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Abstract—Several wireless systems that seek to exploit multi-
user or spatial diversity need to opportunistically select a ‘best’
node from among the many available nodes. This is done on
the basis of a suitability metric that is locally known at each
node, and is initially not known elsewhere. While a fast, scalable,
multiple access based algorithm is known today for doing this in
a distributed manner, it assumes perfect knowledge of statistical
parameters such as the cumulative distribution function of the
suitability metric and also the total number of nodes. In this
paper, we develop a novel and comprehensive analysis of the
algorithm when the parameter knowledge is imperfect – as

is always the case in reality due to statistical inaccuracies or
the time-varying nature of the system. We show that imperfect
knowledge does negatively influence the performance of the
selection algorithm, and must be accurately accounted for.

I. INTRODUCTION

Many wireless communication schemes being researched

today envisage the use of a selection mechanism to discover

or select the most suitable candidate, from a set of many can-

didates. For example, the cooperative communication systems

in [1]–[4] involve the selection of the single best node by the

source for relaying a message from the source to the destina-

tion. In cellular systems, the base station selects the mobile

station with the highest instantaneous channel gain to the base

station. In energy harvesting sensor networks, selection helps

improve the energy neutral operating region [5].

More formally, in these systems, each node independently

generates (or knows) its real-valued suitability metric, and the

aim is to discover the node with the highest metric. Even

fairness constraints, as imposed in proportional fair scheduling

in cellular systems [6] or in cooperative communications [7],

can be easily accommodated since the metrics can be scaled

appropriately. As the channels and the metrics evolve over

time, different nodes will get selected at different times.

The decentralized nature of the system implies that the

knowledge of the metric is initially available only locally at the

node itself. A centralized architecture for making the selection

decision, such as a polling mechanism, is inefficient as the time

and bandwidth resources consumed increase linearly with the

number of candidate nodes. It is therefore highly desirable

that the process of selection be both fast and decentralized.

Recently, interesting multiple access selection (MAS) mecha-

nisms have been proposed in [3], [8], [9] in which the nodes

themselves compete based on their local information.
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In [3], nodes transmits a short message when their back-off

timer, which is set to be inversely proportional to the metric,

expire. Therefore, the node that first transmits is the best node.

While this scheme is simple, the timers can expire such that

messages from different nodes overlap with each other at the

sink1 and become indecipherable. This reduces the ability of

the algorithm to exploit the diversity benefits of having more

nodes in the system.

An alternate selection mechanism was proposed by Qin and

Berry in [8]. It uses a splitting-based time-slotted algorithm

to select the best node. Note that the splitting algorithms for

multiple access control, which have been studied extensively in

literature (see [10] and the references therein), aim at serving

all the nodes. Whereas, the selection aims at finding the

single best node as fast as possible. Regardless of the number

of nodes, the algorithm provably finds the best node within

2.507 slots, on average. In this algorithm, only nodes whose

metrics lie between two thresholds transmit. The thresholds

are a function of static parameters such as the cumulative

distribution function (CDF) of the metric and the total number

of nodes, and gets updated based on the outcomes of the

previous steps of the algorithm.

The key question that we ask and address in this paper is the

impact of imperfect parameter knowledge on the performance

of this algorithm. This is an important question since even

statistical information is clearly subject to inaccuracies. In this

paper, we focus on the Qin-Berry algorithm given its remark-

ably fast selection ability, which is highly desirable given the

time-varying nature of the wireless channel, and its scalability

with the number of nodes. Here, the CDF of the metric and the

number of nodes needs to be estimated or assumed. Estimation

is subject to statistical inaccuracies. The alternate option is to

assume, i.e., factory preset, this information in the nodes; even

this may suffer from performance degradation since the actual

parameters encountered in the field may be different. While

the Qin-Berry algorithm is fast with perfect knowledge, little

is understood about its performance with imperfect parameter

knowledge. For example, a time-varying channel model, where

the metric becomes outdated while the algorithm is running

was considered in [8]. But, the parameters were assumed to

be perfectly known.

We develop a novel and comprehensive analysis of the

splitting algorithm with imperfect parameters. For both the

cases of imperfect CDF and node count knowledge, we derive

1We use the generic term ‘sink’ to refer to the access point or base station
or source, as the case may be, that needs to select the best node.
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Fig. 1. A relay selection system consisting of a sink and n nodes, with a
node i possessing a metric ui.

expressions for the probability distribution function and the

average of total number of slots required by the algorithm

The paper is organized as follows. The system model and

the selection algorithm is briefly described in Sec. II. The

analysis is developed in Sec. III. The results are studied and

verified using simulations in Sec. IV. Our conclusions follow

in Sec. V. Proofs are relegated to the appendix.

