E2 201 (Aug-Dec 2014)

Homework Assignment 1

Discussion: Friday, Aug. 15 Quiz: Friday, Aug. 22

- Define a sequence (a_n) recursively as follows: a₀ = 0, and for n ≥ 1, a_n = √2 + a_{n-1}. Prove that the sequence (a_n) converges to a limit. What is the limit?
 [*Hint*: Guess an upper bound for the sequence, and show by induction that the sequence is monotonically increasing and bounded.]
- 2. Prove that if a sequence is convergent, then it is bounded (both above and below). Is the converse true?
- 3. Prove that $\limsup_{n \to \infty} a_n \leq L$ if and only if

for each $\epsilon > 0$, the inequality $a_n < L + \epsilon$ holds for all sufficiently large n.

4. Let L be a real number. Show that $\lim_{n\to\infty} a_n = L$ if and only if $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = L$.

- 5. Determine the limsup and liminf of each of the following sequences:
 - (a) a_n as defined in Problem 1.
 - (b) $a_n = n \sin \frac{n\pi}{2}$ for all $n \ge 1$.
 - (c) $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \dots$ [The first term is $\frac{1}{2}$, the next two terms are $\frac{1}{3}, \frac{2}{3}$, the next three terms are $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$, and so on.]
- 6. For each of the statements below, prove or give a counterexample:
 - (a) For A and B bounded subsets of \mathbb{R} , and $A + B \stackrel{\text{def}}{=} \{a + b : a \in A, b \in B\}$,

$$\sup(A+B) = \sup A + \sup B$$

(b) For sequences (a_n) and (b_n) ,

$$\limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

(c) For convergent sequences (a_n) and (b_n) ,

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

7. Let $\mathcal{X} = \{0, 1\}$. For a sequence $\mathbf{x}^n = (x_1, x_2, \dots, x_n) \in \mathcal{X}^n$, let $N_1(\mathbf{x}^n)$ denote the number of 1s in \mathbf{x}^n . Let p(x) be a probability mass function (pmf) on \mathcal{X} , with p(1) = p. Let X_1, X_2, X_3, \dots be a sequence of iid random variables, each with pmf p(x). For $\epsilon > 0$ and $n \ge 1$, define A_{ϵ}^n to be the typical set with respect to the pmf p(x), and also define

$$B_{\epsilon}^{(n)} = \left\{ \mathbf{x}^n \in \mathcal{X}^n : \left| \frac{1}{n} N_1(\mathbf{x}^n) - p \right| \le \epsilon \right\}.$$

- (a) Is it true that $\Pr[A^{(n)} \cap B^{(n)}] \to 1$ as $n \to \infty$?
- (b) Show that $|A^{(n)} \cap B^{(n)}| \le 2^{n(H(X)+\epsilon)}$ for all n.
- (c) Show that $|A^{(n)} \cap B^{(n)}| \ge (1/2) 2^{n(H(X)-\epsilon)}$ for all sufficiently large n.
- 8. Problem 3.13, Cover & Thomas, 2nd ed.