probability as the conventional UTS. We also
derived an expression for average number of transmissions.
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Fig. 4. Energy-efficiency of FE-SRTS, OTS, and UTS as a function of N
(ζ1 = 0.5).

FE-SRTS required markedly fewer transmissions on av-
erage than OTS and UTS. While the average number of
transmissions of FE-SRTS decreased to two as the SNR
increased, that of OTS decreased close to

⌈
N
2

⌉
. This implied

that the energy-efficiency of FE-SRTS increased linearly with
the number of nodes, while that of OTS saturated close to 2.

APPENDIX

A. Proof of Lemma 1

We use mathematical induction. Consider first the scenario
where L[1] ≥ 0 and k is even. We first prove the lemma for
the initial case k = 2 and then for the general case.

When k = 2: Since µi (1) = |Li|, for 1 ≤ i ≤ N , and [1]
is the node with the highest metric, we have

L[i] ≤ L[1], for 2 ≤ i ≤ N. (19)

In the second step, the metric of node i is µi(2) =
|Li − F (1)| =

∣∣Li − L[1]

∣∣. By the definition of [2], we have∣∣L[2] − L[1]

∣∣ ≥ ∣∣L[i] − L[1]

∣∣ , for 3 ≤ i ≤ N. Therefore,

L[1] −
∣∣L[2] − L[1]

∣∣ ≤ L[i] ≤ L[1] +
∣∣L[2] − L[1]

∣∣ . (20)

From (19), we have L[2] ≤ L[1]. Hence,
∣∣L[2] − L[1]

∣∣ = L[1]−
L[2]. Substituting this in the upper bound in (20) yields

L[2] ≤ L[i], for 3 ≤ i ≤ N. (21)

Combining (19) and (21), we get L[2] ≤ L[i] ≤ L[1], for
3 ≤ i ≤ N .

When k = l and l is Even: Let Lemma 1 be true up to
k = l − 1. We now prove that it is true for k = l. Since l is
even, we are given that

L[l−2] ≤ L[i] ≤ L[l−1], for l ≤ i ≤ N. (22)

In the lth step, the metric of node i is µi(l) =
|Li − F (l − 1)| =

∣∣Li − L[l−1]

∣∣. From the definition of [l],∣∣L[l] − L[l−1]

∣∣ ≥ ∣∣L[i] − L[l−1]

∣∣ , for l + 1 ≤ i ≤ N. (23)

Therefore, for l + 1 ≤ i ≤ N , we have

L[l−1] −
∣∣L[l] − L[l−1]

∣∣ ≤ L[i]. (24)

From (22), we know that L[l] ≤ L[l−1]. Hence,∣∣L[l] − L[l−1]

∣∣ = L[l−1] − L[l]. Substituting this in (24), we
get

L[l] ≤ L[i], for l + 1 ≤ i ≤ N. (25)

Combining (22) and (25), we get L[l] ≤ L[i] ≤ L[l−1], for
l + 1 ≤ i ≤ N .

When k is odd, the initial case is k = 3. The proof for
it follows a similar logic and is not shown. The proof for
L[1] < 0 also follows a similar logic, and is skipped.

B. Decision Rules for FE-SRTS

We consider the three cases k = 1, 2 ≤ k ≤ N − 1, and
k = N separately below.

1) When k = 1: Since L[1], L[2], . . . , L[N ] is a permutation
of L1, . . . , LN , the decision rule in (5) can be recast as

N∑
i=1

L[i]

H1

≷
H0

β (26)

Since
∣∣L[i]

∣∣ ≤ ∣∣L[1]

∣∣, for 2 ≤ i ≤ N , we get −
∣∣L[1]

∣∣ ≤
L[i] ≤

∣∣L[1]

∣∣. This implies that −(N − 1)
∣∣L[1]

∣∣ ≤∑N
i=2 L[i] ≤ (N − 1)

∣∣L[1]

∣∣. Hence,
∑N
i=1 L[i] can be

bounded as

L[1] − (N − 1)
∣∣L[1]

∣∣ ≤ N∑
i=1

L[i] ≤ L[1]

+ (N − 1)
∣∣L[1]

∣∣ . (27)

Thus, if L[1] + (N − 1)
∣∣L[1]

∣∣ < β, it follows that∑N
i=1 L[i] < β. Therefore, the FN can decide H0.

Similarly, if L[1] − (N − 1)
∣∣L[1]

∣∣ > β, then it follows
that

∑N
i=1 L[i] > β. Hence, the FN can decide H1. This

yields the decision rule in (8) and (9).
2) When 2 ≤ k ≤ N : We consider the following two cases:

a) L[1] ≥ 0 and k is Even, or L[1] < 0 and k is Odd:
From Lemma 1, we have

L[k] ≤ L[i] ≤ L[k−1], for k + 1 ≤ i ≤ N. (28)

Therefore,

(N − k)L[k] ≤
N∑

i=k+1

L[i] ≤ (N − k)L[k−1]. (29)

Hence,
∑N
i=1 L[i] can be bounded as

∑k
i=1 L[i]+(N−

k)L[k] ≤
∑N
i=1 L[i] ≤

∑k
i=1 L[i] + (N − k)L[k−1].