II. SYSTEM MODEL

Consider a time-slotted system with n active nodes and

a sink, as shown in Fig. 1. Each node i has a suitability

metric ui, which is known only to that specific node. The

goal is to select the node with the highest metric. The metrics

are assumed to be i.i.d. with continuous complementary CDF

(CCDF) Fc(u) = Pr(ui > u). A node does not change its

metric during the process of selection.

In the Qin-Berry selection algorithm, at the beginning of

each slot, each node determines whether to transmit or not in

a distributed manner as detailed below. At the end of each slot,

the sink broadcasts one of three outcomes: (i) 0 if the slot was

idle (when no node transmitted), (ii) 1 if the outcome was a

success (when exactly one node transmitted), and (iii) e if the

outcome was a collision (when multiple nodes transmitted).

The algorithm runs independently in each of the contending

nodes. It basically determines two thresholds, HL(k) and

HH(k), for each time slot k. Only those nodes whose metric

u satisfies HL(k) < u < HH(k) transmit in slot k. It also

specifies another variable Hmin(k), which is the largest value

of the metric known up to slot k above which the best metric

surely lies. The algorithm terminates when the outcome is a

success (1).

Formally, the algorithm can be defined as follows. Let

split (a, b) = F−1
c

(

Fc(a)+Fc(b)
2

)

. (The split function makes

sure that the nodes involved in the last collision transmit

with probability 0.5.) In the first slot, the parameters are

initialized as follows: HL(1) = F−1
c (1/n), HH(1) = ∞,

and Hmin(1) = 0. Then, the algorithm in the (k + 1)th slot

proceeds as follows [8]:

1) If feedback (of the kth slot) is an idle (0) and there have

been no collisions thus far, then set HH(k+1) = HL(k)
and HL(k + 1) = F−1

c ( i+1
n

+ O( 1
n2 )).2

2We shall henceforth ignore the O(1/n2) term that arises in setting the
thresholds as its effect is known to be quite negligible even when the number
of nodes is as small as 7.

2) If feedback is a collision (e), then set Hmin(k + 1) =
HL(k) and HL(k + 1) = split (HL(k), HH(k)).

3) If feedback is an idle (0) and a collision has occurred in

the past, then set HH(k+1) = HL(k) and HL(k+1) =
split (Hmin(k), HH(k)).

We shall refer to the phase of the algorithm before the first

non-idle slot as the idle phase. Subsequent slots constitute the

collision phase.

As can be seen, the algorithm requires each node to know

the following two parameters: (i) the CCDF of the metric (or,

equivalently, its CDF), and (ii) the number of nodes, n. We

now analyze the case where the CCDF or the number of nodes

is imperfectly known.3

III. ANALYSIS

First, we consider a generalization of the Qin-Berry algo-

rithm in which during the idle phase, the minimum metric

threshold for transmission at slot k is set as HL(k) =
F−1

c (kpe/n). It is easy to see that the Qin-Berry algorithm,

described in section II, corresponds to pe = 1. pe will

help us understand better the performance of the algorithm

with imperfect knowledge of the number of nodes. Also,

setting pe = 1 as done in Qin-Berry algorithm only greedily

maximizes probability of success in each slot of the idle phase,

which need not be optimal overall.

We first derive for the perfect case, the CDF of the number

of slots required to select the best node. It must be noted

that even these results for the perfect case are novel to the

best of our knowledge; only the average number of slots

has been considered in [8]. The average number of slots

can be derived from the CDF using following Lemma. Let

FT (t) = Pr(T ≤ t) denote the CDF of the number of slots,

T , required to select the best node. (T is an integer-valued

positive random variable (RV).)

Lemma 1: The average number of slots required to select

the best node is given by

E [T ] = 1 +

∞
∑

t=1

(1 − FT (t)). (1)

Proof: The proof follows from the fact that for any non-

negative integer-valued RV, X , E [X ] =
∑∞

i=0 Pr(X > i).

A. Perfect Parameter Knowledge Case

We now find the probability distribution of T when Fc(.)
and n are perfectly known. Let p(a, b) be the probability of

exactly b slots being required to resolve a collision involving

a nodes. Then, p(a, b) is given by the following Lemma.

