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Abstract—Multiple relay selection enables a cooperative system
to obtain better performance than single relay selection and
yet avoid challenging problems such as synchronization that

are associated with having all the relays transmit. While its
benefits have been well characterized, the problem of developing
distributed, scalable schemes that discover the best subset of
relays remains to be fully investigated. The problem is challenging
because the relays are spatially separated from each other
and have only local channel knowledge. We investigate the
popular, low feedback, and distributed timer scheme and derive
a novel, optimal timer mapping that maximizes the probability
of selecting the best two relays. This has applications in several
cooperative schemes proposed in the literature. We derive several
novel structural properties about the optimal mapping, which
reduce the complexity of finding it from the large space of all
functions to a one-dimensional search that can be solved using
a computationally efficient, iterative algorithm. Our extensive
benchmarking shows that the optimal mapping outperforms
several relay discovery schemes proposed in the literature. The
approach can be generalized to selecting the best l relays, as well.

I. INTRODUCTION

In cooperative communications, opportunistic relay selec-

tion is a popular solution for harnessing spatial diversity [1].

In it, one or a few relays are selected from the set of available

relays based on their current channel conditions to forward the

data from a source to a destination. Having fewer relays trans-

mit ameliorates the problem of ensuring tight synchronization

among them and makes relay selection practically appealing.

On account of its simplicity, relay selection can be applied in

a variety of cooperative communication protocols.

Broadly, two forms of relay selection have been investigated

in the literature, namely, single relay selection and multiple

relay selection. In single relay selection, only one relay, which

we shall refer to as the best relay, is selected [2], [3]. In

order to improve performance, single relay selection has been

generalized to multiple relay selection, in which the best two

relays, and, in general, the best l relays, are selected for

forwarding data to the destination.

Examples of Multiple Relay Selection: In [4], selecting

the best two relays was shown to improve the diversity-

multiplexing trade-off of an amplify-and-forward (AF) relay-

ing protocol. In [5] and [6], multi-relay selection was used

to minimize the data transmission time and maximize rate,

respectively. In [7], it was shown that the quality of 3-D

video transmission over a cooperative relay network can be
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improved by using the best two relays and unequal error

protection. Multiple relay selection for AF relaying has also

been considered in [8], in cooperative beamforming [9], and

in multiple sensor selection to maximize the energy efficiency

of wireless sensor networks [10]. It also arises in distributed

space-time coding, in which each selected relay forwards a

column of the space-time codeword matrix [11].

In the above works, the focus has mostly been on charac-

terizing the benefits of selection and on developing selection

criteria. Given the channel realization, the best relays are

assumed to have been identified perfectly and instantaneously.

However, no distributed mechanism for identifying them is

specified. This is a challenging and time-consuming task in

practice because the relays are geographically separated from

one another and each relay has only local channel knowledge.

Thus, no relay in the cooperative system knows a priori who

the l best relays are. Their identity needs to be discovered.

Given the local channel knowledge, relay discovery pro-

ceeds as follows. A relay i generates a real-valued preference

metric µi, which quantifies how useful it will be if selected. The

relays with the l largest metrics are then selected by a relay

discovery algorithm. The metric depends on the cooperative

communication protocol. For example, for an AF relay, its

metric is a harmonic mean of its source-relay and relay-

destination channel gains [2], as this is its contribution to the

signal-to-noise-ratio at the destination.

Relay Discovery Schemes: One plausible relay discovery

algorithm, which is called polling, proceeds as follows. The

relays transmit their metrics one by one to a central controller,

which then selects the l best relays. However, polling is not a

scalable solution because the time required by it to discover

the best relay(s) increases linearly with the total number of

relays in the system. This is not desirable because the more the

time spent on selection, the less the fraction of time available

for data transmission using the selected relays and the lower

the net spectral efficiency of the system. It also makes the

system more sensitive to time-variations in the channel gains.

Therefore, a distributed relay discovery scheme is desirable.

