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Abstract—We develop an optimal, distributed, and low feed-
back timer-based selection scheme to enable next generation rate-
adaptive wireless systems to exploit multi-user diversity. In our
scheme, each user sets a timer depending on its signal to noise
ratio (SNR) and transmits a small packet to identify itself when
its timer expires. When the SNR-to-timer mapping is monotone
non-decreasing, timers of users with better SNRs expire earlier.
Thus, the base station (BS) simply selects the first user whose
timer expiry it can detect, and transmits data to it at as high a
rate as reliably possible. However, timers that expire too close to
one another cannot be detected by the BS due to collisions. We
characterize in detail the structure of the SNR-to-timer mapping
that optimally handles these collisions to maximize the average
data rate. We prove that the optimal timer values take only a
discrete set of values, and that the rate adaptation policy strongly
influences the optimal scheme’s structure. The optimal average
rate is very close to that of ideal selection in which the BS always
selects highest rate user, and is much higher than that of the
popular, but ad hoc, timer schemes considered in the literature.

I. INTRODUCTION

Multi-user diversity and rate adaptation [1] are two tech-
niques that have led to significant improvements in the rates
delivered by third generation cellular systems [2], wireless
local area networks [3] and ad hoc networks [4]. Multi-user
diversity exploits the fact that among several users, the signal
to noise ratio (SNR) of at least one user is high with a high
probability. Rate adaptation then enables the BS to transmit
data at as high a rate as reliably possible.

The first step in exploiting multi-user diversity is the se-
lection of the user with the highest SNR. This is typically
achieved by a polling scheme that makes each user periodically
transmit its channel gains to the BS, which then selects the
best one among them [2]. However, the time and bandwidth
resources consumed by polling increase as the number of
users increases. An alternate option is the use of distributed
mechanisms to select a user [5]–[7]. These mechanisms are
attractive because they are considerably faster than the polling
scheme and also scale remarkably well with the number of
users. They can also be adapted to accommodate fairness and
quality of service considerations.

A popular distributed selection mechanism is the timer
scheme [6], [8], [9]. In it, each user sets its timer as a function
of its SNR, and transmits a small packet containing its identity
when its timer expires. When the SNR-to-timer mapping is
a monotone non-increasing (MNI) function, the timer of the
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best user always expires first. No feedback from the BS is
required during the selection process. All the BS does is select
the user responsible for the first timer expiry it observes, and
transmit to it with an appropriate rate. This process of selection
followed by data transmission to the selected user is repeated.

In practice, for the selection to be successful, it is necessary
that no other timer expires within a vulnerability time interval
Δ after the expiry of the best user’s timer [6], [9], [10].
Otherwise, a collision occurs, and the system fails to select
the best user. Δ typically includes the maximum propagation
and detection delays between all nodes. Even though Δ is
typically one to two orders of magnitude smaller than a
packet transmission duration, it is the collisions that limit the
ability of the system to exploit multi-user diversity. Increasing
the timer values to reduce the probability of a collision is
not desirable since it also increases the total time required
to select. Therefore, the SNR-to-timer mapping needs to be
judiciously chosen so as to maximize overall rate. In general,
finding the optimal mapping is a difficult problem because of
the infinitely many possible MNI functions. For example, only
ad hoc mappings were proposed in [6], [8].

Another important factor that determines the overall rate is
the selection policy. For example, in the event of a collision
that involves the best user, the BS can declare an outage, as
was assumed in [6], [9]. However, this is pessimistic since even
the rate to the kth best user may be significant depending on
its instantaneous channel state. Thus, a better pragmatic policy
is to make the BS wait for the first timer that it can reliably
detect – even if collisions precede it – and select the user
responsible for it. Even when all the timers collide, all is not
lost; the BS just randomly selects one user.