If
∑k
i=1 L[i] + (N − k)L[k−1] < β, then we know

that
∑N
i=1 L[i] < β. Hence, the FN can decide H0.

Similarly, if
∑k
i=1 L[i] + (N − k)L[k] > β, then∑N

i=1 L[i] > β. Hence, the FN can decide H1. This
yields the decision rule in (10) and (11).

b) L[1] ≥ 0 and k is Odd, or L[1] < 0 and k is Even:
The proof follows a similar logic and is skipped.

3) When k = N : In this case, the FN knows all N LLRs.
Hence, the optimal decision rule in (5) applies.
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C. Derivation of Result 2

From the law of total expectation, we have

N̄tx =
∑

h∈{0,1}

N∑
t=1

tPr(Ntx = t|Hh)ζh. (30)

In terms of the joint distribution of the LLRs L[1], . . . , L[N ],
the probability term above is given by

Pr(Ntx = t|Hh) =

∫
l′∈RN

fL[1],...,L[N]
(l′|Hh)1[l′∈Γt] dl

′, (31)

where l′ =
(
l[1], l[2], . . . , l[N ]

)
is a realization of

L[1], L[2], . . . , L[N ]. In (31), Γt is the region such that if
l′ ∈ Γt, then the FN decides in favor of one of the hypotheses
after exactly t transmissions. Let Φt be the region of LLRs
such that if l′ ∈ Φt, the FN decides within t transmissions.
Then, it follows that Γt = Φc1 ∩ Φc2 ∩ . . . ∩ Φct−1 ∩ Φt.

From the decision rules for k = 1 in (8) and (9), we see
that the FN decides H1 if l[1] − (N − 1)

∣∣l[1]

∣∣ > β or H0

if l[1] + (N − 1)
∣∣l[1]

∣∣ < β. This yields the definition for Φ1

in (15). Similarly, from the decision rules in (10) and (11),
the definition for Φt in (16) follows. From the decision rules
in (12) and (13), the definition for Φt in (17) follows. Lastly,
we have ΦN = RN since the FN always decides when k = N .

For L[1] ≥ 0, we can show from Lemma 1 that [1] = 1 : N ,
[2] = N : N , [3] = 2 : N , and so on. In general, we have

[k] =


N − k

2 + 1 : N, if L[1] ≥ 0 and k is even,
k+1

2 : N, if L[1] ≥ 0 and k is odd,
k
2 : N, if L[1] < 0 and k is even,
N − k−1

2 : N, if L[1] < 0 and k is odd.

(32)

Substituting this in (31) for N even, we get

Pr(Ntx = t|Hh) =

∫
l′∈RN

fL1:N ,LN:N ,...,LN
2

+1:N
(l′|Hh)

× 1[l′∈Γt] dl
′. (33)

Similarly, we can show for N odd that

Pr(Ntx = t|Hh) =

∫
l′∈RN

fL1:N ,LN:N ,...,LN+1
2

:N
(l′|Hh)

× 1[l′∈Γt] dl
′. (34)

Rearranging terms, we get

Pr(Ntx = t|Hh) =

∫
l∈RN

fL1:N ,...,LN:N
(l|Hh)1[l∈Γt] dl, (35)

where l is a permutation of l′. Here, we have used the fact
that for any permutation, we have 1[l′∈Γt] = 1[l∈Γt].

The joint PDF of the ordered RVs L1:N , . . . , LN :N can be
written in closed-form as [16, Ch. II.2.2]

fL1:N ,...,LN:N
(l|Hh) = N !1[l∈∆]

[
N∏
n=1

f (ln|Hh)

]
, (36)

where ∆ = {l : l1 ≥ l2 ≥ · · · ≥ lN}. Substituting (36)
in (35), we obtain

Pr(Ntx = t|Hh) = N !

∫
l∈RN

1[l∈(Γt∩∆)]

[
N∏
n=1

f (ln|Hh)

]
dl, (37)

since 1[l∈∆]1[l∈Γt] = 1[l∈(Γt∩∆)]. This implies that

Pr(Ntx = t|Hh) = N ! Pr (L ∈ (Γt ∩∆) |Hh) . (38)

A key observation is that the events L ∈ Γt and L ∈ ∆
are independent when conditioned on the hypothesis, since
L ∈ Γt does not depend on any ordering of the elements
of L. Also, the event L ∈ ∆ is independent of Hh. Lastly,
Pr (L ∈ ∆) = 1

N ! since all the N ! permutations are equally
likely. We can then show that N ! Pr (L ∈ (Γt ∩∆) |Hh) =
Pr (L ∈ Γt|Hh). This implies that

Pr(Ntx = t|Hh) = Pr (L ∈ Γt|Hh) . (39)

Substituting this in (30) yields (14).
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