The timer scheme is a popular and elegant example of such

a scheme, and has been extensively used for discovering the

best relay. In it, each relay maps its metric to a timer using a

deterministic metric-to-timer mapping and transmits a packet,

which contains its identity, when its timer expires. The main

idea is that the metric-to-timer mapping is a monotone non-

increasing (MNI) function. This ensures that the timer of the

best relay expires earlier than those of the other relays, and

can, thus, be identified by the sink. However, the timer scheme
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can fail to select the best relay when another relay’s timer

expires within a vulnerability duration ∆ of the expiry of the

timer of the best relay [1], [12], [13]. In this case, the best

relay’s timer packet cannot be decoded by the sink. Several

metric-to-timer mappings have been proposed in the literature

for discovering the single best relay, and do so with varying

degrees of effectiveness [1], [13]–[16].

However, the design of the timer mapping for selecting the

best l relays, where l ≥ 2, has not received as much attention

in the literature, and is the focus of this paper. In [2], [17],

the l best relays are selected by running the timer scheme,

which uses the inverse metric mapping, l times. In the j th run,

the j th best relay gets selected. In [18], a feedback-intensive

approach based on the splitting algorithm is instead pursued.

Contributions: In this paper we present an optimal timer

mapping that maximizes the probability of discovering the best

two relays. To this end, we first derive several novel insights

into the special discrete structure of the optimal mapping.

These show that finding it in the large space of all MNI

functions requires just a one-dimensional search. These then

lead to a computationally efficient, iterative algorithm to find

the optimal mapping.

We show that the optimal mapping markedly outperforms

several ad hoc timer mappings presented in the literature. It

outperforms repeated selection, and serves as a fundamental

benchmark for evaluating multi-relay discovery schemes. The

proposed scheme can also be adapted to accommodate fairness

and quality of service constraints. This is done by redefining

the metric, along the lines of [2], [19].

We note that our approach can be generalized to solve the

problem of discovering the l > 2 best relays [20]. Furthermore,

the best two relay discovery problem is interesting in its own

right because it has not been investigated in the literature. It

is applicable when the Alamouti code is used as the space-

time code [11], as a special case of the multi-relay selection

problem in [5], [8]–[10], [21], and in [4], [7]. As we shall

see, determining the optimal timer mapping for discovering

the best two relays is much more involved than determining

the optimal mapping for discovering just the single best relay,

which was solved in [13]. This is a key challenge that this

paper tackles.

Outline: The paper is organized as follows. Section II

describes the system model. The optimal timer scheme and

its performance are studied in Sec. III. Simulation results and

our conclusions follow in Sec. IV and Sec. V, respectively.

II. SYSTEM MODEL AND TIMER SCHEME

Consider a cooperative system with K relays out of which

the best two are to be discovered, as illustrated in Figure 1. A

relay i locally computes a real-valued metric µi. Without loss

of generality µi is assumed to be uniformly distributed over

[0, 1).1 Relay i sets its timer Ti as a function of its metric

µi as Ti = f(µi). As mentioned, f is an MNI function. The

1If µi follows any other distribution, then one can transform it to a uniform
random variable by using its cumulative distribution function [12], [13].

Sink

(1)
(2)

0 1

Fig. 1. A system consisting of K relays in which the best two relays need
to be selected. Each relay i sets its timer depending on its metric µi, and
transmits a small timer packet when its timer expires.

relay transmits a small timer packet to the sink if its timer

expires before Tmax, which is the maximum time allocated

for selection. The timer packet contains the relay’s identity to

enable the sink to identify it. When arranged in descending

order, the metrics can be written as

µ(1) ≥ µ(2) ≥ · · · ≥ µ(N), (1)

where, as per standard order statistics notation, (i) denotes the

index of the node with the ith largest metric.

If two timers expire within a duration less than ∆ of each

other, then their timer packets collide and cannot be decoded

by the sink. The physical layer capabilities of the wireless

system determine ∆. It includes the maximum propagation

delay, the maximum delay spread in the channels seen by the

relays, and time synchronization errors, if any, among relays.

It also accounts for the duration of the timer packet.2 The

reader is referred to [1], [12] for an in-depth discussion of ∆.

We, thus, see that the sink can successfully discover the

best two relays if and only if the timers of the best two relays:

(i) expire before Tmax, and (ii) do not collide with each other

and with that of any other relay. Otherwise, we say that the

timer scheme has failed to discover the best two relays. Our

goal is to maximize the success probability, i.e., the probability

that the sink discovers the best two relays.