In this paper, we consider a rate-adaptive multi-user system
in which the BS selects a user using the distributed timer
mechanism. We derive the optimal SNR-to-timer mapping that
maximizes the overall system rate. We first show that the
system rate is maximized when the SNR-to-timer mapping
is discrete, i.e., the timer set by any user expires only at times
0, Δ, . . ., or NΔ, where N =

⌊
Tmax

Δ

⌋
, Tmax is the maximum

selection duration, and �.� is the floor operation. We then show
that all the optimal intervals can, in fact, be written in terms
of at most M − 1 integers and one real number in [0, 1]. This
enables the optimal policy to be easily computed. We also
show that the structure of the optimal timer scheme is closely
inter-linked with the rate adaptation rule used by the BS.

The paper is organized as follows. Section II describes the
system model. The optimal timer scheme and its performance
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are analyzed in Sec. III. Simulation results in Sec. IV are
followed by our conclusions in Sec. V.
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Fig. 1. A system consisting of a BS and k mobile users. Each user i sets
its timer depending on its SNR γi.

II. SYSTEM MODEL

We consider a system with k users and a BS. The channels
from the users to the BS are assumed to be independent
and identically distributed (i.i.d.) block fading channels. Our
analysis applies to channels with arbitrary fading distributions.
Using standard order statistics notation, we order the power
gains as γ(1) ≥ γ(2) ≥ · · · ≥ γ(k), where (i) denotes the index
of the ith best user. The BS first selects the user using the timer
scheme, and then transmits data to it. We first model below
the data rate adaptation policy, and then the timer scheme.

A. Rate Adaptation

Rate adaptation is done based on the SNR of the selected
user such that the error probability of data transmission does
not exceed a pre-specified value. It is specified by a set of
rates RM < RM−1 < · · · < R1 and rate adaptation thresholds
0 = ΓM < ΓM−1 < · · · < Γ0 = ∞ such that the rate of a
user with channel gain γi is Ri when Γi ≤ γi < Γi−1. This
includes the oft-encountered special case of RM = 0.

This is best understood by an example that adapts the size
of the MPSK constellation. A tight bound for the bit error
probability, BERQ, of MPSK of constellation size Q is [1]

BERQ = 0.2 exp (−1.5γ/(Q− 1)) , Q ≥ 4. (1)

Inverting this equation, we find that a data rate of
Ri bits/symbol can be reliably supported so long as
γ ≥ (2Ri−1)

1.5 loge

(
1

5Pb

)
, where Pb is the target bit error rate.

Our framework applies equally well to adaptation based on
MQAM or coded modulation schemes, whose thresholds can
be similarly tabulated using analysis or simulations [1], [11].

B. Timer-Based Selection

In order to handle all SNR probability distributions, we
first normalize the SNRs, without loss of generality. Let
μi = F (γi), where F (.) is the cumulative distribution function
(CDF) of the SNR. Now, regardless of the distribution of the
SNR, μi is a random variable (RV) that is uniformly distributed
in the interval [0, 1] [12]. We shall refer to μi as the metric of
User i. The metric and SNR are equivalent for the purpose of
selection because the CDF is a monotonically non-decreasing
function. The corresponding CDF-normalized values of the
adaptation thresholds are

Γeq
i = F (Γi), for 0 ≤ i ≤ M. (2)
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Fig. 2. Rate adaptation as a function of the metric when M = 4.

For example, for Rayleigh fading, Γeq
i = 1− e−Γi/γ , where γ

is the average SNR. These are illustrated in Fig. 2.
The BS allocates a time of Tmax for selecting a user. User

i sets its timer as a function of its metric, μi, as Ti = ξ(μi).
Here, ξ(.) is the metric-to-timer mapping MNI function, which
we shall optimize, with a domain [0, 1] and a range [0,∞).
User i transmits a small ‘timer packet’ to the BS when its
timer expires if Ti < Tmax. If two timers expire within a
duration less than Δ of each other, their timer packets collide
and cannot be decoded by the BS. Let N =

⌊
Tmax

Δ

⌋
.

As mentioned, the BS selects the user from which it first
receives a timer packet successfully. For example, the BS will
select User (1) if the packet of User (2) does not collide with
it. Else, in the event of a collision between users (1) and (2),
it selects User (3) in case the timer of User (4) does not
collide with it, and so on. If no user has got selected by time
Tmax, then the BS just selects a user randomly. The BS then
communicates with the user that it has selected and transmits
data to it – with a rate as determined by Sec. II-A.

