E2 201 (Aug-Dec 2014)

Homework Assignment 1

Discussion: Friday, Aug. $15 \quad$ Quiz: Friday, Aug. 22

1. Define a sequence $\left(a_{n}\right)$ recursively as follows: $a_{0}=0$, and for $n \geq 1, a_{n}=\sqrt{2+a_{n-1}}$. Prove that the sequence $\left(a_{n}\right)$ converges to a limit. What is the limit?
[Hint: Guess an upper bound for the sequence, and show by induction that the sequence is monotonically increasing and bounded.]
2. Prove that if a sequence is convergent, then it is bounded (both above and below). Is the converse true?
3. Prove that $\limsup _{n \rightarrow \infty} a_{n} \leq L$ if and only if
for each $\epsilon>0$, the inequality $a_{n}<L+\epsilon$ holds for all sufficiently large n.
4. Let L be a real number. Show that $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if $\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=L$.
5. Determine the limsup and liminf of each of the following sequences:
(a) a_{n} as defined in Problem 1.
(b) $a_{n}=n \sin \frac{n \pi}{2}$ for all $n \geq 1$.
(c) $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots$
[The first term is $\frac{1}{2}$, the next two terms are $\frac{1}{3}, \frac{2}{3}$, the next three terms are $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$, and so on.]
6. For each of the statements below, prove or give a counterexample:
(a) For A and B bounded subsets of \mathbb{R}, and $A+B \stackrel{\text { def }}{=}\{a+b: a \in A, b \in B\}$,

$$
\sup (A+B)=\sup A+\sup B
$$

(b) For sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$,

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

(c) For convergent sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$,

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}
$$

7. Let $\mathcal{X}=\{0,1\}$. For a sequence $\mathbf{x}^{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$, let $N_{1}\left(\mathbf{x}^{n}\right)$ denote the number of 1 s in \mathbf{x}^{n}. Let $p(x)$ be a probability mass function (pmf) on \mathcal{X}, with $p(1)=p$. Let $X_{1}, X_{2}, X_{3}, \ldots$ be a sequence of iid random variables, each with $\operatorname{pmf} p(x)$. For $\epsilon>0$ and $n \geq 1$, define A_{ϵ}^{n} to be the typical set with respect to the $\operatorname{pmf} p(x)$, and also define

$$
B_{\epsilon}^{(n)}=\left\{\mathbf{x}^{n} \in \mathcal{X}^{n}:\left|\frac{1}{n} N_{1}\left(\mathbf{x}^{n}\right)-p\right| \leq \epsilon\right\}
$$

(a) Is it true that $\operatorname{Pr}\left[A^{(n)} \cap B^{(n)}\right] \rightarrow 1$ as $n \rightarrow \infty$?
(b) Show that $\left|A^{(n)} \cap B^{(n)}\right| \leq 2^{n(H(X)+\epsilon)}$ for all n.
(c) Show that $\left|A^{(n)} \cap B^{(n)}\right| \geq(1 / 2) 2^{n(H(X)-\epsilon)}$ for all sufficiently large n.
8. Problem 3.13, Cover \& Thomas, 2nd ed.