Alternative Models: We note that the success criterion above

is stringent in that it requires that the best two relays must both

be selected. This requirement can be relaxed in some systems.

For example, the sink can wait for the first two timer packets

that it can reliably decode – even if collisions occur in between

– and select the relays responsible for them. However, in this

case, the problem formulation needs to capture the system-

specific performance penalty associated with selecting sub-

optimal relays. Another possibility is that the sink can use

feedback to resolve the collisions [12]. However, incorporating

collision resolution is beyond the scope of the paper.

2Carrier sensing can also be incorporated in this framework by not
accounting for the timer packet duration in ∆. Carrier sensing, thus, makes
∆ smaller because the relays avoid transmitting and colliding as soon as they
sense that the channel is busy. In this case, each relay freezes its timer once
it senses the channel to be busy and continues to decrement it once it senses
channel to be idle. Now, Tmax is the maximum time duration over which the
timers can be decremented.
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Fig. 2. Illustration of optimal metric-to-timer mapping.

III. DETERMINING OPTIMAL TIMER MAPPING

We shall use the following notation henceforth. The floor

and ceil functions are denoted by ⌊·⌋ and ⌈·⌉, respectively. The

optimal value of a parameter x is denoted by x∗.

A. Structural Insights

We now develop four useful and novel results about the

structure of the optimal timer mapping to discover the best

two relays. These then culminate in an iterative algorithm to

compute it in Sec. III-B.

Result 1: An optimal metric-to-timer mapping f∗(µ) that

maximizes the probability of successfully discovering the

best two relays within a maximum time Tmax maps µ into

N + 1 discrete timer values {0,∆, 2∆, . . . , N∆}, where

N =
⌊

Tmax

∆

⌋

.

Proof: The proof is given in Appendix A.

Intuitively, the result is similar to the well-known result in

the multiple access control literature that slotted Aloha is better

than unslotted Aloha. Since the timer mapping is an MNI

function, Result 1 implies that it is entirely characterized by

N +1 interval lengths, which we denote by α0, . . . , αN , such

that the timer of a relay whose metric lies in [1−α0, 1) expires

immediately at time 0, the timer of a relay whose metric lies

in [1−α0−α1, 1−α0) expires at ∆, and so on. Furthermore,

the timer of a relay whose metric is less than 1 −
∑N

i=1 αi

does not expire. Mathematically, the optimal mapping can be

written as:

f∗(µ) =

{

i∆, 1−
∑i

j=0 αj ≤ µ < 1−
∑i−1

j=0 αj ,

T+
max, otherwise,

(2)

where T+
max indicates that the timer does not expire before

Tmax. We shall refer to αi as the ith interval length. The

intervals and the optimal mapping are illustrated in Fig. 2.

This result generalizes the result in [13], which was only for

discovering the single best relay.

Thus, we now only need to determine the N + 1 interval

lengths α0, . . . , αN to find the optimal mapping. Given the

discrete structure, the probability of success PK,N of the

optimal mapping takes the following simple form.

Result 2: The probability of successfully discovering the

best two relays is given by

PK,N = K (K − 1)

N
∑

r=1

αr



1−

r
∑

j=0

αj





K−2
r−1
∑

i=0

αi. (3)

Proof: The proof is given in Appendix B.

Our objective is to maximize PK,N subject to two con-

straints: αi ≥ 0, for 0 ≤ i ≤ N , and
∑N

j=0 αj ≤ 1. Clearly,

N ≥ 1 since two relays have to be discovered. For N = 1,

the probability of success expression reduces to

K (K − 1)α0α1 (1− α0 − α1)
K−2

.

It can be easily shown that its optimum value is
(

1− 1
K

) (

1− 2
K

)K−2
, and is attained when α0 = α1 = 1

K
.

Hereon, we study the case N ≥ 2.

The following result shows that optimal point lies in the

interior of the constrained region.

Result 3: The optimal value of αi that maximizes PK,N

satisfies 0 < α∗

i < 1, for 0 ≤ i ≤ N , and 0 <
∑N

i=0 α
∗

i < 1.

Proof: The proof is relegated to Appendix C.