III. OPTIMAL TIMER SCHEME CHARACTERIZATION

Let RN denote the average rate achieved by the BS when
it transmits to the selected user and Rrnd be the average rate
obtained just by random selection.1 We now derive the timer
scheme that maximizes RN given the system parameters N
amd M . The Lemma below shows the intuitive result that
since a BS can choose a user randomly at time Tmax, only
users whose rates strictly exceed Rrnd should participate in
the selection process. The proof is omitted to conserve space.

Lemma 1: Let P be the largest integer such that
RP > Rrnd. In an optimal timer scheme, only timers of users
whose rate is greater than or equal to RP expire before Tmax.

Since Rrnd ≥ RM , strictly fewer than M rates need to be
considered in designing the selection scheme. We now prove
that an optimal metric-to-timer mapping f(.) is discrete.

1The role of the subscript N =
⌊

Tmax
Δ

⌋
in RN will become clear after

Theorem 1. In our average rate calculations, we do not account for the time
overhead (Tmax) of selection because our goal is to find the optimal timer
scheme given any Tmax. An overall system optimization that also accounts for
and optimizes Tmax is beyond the scope of this paper. It has been considered,
for example, in [13].
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Fig. 3. Illustration of the optimal timer mapping for N = 8 slots and M = 4
rates. It shows that r1 = 4 equal length intervals occupy the entire interval
[Γeq

1 , 1) for which the rate is R1. Similarly, r2 = 2 and r3 = 2. Furthermore,
Γ

eq
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eq
2 .

Theorem 1: An optimal mapping that maximizes the
average rate maps μ into N + 1 discrete timer values
{0, Δ, . . . , NΔ}, where N =

⌊
Tmax

Δ

⌋
.

Proof: The proof is given in Appendix A.
Thus, the longer the selection duration, the more the number

of intervals (N + 1) available for timer expiry. Since the
optimal mapping, f∗(μ), is discrete, let α∗ [j] denote the
length of the jth interval in which the metric is mapped into
the timer jΔ (0 ≤ j ≤ N ). Therefore,

f∗(μ)

=

⎧⎪⎪⎨
⎪⎪⎩

0, 1 ≤ μ < 1 − α∗ [0]
iΔ, 1 −∑i

j=0 α∗ [j] ≤ μ < 1 −∑i−1
j=0 α∗ [j] ,

for 1 ≤ i ≤ N
Tmax + ε, otherwise (i.e., no timer expiry)

, (3)

where ε > 0 is an arbitrary constant. Thus, for a user whose
metric lies in the 0th interval [1−α∗ [0] , 1), the timer expires
at 0; for a user whose metric lies in the 1st interval [1−α∗ [1]−
α∗ [2] , 1 − α∗ [1]), the timer expires at Δ, and so on. Timers
of users with metrics below 1 −∑N

i=0 α∗ [i] do not expire.
While a similar discreteness result occurs in [9], there are

several differences between the model and results in this paper
and those in [9]. The model in [9] is much simpler because
the BS just declares an outage once the timer of the best
user is involved in a collision. Furthermore, no application of
selection such as rate adaptation is considered. As we shall see,
this strongly influences the structure of the optimal mapping.

We have reduced the problem of finding f(μ) over the
enormous space of all positive-valued MNI functions to a
problem of finding just the lengths of (N +1) intervals, which
involves a search over [0, 1]N+1. Even this search problem
is non-trivial since Δ is often small compared to Tmax,
which makes N often exceed 10. The following observation
simplifies the problem further.

Observation: The number of rates in a system that need to
be considered, P , is typically much less than the number of
timer intervals N . Since P � N , the adaptation thresholds,
Γeq

P , . . . , Γeq
1 , lie within a small minority of the (N + 1)

intervals. Consequently, for many intervals, the rate is often
the same for all metrics that belong to an interval. We shall,
therefore, assume that this is true for all the intervals. In order
to guarantee a given error rate, this assumption implies that the
rate of a user whose metric lies in the jth interval (of length
α[j]) is determined by its lower metric limit 1 −∑j

i=0 α[i].
Since all metrics that belong to an interval now yield the same
rate, we can now associate each interval with a single rate.