Lemma 2: The probability that exactly b slots are required

to resolve a collision involving a nodes is

p(a, b) =
1

2a

(

p(a, b − 1)+

a
∑

i=2

(

a

i

)

p(a, b − 1)

)

, b > 1, (2)

3To ensure that the best node still gets selected, all nodes must possess the
same imperfect knowledge. This can be easily ensured by having the access
point/sink broadcast this slowly-varying information occasionally. Imperfect
node counts can still occur when nodes go to sleep or move away.



where the recursion is initialized by p(a, 1) = a/2a.

Proof: The proof is given in Appendix A.

Let q =
⌈

n
pe

⌉

− 1, where ⌈.⌉ denotes the ceil function. The

main result for the perfect knowledge case now follows.

Theorem 1: With perfect knowledge of Fc(.) and n, the

CDF of the number of slots, FP (t, n, pe), required to select

the best node is:

FP (t, n, pe) =

min(t,q)
∑

i=1

pe

(

1 −
ipe

n

)n−1

+

min(t,q)−1
∑

i=1

n
∑

k=2

(

n

k

)

(pe

n

)k
(

1 −
ipe

n

)n−k t−i
∑

j=1

p(k, j)

+ I{t>q+1}

(

1 −
qpe

n

)n
t−q−1
∑

j=1

p(n, j), (3)

where I{X} = 1, if X is true, else I{X} = 0.

Proof: The proof is given in Appendix B.

Finally, the average number of slots, mP (n, pe), required to

find the best node is given by the following theorem.

Theorem 2: With perfect knowledge of Fc(.) and n,

mP (n, pe) =
(

1 −
qpe

n

)n

(EXn + q + 1)

+

q
∑

i=1

n
∑

k=1

(

n

k

)

(pe

n

)k
(

1 −
ipe

n

)n−k

(EXk + i) (4)

where EXk =
2k+

∑k−1

l=2 (k

l)EXl

2k−2
, k>2, EX1 =1, and EX2 =2.

Proof: The proof is given in Appendix C.

We now analyze the imperfect knowledge case.

B. Imperfect CDF

Let the CCDF assumed by all the nodes be Fc,ass(.), while

it is actually Fc,act(.). (The number of nodes, n, is assumed

to be perfectly known.)

Let p(a, b, ℓ, h) be the probability that exactly b slots are

required to resolve a collision involving a nodes with HL =
F−1

c,ass(ℓ) and HH = F−1
c,ass(h), since Fc,ass(.) is the CCDF

assumed. First, we derive p(a, b, l, h) in the following Lemma.

Lemma 3:

p(a, b, ℓ, h) = p

(

a, b − 1, ℓ,
h + ℓ

2

)

(1 − β(ℓ, h))a

+

a
∑

i=2

(

a

i

)

βi(ℓ, h)(1 − β(ℓ, h))a−ip

(

i, b − 1,
h + ℓ

2
, h

)

, (5)

where p(a, 1, ℓ, h) = aβ(ℓ, h)(1 − β(ℓ, h))a−1 and

β(ℓ, h) =
Feq(h)−Feq(

ℓ+h
2

)

Feq(h)−Feq(ℓ)
. Here, Feq(.) is a composite function

given by Feq(x) = Fc,act(F
−1
c,ass(x)).

Proof: The proof is given in Appendix D.

Theorem 3: The CDF of the total number of slots required

by the algorithm when the CCDF assumed by all the nodes is

Fc,ass(.) and the actual CCDF of the metric is Fc,act(.) is

FIc(t, n, pe) =

t′−1
∑

i=1

n
∑

k=2

[

(

n

k

)(

Feq

(

ipe

n

)

− Feq

(

(i − 1)pe

n

))k

×

(

1 − Feq

(

ipe

n

))n−k T−i
∑

j=1

p

(

k, j,
ipe

n
,
(i − 1)pe

n

)

]

+ I{t>q+1}

(

1 − Feq

(qpe

n

))n
t−q−1
∑

j=1

p
(

n, j, 1,
qpe

n

)

+

t′
∑

i=1

n

(

1 − Feq

(

ipe

n

))n−1(

Feq

(

ipe

n

)

−Feq

(

(i − 1)pe

n

))

, (6)

where t
′

= min(t, q).
Proof: The proof is given in Appendix E.

The average number of slots follows by substituting the above

result in Lemma 1.

C. Imperfect knowledge of n

We now derive an expression for the CDF of the total

number of slots required, FIn(t, n, n̂, pe), and its average,

mIn(n, n̂, pe), when the number of nodes contending is as-

sumed (by all) to be n̂ when the actual value is n.