Now we define a new set of variables {t0, . . . , tN}, where

ti = 1−

i
∑

r=0

αr, for 0 ≤ i ≤ N. (4)

Using these new variables, the expression for PK,N becomes

PK,N = K (K − 1)

N
∑

r=1

(tr−1 − tr) (tr)
K−2

(1− tr−1) .

(5)

The next result shows that once t∗N is known, then

t∗0, . . . , t
∗

N−1 are also known.

Result 4: Let q , K − 2. The optimal values of ti satisfy

the following recursion:

t∗i−1

=



















(

1 + q−1
)

t∗i , for i = N,

q+(1+q)t∗i
2q −

√

(q−(1+q)t∗
i )

2
+4q

(t∗i+1)
q

(t∗i )
q−1 (1−2t∗

i
+t∗

i+1)

2q ,

for 1 ≤ i ≤ N − 1,
(6)

and

2t∗0 − t∗1 = 1, (7)

Proof: The proof is given in Appendix D.

Thus, once t∗N is known, t∗N−1, . . . , t
∗

0 can be determined

sequentially. The optimization problem now reduces to finding

the optimal value of tN , which is a one-dimensional search

over the interval (0, 1). We now propose an iterative algorithm

for this purpose.
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Fig. 3. Variation of ti and 2t1 − t2 with tN for K = 5 and N = 5.

B. Iterative Algorithm

The algorithm proceeds as follows. It first chooses a value

for tN ∈ (0, 1). Using (6), it obtains the value of tN−1

followed by tN−2 and so on up to t0. In case ti turns out

to be negative, complex, or is greater than unity, then the

algorithm chooses another value for tN and restarts. Similarly,

it chooses another value for tN in case the constraint in (7) is

not satisfied. For brevity, we shall say that ti is feasible if it

lies in (0, 1). Else, we shall say that it is infeasible.

The only question that remains to be answered is whether tN
should be increased or decreased when the above constraints

are not satisfied. To understand this, we plot the values of ti
and 2t0− t1 for K = 5 and N = 5 in Fig. 3. The figure leads

to the following two useful empirical observations:

1) If tN > t∗N , then at least one among tN−1, . . . , t0 is

infeasible, or all are feasible but 2t0 − t1 > 1.

2) If tN < t∗N , then tN−1, . . . , t0 are all feasible but

2t0 − t1 < 1.

We have found that these observations hold for all K and N .

These observations help us formulate a bisection algorithm

to determine the optimal value of tN . The pseudo-code for

the algorithm is given in Figure 4. The value for tN is chosen

as the midpoint of the search interval (0, 1). Thereafter, the

values of tN−1, . . . , t0 are computed sequentially. Once one

of them becomes infeasible or 2t0 − t1 > 1, then we know

that tN > t∗N . In this case, the search interval is updated to

(tN , 1). In all other cases, we know that tN < t∗N . Therefore,

the search interval is updated to (0, tN). In the next step, we

take the midpoint of the updated search interval as tN and

proceed in a similar manner.

Complexity of the Algorithm: If we consider the computa-

tion of a single value of ti using (6) to have a complexity

of O(1), then the computational complexity for obtaining

t∗N with a precision of ψ can be shown to be at most

O (−N ⌈log2(ψ)⌉) [22].

IV. SIMULATIONS

We now evaluate the performance of the optimal timer

mapping and benchmark it with several timer schemes pro-

Data: K , N , ψ ; /*precision: ψ*/
begin

l = 0, u = 1 ; /*search interval: (l, u)*/
repeat

m = l+u
2

tN = m
for i = N − 1 to 0 do

Use (6) to compute ti.
if ti is infeasible then

u = m
break

end

end

if t0 is feasible then

if 2t0 − t1 > 1 then
u = m

end

else
l = m

end

end

until u− l < ψ;

Declare current values of t0, . . . , tN as optimal.
end

Fig. 4. Iterative bisection algorithm to compute optimal best two relay
timer mapping’s parameters.

posed in the literature. This includes the following: (i) Inverse

metric timer mapping [1]: A relay i sets its timer as c/µi,

where, in order to ensure as fair a comparison as possible,

c > 0 is optimized using a brute-force numerical search for

each value of K and N . (ii) Equal stair length discrete timer

mapping [16]: The N + 1 interval lengths are set to be equal

to 1/(N +1). (iii) Affine mapping: A relay i sets its timer as

Tmax(1−µi), which is a special case of the class of mappings

considered in [15]. Also plotted is the performance of repeated

selection, in which optimal timer scheme for discovering the

single best relay [13] is rerun twice. The first run uses
⌈

N−1
2

⌉

timer levels and attempts to discover the best relay. After a

time gap of ∆, the second run uses
⌊

N−1
2

⌋

timer levels and

attempts to discover the second best relay.