Notation: Let I [j] denote the rate when a user from the jth
interval is selected; I [j] = Ri if the interval α[j] is a subset of
[Γeq

i , Γeq
i−1). Let xi denote the number of users whose metrics

lie in the ith interval of length α[i]. Let x = (x0, . . . , xN ).
Define the selection function S (x) as S (x) = i if xi = 1
and xj �= 1 for all j < i. Thus, S (x) = i ∈ {0, N} if a user
from the ith interval gets selected. Therefore, the rate achieved
by the timer scheme equals I [S (x)]. When all timers collide,
the BS ends up selecting a user randomly; we indicate this by
defining for this case: S (x) = N + 1 and I [N + 1] = Rrnd.

The probability of occurrence of x is(
k

x0,...,xN

) [∏N
i=0 (α[i])xi

] (
1 −∑N

i=0 α[i]
)k−∑N

i=0 xi

, where(
k

x0,...,xN

)
is the multinomial function. Thus, the average rate,

RN , when the BS transmits to the selected user is

RN =
∑
x

(
k

x0, . . . , xN

)[ N∏
i=0

(α[i])xi

]

×
(

1 −
N∑

i=0

α[i]

)k−∑N
i=0 xi

I [S (x)] . (4)

The following result characterizes the optimal lengths of all
the N + 1 intervals.

Theorem 2: In the optimal timer scheme, there exist m ≤
P positive integers r1, . . . , rm such that

∑m
i=1 ri = N +1 and

α∗ [0] = . . . = α∗ [r1 − 1] =
1 − s1

r1
,

α∗ [r1] = . . . = α∗ [r1 + r2 − 1] =
s1 − s2

r2
,

...
...

α∗
[

m−2∑
i=1

ri

]
= . . . = α∗

[
m−1∑
i=1

ri − 1

]
=

sm−2 − sm−1

rm−1
,

α∗
[

m−1∑
i=1

ri

]
= . . . = α∗ [N ] =

sm−1 − sm

rm
, (5)

where s1, . . . , sm are m real numbers such that 1 > s1 ≥
Γeq

1 > s2 ≥ Γeq
2 > · · · ≥ Γeq

m−1 > sm ≥ Γeq
m.

Proof: The proof is given in Appendix B.
In case m < P , even the timers of users whose rates exceed

Rrnd but are less than or equal to Rm+1 do not expire.



The problem has now been reduced to finding m ≤ P posi-
tive integers whose sum is N and m real numbers s1, . . . , sm

that maximize RN . These can be found numerically.
Approximation: To simplify the numerical computations

even further, we use the following approximation:

s1 = Γeq
1 , . . . , sm−1 = Γeq

m−1. (6)

Note that sm, which from Theorem 2 equals 1−∑N
i=0 α∗ [i],

is left untouched. As we shall see, the average rate obtained
using this approximation is indistinguishable from a brute
force search that finds the optimal si. It works because, for
typical N , the interval lengths are small enough that slightly
shifting si has a negligible effect on RN . The structure of
the optimal scheme after using this approximation is shown in
Fig. 3. The average rate of the optimal scheme then is

RN =
∑
x

I [S (x)]
(

k

x0, . . . , xN

)(
1 − Γeq

1

r1

)∑ r1−1
i=0 xi

×
(

Γeq
1 − Γeq

2

r2

)∑ r1+r2−1
i=r1

xi

. . .

(
Γeq

m−1 − sm

rm

)∑N
i=r1+···+rm−1

xi

.

The problem has now been reduced to finding one real number
and m ≤ P nonnegative integers that maximize RN . These
can be found numerically.