Theorem 4: The CDF of the average number of slots

required when the number of nodes is assumed to be n̂ and

the actual value is n is

FIn(t, n, n̂, pe) = FP

(

t, n,
npe

n̂

)

. (7)

Proof: The proof is given in Appendix F.

Theorem 5: The average number of slots required when

the number of nodes assumed is n̂ and the actual value is n
is

mIn(n, n̂, pe) = mP

(

n,
npe

n̂

)

. (8)

Proof: The proof is omitted due to space constraints.

The above expressions give nice insights about the perfor-

mance of the algorithm with imperfect knowledge of n. They

show that the performance depends only on the ratio n̂
n

and

the value of pe chosen.

IV. SIMULATIONS

We now study graphically the analytical results derived in

Section III. We also compare our analytical results with Monte

Carlo simulations (with 105 samples generated for each point

in the plot). The figures are plotted for pe = 1.

We now consider the imperfect CCDF case. We take the

metric to have an exponential distribution, as is the case

for multiuser diversity over frequency-flat fading channels.

Without loss of generality, we set its mean power to unity.

For this the (actual) CCDF is Fc,act(t) = e−t. The assumed

CCDF is taken to be Fc,ass(t) = e−λestt. Figure 2 plots

the CDF of the number of slots required (T ) to select the

best node, for n = 8 nodes. It shows that the CDF of T
shifts downwards as compared to the perfect knowledge case
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which implies degradation in performance. For example, the

median increases by 24% when λest = 1.4 and by 60% when

λest = 0.6. The average number of slots is plotted in Figure 3,

as a function of number of nodes in the system for λest = 1.2.

Also, it can be seen that the upper bound of 2.507 slots for

perfect knowledge case [8] is exceeded when n ≥ 11 when

the knowledge is imperfect.

Figure 4 plots CDF of T when the number of nodes is

known inaccurately. The actual number of nodes is taken to

be 20. (The CDF of the metric, which is perfectly known,

is Fc(t) = e−t.) Again, one can see that the CDF shifts

downwards, which implies a degradation in the performance

of the algorithm. For example, the median increases by 10%
and 26% when n̂ = 30 and n̂ = 10, respectively. Figure 5

plots the average number of slots to select the best node as a

function of n, for n̂ = (1 ± 0.4)n. We see that the average

number of slots increases. However, it saturates for larger n.

V. CONCLUSIONS

We analyzed and studied the performance of the Qin-Berry

algorithm used to select the node with highest metric, for the
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practical scenario where the CDF of the metric and the total

number of nodes in the system is not known perfectly. Our

analysis for the CDF and the average of the number of slots

required show that the degradation in the performance due to

imperfect knowledge is not catastrophic. In fact, the algorithm

scales well even in the presence of a large inaccuracy in

the estimate of the number of nodes; the average number of

slots required, while higher, did saturate. Given the important

role of selection, we believe our results are widely applicable

in the areas such as co-operative relay selection, cellular

systems exploiting multiuser diversity and multi-hop sensor

networks. An interesting avenue for future work is developing

mechanisms to make the algorithm more robust.

APPENDIX

A. Proof of Lemma 2

If a nodes are involved in a collision, then the distribution of

the number of nodes transmitting in the next slot is a binomial

distribution with a trials and probability of success of 1/2,

which we denote by Bi(a, 1/2). Thus, p(a, 1), which is the

probability that one node transmits in the next slot, equals



a/2a. For b > 1, the following three cases arise in calculating

p(a, b):

1) The next slot is idle: This case happens with probability
(

a

0

)

/2a. Now, the collision involving a nodes needs to

be resolved in b − 1 slots.

2) The next slot is a collision among i nodes: This collision,

which happens with probability
(

a

i

)

/2a, needs to be

resolved in exactly b − 1 slots.

3) The next slot is a success: This implies that the collision

is resolved in fewer than b slots. Consequently, it is

impossible to resolve it in exactly b slots.

B. Proof of Theorem 1

By definition, p(a, b) is the probability that exactly b slots

are required to resolve a collision among a nodes. Also,

the idle phase can consist of a maximum of q slots. Given

that the first non-idle slot is the ith slot and k nodes are

involved, the probability that the collision is resolved in the

remaining t− i slots is
∑t−i

j=1 p(k, j). The probability that the

first non-idle slot is the ith slot and k nodes are involved is
(

n

k

) (

pe

n

)k (

1 − ipe

n

)n−k
, for i ≤ q. The probability that the

(q + 1)th slot is the first non-idle slot is (1 − qpe

n
)n since all

the k = n nodes must necessarily be involved. (Other values

of k are impossible.) Hence, the result follows.