Figure 5 plots the probability of discovering the best two

relays as a function of the number of timer levels N for

K = 20 relays. We see that as N increases, the probability

of success increases. Notice that the optimal timer scheme

markedly outperforms the optimized inverse metric, affine, and

equal stair length timer schemes. For example, at N = 35, the

probability that the optimal timer scheme discovers the best

two relays is 222%, 182%, and 57% better than those of the

inverse metric, affine, and equal stair length timer schemes,

respectively. It is also 6% better than repeated selection, which

demonstrates the importance of accounting for the number of

relays to be selected in the optimization problem formulation.

Figure 6 plots the probability of discovering the best two

relays as a function of the number of relays K for N = 20.

We see that the optimal timer scheme is scalable because its
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Fig. 5. Probability of selecting the best two relays out of K = 20 relays as
a function of the number of timer levels N .
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Fig. 6. Probability of selecting best two relays as a function of the number
of relays in the system (N = 20).

success probability decreases only marginally from 0.81 to

0.79 when the number of relays increases seven-fold from

10 to 70. This is unlike the inverse metric scheme, whose

probability of success decreases to 0 as K increases. As

before, the optimal mapping again markedly outperforms all

the ad hoc mappings. It also outperforms repeated selection,

whose probability of success, for large K , stabilizes at 0.72,

which is 9% lower than that of the optimal mapping.

V. CONCLUSIONS

A variety of cooperative communication systems need a

distributed algorithm to discover the best two relays from

the set of available relays because the information about the

usefulness of a relay is local and no node knows a priori

who the best relays are. For such systems, we derived an

optimal timer mapping that maximizes the probability of

discovering the best two relays. We proved that it has a

special discrete structure in which the timers can expire only

at integer multiples of the vulnerability window. This makes

it easy to implement since a relay only needs to store a simple

lookup table with N + 1 entries to map its metric to the

timer value. We saw that finding the optimal mapping reduces

to a one-dimensional search, for which an efficient bisection

algorithm was developed. The optimal mapping markedly

outperformed several timer mappings that have been proposed

in the literature, and also outperformed repeated selection.

APPENDIX

A. Proof of Result 1

Let f(µ) be an optimal MNI metric-to-timer mapping.

Consider the new mapping g(µ) that is defined in terms of

f(µ) as follows:

g(µ) =

{ ⌊

f(µ)
∆

⌋

∆, if f(µ) ≤ Tmax

f(µ), if f(µ) > Tmax

. (8)

Therefore, g(µ) = 0, if 0 ≤ f(µ) < ∆, g(µ) = ∆, if ∆ ≤
f(µ) < 2∆, and so on. Since f(µ) is MNI, it is easy to verify

that g(µ) is well-defined and MNI.

We prove below that in every realization of metrics for

which f successfully discovers the best two relays, g also

successfully discovers the same best two relays. Therefore, if

f is optimal, then g, which has the desired discrete structure,

must also be optimal.

Consider a realization of the K metrics. For this realization,

let the corresponding values of timers for the K relays when

f is used as the metric-to-timer mapping be denoted by

tf(1), . . . , t
f

(K). Recall that (i) denotes the index of the relay

with the ith largest metric, which is the same as the relay with

the ith smallest timer. Similarly, the timers of the K relays

when g is used as the metric-to-timer mapping are denoted by

tg(1), . . . , t
g

(K).

The best two relays are successfully discovered by f only

under the following two mutually exclusive events:

i) Timers tf(1), t
f

(2), and tf(3) expire before Tmax: In this case,

successful discovery occurs if and only if these three timers

expire at least ∆ duration apart from each other:

tf(2) − tf(1) ≥ ∆, tf(3) − tf(2) ≥ ∆, and tf(3) ≤ Tmax. (9)

Therefore,
t
f

(j)

∆ ≥
t
f

(j−1)

∆ + 1, for j = 2, 3.