IV. RESULTS

We now study the rate achieved by the optimal timer
scheme. For the purpose of illustration, the rate adaptation
thresholds are generated using (1) for R1 = 4 bits/symbol
(16-PSK), R2 = 3 bits/symbol (8-PSK), R3 = 2 bits/symbol
(QPSK), and R4 = 0. The corresponding thresholds in linear
scale are: Γ0 = ∞, Γ1 = 17.24, Γ2 = 13.93, Γ3 = 10.25, and
Γ4 = 0. Rayleigh fading is assumed for all channels, which
have an average SNR of γ = 10 dB. In this case, the equivalent
CDF-normalized thresholds become Γeq

0 = 1, Γeq
1 = 0.99,

Γeq
2 = 0.92, Γeq

3 = 0.65, and Γeq
4 = 0. The average rate with

random selection is Rrnd = 0.79 and P = 3 in this case.2

Figure 4 plots the rate of the optimal timer scheme as a func-
tion of the total number of users, k, when N =

⌊
Tmax

Δ

⌋
= 10.

Such a small N is chosen deliberately in order to stress the
approximations made in Sec. III. Also plotted for comparison
are the rates of: (i) the optimal scheme obtained whose
intervals are determined using a brute-force N +1 dimensional
numerical search, (ii) the hypothetical perfect case in which the
best user is always selected, and (iii) the popular inverse metric
timer scheme of [6], in which the metric-to-timer mapping
is ξ(μ) = c/μ. In order to provide as fair a comparison as
possible, the parameter c is optimized numerically for each
set of k and N .

The rate of the optimal scheme obtained from a brute
force search is very close to to the one obtained using the
approximation of (6). We, therefore, no longer distinguish
between the two. Furthermore, its rate is quite close to that of

2The average SNR, γ, needs to be specified since the values of P , Rrnd,
and Γ

eq
i depend on it.
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the perfect selection even for N as small as 10, and increases
with k. It also substantially outperforms the optimized inverse
metric scheme, whose rate does not increase with k. The figure
also highlights the role played by the selection policy. For
this, it plots the rate of the optimal best user selection scheme
of [9], which minimizes the probability that the best user’s
timer is involved in a collision, but declares an outage if
the best user’s timer is involved in a collision. We see that
our optimal scheme, which is tailored to a more pragmatic
selection policy, is different and substantially better.

Figure 5 plots the rate of the optimal scheme as a function
of N =

⌊
Tmax

Δ

⌋
when there are k = 10 users in the system.

As expected, as N increases, the rate increases. As in Fig. 4,
also plotted are the rates of the optimized inverse metric
scheme, the optimal best node selection scheme with outage,
and the ideal case where the best node always gets selected.
Clearly, the rate of the ideal case does not depend on N . The
optimal scheme is as good as perfect selection when N ≥ 25,
and significantly better than the inverse metric and best node
selection schemes.

V. CONCLUSIONS

We considered a rate-adaptive multi-user diversity system
that uses a distributed timer scheme instead of the slow polling



scheme to determine which user the BS transmits to. We used
a pragmatic selection policy in which the BS selects the user
whose timer it detects first, even if it is not the best user.
We showed that, for a given maximum selection duration, the
optimal metric-to-timer mapping that maximizes the rate is
discrete in nature, and that all the metric intervals can be
written in terms of the rate adaptation thresholds. The rate
of the optimal timer scheme is quite close to that of the ideal
case in which the BS always perfectly selects the best user. The
optimal scheme significantly outperforms the popular inverse
metric timer scheme – even after the latter is optimized – and
the best user selection policy, in which the BS declares an
outage in case it the best user’s timer is involved in a collision.

APPENDIX

A. Proof of Theorem 1

Let f(μ) be an optimal MNI metric-to-timer mapping.
Consider the new mapping g(μ):

g(μ) =

{ ⌊
f(μ)
Δ

⌋
Δ, if f(μ) ≤ Tmax

f(μ), if f(μ) > Tmax

. (7)

Therefore, g(μ) = 0, if 0 ≤ f(μ) < Δ, g(μ) = Δ, if Δ ≤
f(μ) < 2Δ, and so on. Since f(μ) is MNI, g(μ) is well-
defined and is also MNI. We prove below that the rate obtained
using g(μ) is greater than or equal to that from f(μ).