C. Proof of Theorem 2

EXk is the average number of slots required to resolve

a collision among k nodes. ( EXk is given in equation (6)

in [8].) Given that the first non-idle slot is the ith slot

and k nodes are involved, the average number of slots re-

quired is EXk + i. The probability that this happens is
(

n
k

) (

pe

n

)k (

1 − ipe

n

)n−k
, for i ≤ q. For the (q + 1)th slot,

the probability that it is the first non-idle slot and k nodes are

involved is (1 − qpe

n
)n, for k = n, and is 0 otherwise.

D. Proof of Lemma 3

The a priori probability of a metric falling in an inter-

val (c, d) is Fc,act(d) − Fc,act(c). The split function makes

sure that, among all the nodes involved in a collision, only

those whose metrics lie in the interval
(

F−1
c,ass(h), F−1

c,ass(
h+ℓ
2 )
)

transmit. Therefore, the probability that a node i transmits in

the next slot, given that it was just involved in a collision,

equals
Pr(ui∈(F−1

c,ass(h),F−1
c,ass(

h+ℓ
2

)))
Pr(ui∈(F

−1
c,ass(h),F−1

c,ass(ℓ)))
. This further simplifies to

Fc,act(F
−1
c,ass(h))−Fc,act(F

−1
c,ass(

ℓ+h
2

))

Fc,act(F
−1
c,ass(h))−Fc,act(F

−1
c,ass(ℓ))

= β(ℓ, h). Hence, if a nodes are

involved in a collision, the distribution of the number of nodes

transmitting in the next slot is Bi(a, β(ℓ, h)).
Thus, p(a, 1, ℓ, h), which is the probability that one node

transmits in the next slot, equals aβ(ℓ, h)(1 − β(ℓ, h))a−1.

Also, the probability that i nodes transmit in the next slot is

aβ(ℓ, h)(1 − β(ℓ, h))a−1.

For b > 1, if i > 2 nodes are in the interval

(F−1
c (h+ℓ

2 ), F−1
c (h)), then there is a collision which needs

to be resolved in exactly b− 1 slots. If all the a nodes belong

to the lower half interval (F−1
c (ℓ), F−1

c (h+ℓ
2 )), then there is

an idle which needs to be resolved in exactly b−1 slots. If only

one node transmits in next slot, then the collision is already

resolved in strictly less than b slots.

E. Proof of Theorem 3

For i ≤ q, the probability that the first non-idle slot is the ith

slot and k ≥ 1 nodes are involved is equal to the probability

that k nodes lie in the interval
(

F−1
c,ass(

(i−1)pe

n
), F−1

c,ass(
ipe

n
)
)

and the rest lie below F−1
c,ass(

ipe

n
). Therefore, it equals

(

n

k

)(

Feq

( ipe

n

)

−Feq

( (i − 1) pe

n

)

)k

×

(

1 − Feq

( ipe

n

)

)n−k

,

for i ≤ q. The probability that after the ith non-idle slot,

the collision is resolved in the remaining t − i slots is
∑t−i

j=1 p
(

k, j, ipe

n
, (i−1)pe

n

)

. Also, the probability that the first

non-idle slot is the (q + 1)th slot is the probability that all

the nodes are in the interval
(

Feq

(

qpe

n

)

, 1
)

, which equals
(

1 − Feq

(

qpe

n

))n
. We have t − (q + 1) slots to resolve this

collision among n nodes, which happens with probability
∑t−q−1

j=1 p
(

n, j, 1, qpe

n

)

. Hence, the result follows.

F. Proof of Theorem 4

During the idle phase, the lower thresh-

olds HL(.) for the first i idle slots are

F−1
c (pe/n̂), F−1

c (2pe/n̂), . . . , F−1
c (ipe/n̂). Given that

the first non-idle slot is the ith slot and k nodes are involved,

the probability that the collision is resolved in the remaining

t − i slots is
∑t−i

j=1 p(k, j). The probability that the first

non-idle slot is the ith slot and k nodes are involved is
(

n
k

) (

pe

n̂

)k (

1 − ipe

n̂

)n−k
, for i ≤ q. Here, q =

⌈

pe

n̂

⌉

− 1. The

probability that the first non-idle slot is the (q + 1)th slot

and k nodes are involved is (1 − qpe

n̂
)n, for k = n, and is

0 otherwise. Hence, the expression is same as that given by

Theorem 2, with pe replaced by npe

n̂
.
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