From the properties of the floor function, it follows that
⌊

tf(j)
∆

⌋

≥

⌊

tf(j−1)

∆

⌋

+ 1, for j = 2, 3. (10)

Multiplying both sides by ∆, it follows from the definition of

g in (8) that tg(j) ≥ tg(j−1) + ∆, for j = 2, 3. Furthermore,

from (9), we know that tf(2) < Tmax. Therefore, g also

successfully discovers the best two relays.

ii) Timers tf(1) and tf(2) expire before Tmax and the timers

tf(3), . . . , t
f

(K) do not expire: Since a successful discovery has

occurred in f , we must have tf(2) ≥ tf(1)+∆ and tf(2) ≤ Tmax.

As before, from the definition of g in (8), this implies that

tg(2) ≥ tg(1)+∆, tg(2) ≤ Tmax, and tg(3) > Tmax. Thus, the third

best relay’s timer does not expire under g and, consequently,

does not collide with the timers of the best two relays, which

have expired before Tmax and have not collided with each

other.
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B. Proof of Result 2

Maintaining the order of the sorted metrics, the best two

relays can be chosen from the K relays in K (K − 1) ways.

When both relays are successfully discovered, let the second

best relay lie in the rth interval, which is of length αr. Since

a success occurs only if the best two relays lie in different

intervals, we must have r ≥ 1. For successful discovery of

the best two relays to occur: (i) The best relay must lie in any

of the intervals α0, . . . , αr−1. This occurs with probability
∑r−1

i=0 αi. (ii) And, the remaining K − 2 relays must lie in

the interval [0, 1 −
∑r

j=0 αj). This occurs with probability
(

1−
∑r

j=0 αj

)K−2

. Therefore, the probability that the sec-

ond best relay lies in the rth interval and successful discovery

occurs is K (K − 1)αr

(

1−
∑r

j=0 αj

)K−2
∑r−1

i=0 αi. The

desired result follows from the law of total probability by

summing the above expression over all possible values of r.

C. Proof of Result 3

We provide a brief sketch of the proof here. Assume that

for some i, αi = 0. We can always find an αi′ such that i′ is

the smallest integer greater than i with αi′ 6= 0, or i′ is the

largest integer less than i with αi′ 6= 0. Now, increase αi to

ǫ and decrease αi′ by ǫ, where ǫ is a small positive value. It

can be shown that the value of PK,N increases.

Similarly if
∑i

j=0 αj = 1 for some i, then by decreasing

αi by ǫ, it can be shown that PK,N increases. It, therefore,

follows that the optimal point cannot lie on the boundary of

the constrained region.

D. Proof of Result 4

Taking the partial derivative with respect to tN of PK,N

in (5) and equating it to zero, we get
(

1− t∗N−1

)

(t∗N)
q−1 (

qt∗N−1 − (q + 1) t∗N
)

= 0. (11)

From Result 3, we know that 0 < t∗i < 1. Therefore,

t∗N−1 =

(

1 +
1

q

)

t∗N . (12)

Similarly, taking the partial derivative of PK,N with respect

to t0 and equating it to zero yields (7).

For 1 ≤ i ≤ N − 1, taking the partial derivative of PK,N

with respect to ti and equating it to zero, we get

(

1− t∗i−1

)

(

q (t∗i )
q−1 (

t∗i−1 − t∗i
)

− (t∗i )
q
)

+
(

1− 2t∗i + t∗i+1

) (

t∗i+1

)q
= 0. (13)

The important point to observe is that the above equation is

quadratic in t∗i−1. Therefore, solving it yields

t∗i−1 =
q + (1 + q) t∗i

2q

±

√

(q − (1 + q) t∗i )
2
+ 4q

(t∗i+1)
q

(t∗i )
q−1

(

1− 2t∗i + t∗i+1

)

2q
. (14)

It can be shown that the negative sign must always be taken

in (14) in order to ensure that 0 < t∗i−1 < 1. Hence, the result

follows.
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