For f(μ), let the k timers take values T1, . . . , Tk, and let
User (i) get selected. Let the corresponding timer values for
g(μ) be T ′

1 =
⌊

T1
Δ

⌋
Δ, . . . , T ′

k =
⌊

Tk

Δ

⌋
Δ.

Case 1: T(i+1) also expired before Tmax and i ≥ 2: Since
User (i) got selected, timers T(1), . . . , T(i−1) collided with
one another and T(i−1) and T(i+1) did not collide with T(i).
Therefore, T(i+1) − T(i) ≥ Δ and T(i) − T(i−1) ≥ Δ. Hence,⌊

T(i+1)

Δ

⌋
≥
⌊

T(i)

Δ

⌋
+1 and

⌊
T(i−1)

Δ

⌋
≤
⌊

T(i)

Δ

⌋
−1. (8)

Since T ′
(i−1) =

⌊
T(i−1)

Δ

⌋
Δ, T ′

(i) =
⌊

T(i)

Δ

⌋
Δ, and T ′

(i+1) =⌊
T(i+1)

Δ

⌋
Δ, this implies that T ′

(i+1), T ′
(i), and T ′

(i−1) also do

not collide with each other. Therefore, g(μ) ensures that either
User (i) will get selected or, if this is not the case, then one
of the better users (1) , . . . , (i − 1) itself will get selected.
Therefore, the BS will be able to transmit data to the user
selected by g(μ) at a rate that is greater than or equal to
that of f(μ). Since this holds for each realization of timers,
the average rate g(μ) will be greater than or equal to that
of f(μ). Since f(μ) is optimal by assumption, the discrete
mapping must also be optimal.

The proof for the other two cases, which correspond to:
(i) T(i+1) expires before Tmax and i = 1, and (ii) T(i) is the
last timer to expire, is along similar lines.

B. Proof of Theorem 2

We prove the theorem in two steps.
Proposition 1: There exists an integer 1 ≤ m ≤ P such

that
∑N

i=0 α∗ [i] ≤ 1 − Γeq
m and

∑N
i=0 α∗ [i] > 1 − Γeq

m−1.

Proof: Assume that such an m does not exist. Then, it
follows that 1−Γeq

P <
∑N

i=0 α∗ [i] ≤ 1. This implies that some
timers from users whose metrics lie in the interval [0, 1−Γeq

P )
can expire. From Lemma 1, this is suboptimal.

The above result implies that there exist integers r1, . . . , rm

such that exactly r1 intervals lie entirely in the interval
(1 − Γeq

1 , 1], and so on up to exactly r1 + . . . + rm = N + 1
intervals lie within (1 − Γeq

m, 1]. Equivalently, r1, . . . , rm

are the largest integers such that
∑m

i=1 ri = N + 1 and∑i=r1−1
i=0 α∗ [i] � s1 ≤ 1 − Γeq

1 ,
∑i=r1+r2−1

i=0 α∗ [i] � s2 ≤
1 − Γeq

2 , . . .,
∑N

i=0 α∗ [i] � sm ≤ 1 − Γeq
m.

Proposition 2: α∗ [0] = · · · = α∗ [r1 − 1]; α∗ [r1] = · · · =
α∗ [r1 + r2 − 1]; . . .; α∗

[∑m−1
i=1 ri

]
= · · · = α∗ [N ].

Proof: The average rate expression in (4) is symmetric
in α∗ [0] , . . . , α∗ [r1 − 1]. This is because if a realization
x results in a rate of R1, then any permutation of the
elements of the first r1 elements of x also gives the same
output. Therefore, the optimal values α∗ [0] , . . . , α∗ [r1 − 1]
are equal. Similarly, we can show that (4) is symmetric in
α∗ [r1] , . . . , α∗ [r1 + r2 − 1], and so on. Hence, the result.

The desired result in (5) then follows from Prop. 1, the
definition of ri, and Prop. 2.
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